首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential role of the Fas (CD95/APO-1) receptor/ligand system in chemotherapeutic drug-induced apoptosis was examined in a number of human leukaemic cell lines. Flow cytometric profiles of doxorubicin-treated HL-60, K562, U937 and Jurkat cells failed to show any significant increase in Fas or Fas ligand expression over 24 h, despite the induction of significant levels of apoptosis in these cells. Although preincubation of human leukaemic cells with a neutralizing anti-Fas IgG antibody blocked anti-Fas IgM-induced apoptosis, this strategy failed to inhibit chemotherapeutic drug-induced apoptosis. To determine whether recruitment of the Fas/Fas ligand complex during drug-induced apoptosis was a cell-specific event we utilized the CEM cell line. Doxorubicin treatment of CEM cells over 24 h failed to show any up-regulation in Fas or Fas ligand protein levels as detected by flow cytometry. Furthermore, neutralizing anti-Fas IgG Ab failed to inhibit chemotherapeutic drug-induced apoptosis in CEM cells. The present studies do, however, demonstrate a role for anti-Fas IgM Ab in producing a cytotoxic synergistic effect when used in combination with chemotherapeutic drugs. Low-dose anti-Fas IgM treatment in combination with doxorubicin, methotrexate, camptothecin and etoposide produced an augmented cytoxicity in CEM cells. Taken together these observations demonstrate that although recruitment of the Fas/APO-1/CD95 receptor/ligand system is not a necessary requirement for chemotherapeutic drug-induced apoptosis, combination of anti-Fas IgM and drug treatment produces a synergistic cytotoxic effect which may prove useful in the treatment of human leukaemias.  相似文献   

2.
Proteases of the caspase family are the critical executioners of apoptosis. Their activation has been mainly studied upon triggering of death receptors, such as CD95 (Fas/APO-1) and tumor necrosis factor-R1, which recruit caspase-8/FLICE as the most proximal effector to the receptor complex. Because apoptosis induced by anticancer drugs has been proposed to involve CD95/CD95 ligand interaction, we investigated the mechanism of caspase activation by daunorubicin, doxorubicin, etoposide, and mitomycin C. In Jurkat leukemic T cells, all drugs induced apoptosis and the cleavage of procaspase-8 to its active p18 subunit. However, cells resistant to CD95 were equally susceptible to anticancer drugs and activated caspase-8 with a similar kinetic and dose response as CD95-sensitive cells. The broad caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone prevented apoptosis and caspase-8 activation in response to CD95 and drug treatment, whereas a neutralizing CD95 decoy as well as a dominant-negative FADD construct selectively abrogated CD95, but not drug-induced effects. A potent activation of caspase-8 was also induced by cycloheximide, indicating that it was independent of protein synthesis. Our data, therefore, show that (1) anticancer drug-induced apoptosis does not require de novo synthesis of death ligands or CD95 interaction, and (2) that caspase-8 can be activated in the absence of a death receptor signaling.  相似文献   

3.
4.
Recently, we showed that TNF enhances the susceptibility of endothelial cells from murine liver sinusoids (LEC) to Fas-mediated apoptosis, suggesting that signals transduced by Fas and TNF receptors may synergistically increase intracellular death signals in these cells. In this work we evaluated whether caspase-3 and p38 are involved in LEC apoptosis induced by Fas and TNF. Here we show that LEC treated with Fas agonist (Jo2 mAb at 0.1 microg/ml) and TNF had a greater caspase-3 activity (twofold increase) than cells treated with each factor alone. There was a strong correlation between caspase-3 activity and cell killing induced by Jo2/TNF, indicating that this caspase plays a critical role in this process. Likewise, there was a significant increase in caspase-8 activity in LEC treated with Jo2 and TNF, compared with untreated cells or cells treated with each factor alone. Apoptosis of LEC induced by Jo2/TNF was partially reversed by SB203580, a p38 inhibitor, suggesting that p38 is involved in apoptosis of these cells. To our knowledge, this is the first report that apoptosis induced by Fas/TNF in LEC is associated with coactivation of both caspase-3 and p38. Potentially, both caspase-3 and p38 may be of great importance in endothelial cell pathology as molecular targets for preventing vascular damage due to endothelial cell apoptosis.  相似文献   

5.
BACKGROUND: Several studies have shown that carvedilol, a multiple action neurohumoral antagonist, reduces mortality in patients with congestive heart failure (CHF). In addition to being a beta-adrenoceptor antagonist, carvedilol is a potent antioxidant. Since there is evidence for elevation of catecholamine levels in plasma and coronary artery endothelial cell injury in CHF, the present study was designed to test the hypothesis that carvedilol inhibits epinephrine-induced apoptosis, and the inhibitory effect is mediated by modulation of Fas, Fas ligand (FasL) and caspase-3 pathway, in cultured human coronary artery endothelial cells (HCAECs). METHODS AND RESULTS: HCAECs were exposed to epinephrine alone, carvedilol + epinephrine, or atenolol + epinephrine for 24 h. Epinephrine increased the number of apoptotic cells, measured by in situ nick end-labeling staining (from 4.2 +/- 1.3% to 28.6 +/- 6.0%, P < 0.01, n = 6) and by DNA laddering on agarose gel electrophoresis. Epinephrine also increased Fas and FasL protein expression (P < 0.01 vs. control, n = 6), and activated intracellular protease caspase-3 (P < 0.01 vs. control, n = 6). These effects of epinephrine were completely inhibited by carvedilol. Atenolol in equimolar concentration also attenuated epinephrine-mediated effects, but the effects of atenolol were less marked than those of carvedilol (P < 0.01). To explore the basis of differential effects of carvedilol and atenolol, effects of these agents on epinephrine-induced lipid peroxidation was measured. Lipid peroxidation was completely blocked by carvedilol, whereas equimolar concentration of atenolol had much less (P < 0.05) effect. CONCLUSION: Epinephrine induces apoptosis in HCAECs, and this effect is associated with activation of Fas-FasL and caspase-3 signal transduction pathway. Carvedilol can, more effectively than atenolol, inhibit these effects of epinephrine. The potent antioxidant effect of carvedilol is probably responsible for the superior effect.  相似文献   

6.
J E Tanner  C Alfieri 《Blood》1999,94(10):3439-3447
Epstein-Barr virus (EBV) acute infectious mononucleosis (AIM) is characterized by transient immunosuppression in vivo and increased T-cell apoptosis after ex vivo culture of AIM peripheral blood mononuclear cells. We undertook experiments to test whether EBV or purified virion envelope glycoprotein gp350 could contribute to Fas-mediated T-cell apoptosis. Our in vitro results indicate that EBV increased Fas expression in CD4(+) T cells and Fas ligand (FasL) expression in B cells and macrophages. Purified gp350 was also shown to significantly increase CD95 expression in CD4(+) T cells. When T-cell CD95 was cross-linked, EBV-stimulated T cells underwent apoptosis. The induction of T-cell CD95 by EBV followed by CD95 cross-linking with anti-CD95 monoclonal antibody resulted in a loss in the number of T cells responding to the T-cell mitogens, anti-CD3 antibody, and interleukin-2. These results indicate that, in addition to serving as a principal ligand for the attachment of virus to target cells, gp350 may also act as an immunomodulatory molecule that promotes T-cell apoptosis.  相似文献   

7.
Caspase蛋白酶与细胞凋亡密切相关,凋亡可能就是caspase蛋白酶级联切割的过程[1,2]。研究证实caspase-3在5-氟尿嘧啶(5-Fu)诱导人肝癌细胞凋亡中发挥重要作用[3]。而在5-Fu诱导人肝癌细胞凋亡中caspase-8的作用及其与caspase-3活化之间的关系尚不明了。我们进一步研究5-Fu诱导人肝癌细胞凋亡中caspase-8的活性变化及其与caspase-3间的活化关系,旨在探讨caspase-8和caspase-3在化疗诱导肝癌细胞凋亡过程中的作用,为阐明化疗的确切分子机制提供理论依据。  相似文献   

8.
Transforming growth factor-beta1 (TGF-beta1) has been shown to induce apoptosis in normal or transformed hepatocytes. To elucidate the biochemical pathways leading to apoptosis induced by TGF-beta1 in human hepatoma cells (HuH-7), we examined the expression of Bcl-2-related proteins and X-chromosome-linked inhibitor of apoptosis (XIAP), and activation of the caspase cascade following TGF-beta1 treatment. Bcl-xL expression began to decline at 12 hours after TGF-beta1 treatment and progressively decreased to very low levels in a time-dependent manner. Bax expression showed a little change throughout the experiment. On the other hand, activation of caspase-8 was clearly observed at 36 hours after TGF-beta1 treatment, followed by activation of caspase-9, and caspase-3 was activated at 48 hours after treatment at which time apoptosis of HuH-7 cells was observed. TGF-beta1 significantly decreased XIAP expression in HuH-7 cells. Addition of an inhibitor of caspase-8 or caspase-3 (IETD-FMK or DEVD-CHO) markedly inhibited TGF-beta1-induced apoptosis of HuH-7 cells. Fas/Fas ligand (FasL) interactions in HuH-7 cells were not involved in the apoptotic process. Furthermore, epidermal growth factor (EGF) also completely inhibited TGF-beta1-induced apoptosis of HuH-7 cells by inhibiting activation of the caspase cascade. Our results suggested that activation of caspase-3 initiated through caspase-8 activation is involved in the apoptotic process induced by TGF-beta1 in HuH-7 cells. Our results also showed that down-regulation of the expression of Bcl-xL and XIAP by TGF-beta1 may facilitate activation of caspase-3 in these cells.  相似文献   

9.
BACKGROUND & AIMS: Experimental autoimmune gastritis (EAG), characterized by a gastric mononuclear cell infiltrate, mucosal cell damage, and autoantibodies to parietal cell-associated H(+)/K(+) adenosine triphosphatase, is a model for human autoimmune gastritis that leads to pernicious anemia. Previous in vitro studies have implicated Fas/CD95 in initiating damage to gastric mucosal cells in humans and an animal model of autoimmune gastritis. Here we used 2 in vivo animal models to examine the role of Fas in the development of mucosal cell damage in autoimmune gastritis. METHODS: We initiated EAG in BALB/cCrSlc mice by neonatal thymectomy and examined for Fas expression in the gastric mucosa by immunohistochemistry. To address the in vivo relevance of Fas in mucosal injury, we examined the stomachs and sera of BALB/cCrSlc lpr/lpr mice subjected to neonatal thymectomy and BALB/cCrSlc nu/nu lpr/lpr mice transferred with lymphocytes from gastritic BALB/cCrSlc mice. RESULTS: Fas expression was up-reguiated in parietal cells of mice with EAG. Neonatally thymectomized lpr/lpr mice were resistant to developing destructive gastritis compared with heterozygous and wild-type littermates. Nu/nu Fas-sufficient mice transferred with lymphocytes from thymectomized lpr/lpr mice developed destructive gastritis. Nu/nu lpr/lpr mice transferred with lymphocytes from gastritic mice developed a nondestructive gastritis. CONCLUSIONS: The observations that Fas is up-regulated in gastric parietal cells of mice with EAG and that Fas-deficient mice are resistant to development of destructive gastritis provide compelling evidence that Fas is required in vivo for development of gastric mucosal cell damage in autoimmune gastritis.  相似文献   

10.
Immunization of mammals with irradiated malaria sporozoites protects from a subsequent contact with the parasite. Protective immunity is directed against the pre-erythrocytic stages of the parasite, sporozoites and liver stages. Specific antibodies neutralize part of the infectious sporozoites injected by the mosquito vector, while liver stages are the target of a cellular immune response which is mediated by T cells. In this study, we evaluated the T-cell dependent protection induced by the injection of P. berghei irradiated sporozoites and the contribution of perforin and of the receptor/ligand system CD95/CD95L, two T cell-dependent mechanisms known to mediate elimination of target cells. Wild type, perforin deficient, CD95 mutant, CD95L mutant and perforin deficient/CD95L mutant mice were immunized with P. berghei irradiated sporozoites and submitted to a challenge with infectious sporozoites. All mice immunized with P. berghei irradiated sporozoites were protected against a sporozoite challenge, including perforin deficient/CD95L mutant animals. These results indicate that T cells do not kill malaria-infected hepatocytes via one of the known pathways, but rather that activated parasite-specific T cells produce cytokines which activate in cascade other mechanisms responsible for the intracellular elimination of the parasite.  相似文献   

11.
Regulation of CD95 (Fas/APO-1)-induced apoptosis in human chondrocytes   总被引:4,自引:0,他引:4  
  相似文献   

12.
OBJECTIVE: To determine the bone marrow homing efficiency (20 hours) of cultured compared to noncultured umbilical cord blood (UCB)-derived human hematopoietic cells in the nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse, and to explain the difference in homing between these populations. METHODS: Human UCB CD34+ cells were cultured for up to 5 days, reselected, and used for transplantation, phenotype analysis, and functional studies, including adhesion and trans-endothelial migration assays. Seeding of CD34+ cells was measured after labeling of cells with 111-Indium, while homing of colony-forming cells (CFC) and SCID-repopulating (SRC) cells was determined using functional assays. RESULTS: Short-term culture was associated with a decrease in the 20-hour homing of CD34+ cells, CFC, and SRC to the BM. Although cultured compared to noncultured cells showed increased expression and function (adhesion/migration) of several cell adhesion molecules described to play a role in homing and engraftment, culture also induced expression of Fas/CD95 and rendered cells more susceptible to apoptosis. Finally, we demonstrate that the level of Fas/CD95 on cultured cells was inversely related to the ability of CFC to home to the BM, and that the homing of cultured CFC could be restored by incubating cells prior to transplantation with Fas/CD95-blocking mAb ZB4. CONCLUSION: These data implicate Fas/CD95 in the homing defect of cultured human hematopoietic cells in the NOD/SCID transplant model and suggest that prevention of apoptosis may be an important strategy to improve engraftment of ex vivo-manipulated HSC in a clinical setting.  相似文献   

13.
Fas/Apo-1 antigen (CD95) is a cell surface molecule that directly mediates apoptosis. Fas expression was studied in five plasma cell lines, 11 multiple myeloma cases, and three plasma cell leukemia (PCL) cases. Induction of apoptosis by anti-Fas antibody was studied in five plasma cell lines and fresh plasma cells from eight patients. Apoptosis was confirmed by morphologic analysis alone or in combination with DNA electrophoresis analysis. Four of the five cell lines showed Fas expression, three of which showed induction of apoptosis by anti-Fas antibody. One cell line, RPMI 8226, showed the highest sensitivity for Fas-mediated apoptosis. High bcl-2 expression was found in KMS12PE, which showed resistance to Fas-mediated apoptosis despite its Fas expression. Plasma cells from seven fresh cases, including all five cases with high serum lactate dehydrogenase (LDH), showed expression of Fas antigen. Fas-induced apoptosis was found in five cases at various levels, although significant induction of apoptosis was found in only one case. Interestingly, Fas-independent apoptosis was induced during culture without anti-Fas antibody in cases with high serum LDH. These results indicate that plasma cells from aggressive myeloma with high LDH express Fas antigen and undergo apoptosis through either Fas- mediated or Fas-independent pathways. An understanding of the mechanism of apoptosis in malignant plasma cells should contribute to investigations of the pathophysiology of and therapy for myeloma/PCL.  相似文献   

14.
The mechanisms by which esophageal tumors escape immunologic recognition and clearance are only partly understood at the molecular level. Esophageal cancers have been shown to evade host recognition by down-regulation of antigen presentation and production of immunosuppressive factors. Recently, two independent reports have shown that esophageal tumor cells abundantly express Fas ligand (FasL) in vivo. As the triggering agonist for Fas receptor (Fas or APO-1/CD95)-mediated apoptosis of lymphocytes, FasL normally plays immune down-regulatory roles, including activation-induced cell death of T and B cells, as well as maintaining immune privilege in certain organs. Fas ligand expressed by esophageal cell lines has been shown to induce apoptosis of cocultured Fas-sensitive lymphoid cells in vitro. FasL expression by esophageal carcinomas in vivo has been associated with significantly reduced tumor-infiltrating lymphocytes (TILs) in FasL-positive tumor nests, concomitant with significantly increased TIL apoptosis in these nests. These studies support a 'Fas counterattack' mechanism of immune escape in esophageal cancer. By expressing functional Fas ligand, esophageal cancer cells can deplete antitumor lymphocytes by inducing apoptosis. To express functional FasL, esophageal carcinomas also acquire molecular mechanisms to resist autocrine Fas-mediated apoptosis of tumor cells.  相似文献   

15.
The mechanisms of apoptosis have become better understood, in part with the discovery of Fas/CD95. We report the case of a patient characterized by a decreased CD4+ T cell count and an overexpression of Fas/CD95 resulting in apoptosis. A 54-year-old man presented with disseminated Mycobacterium xenopi infection. Analysis showed CD4+ T lymphopenia. Tests for human immunodeficiency virus (HIV) types 1 and 2 were negative. We compared the patient with eight healthy controls and five HIV-infected patients in terms of the expression of Fas/CD95 and Fas-mediated apoptosis of peripheral T lymphocytes. The percent of CD95+ cells in lymphocytes was 98% for the patient, and the mean percent of CD95+ cells in lymphocytes +/- SD for HIV-infected patients and healthy controls was 75% +/- 16% and 36% +/- 26%, respectively. The patient had a high level of spontaneous apoptosis, and apoptotic cells were all identified as being CD4+ T cells. Monoclonal antibodies to CD95 dramatically increased apoptosis of CD4+ T cells exclusively. CD4+ T lymphopenia observed in our patient correlated with an overexpression of Fas together with spontaneous and Fas-induced apoptosis.  相似文献   

16.
Komada  Y; Zhou  YW; Zhang  XL; Xue  HL; Sakai  H; Tanaka  S; Sakatoku  H; Sakurai  M 《Blood》1995,86(10):3848-3860
Apoptotic cell death induced by cross-linking Fas receptor (FasR/CD95) has been investigated in human acute myelogenous leukemia (AML) cells. FasR-mediated growth inhibition and DNA fragmentation could be induced in certain cases of AML. Interestingly, when DNA synthesis and G1 -> S transition in the cell cycle were enhanced by interleukin-3 or granulocyte-macrophage colony-stimulating factor, Fas-insensitive blast cells acquired cellular susceptibility toward FasR-mediated growth inhibition. To further evaluate an association between the Fas-R- mediated action and a specific phase of the cell cycle, a FasR+ leukemic cell line, MML-1, was established from a patient with AML. The morphologic feature of dying cells and DNA fragmentation indicated that FasR cross-linking induced apoptotic cell death in MML-1 cells. Cell cycle arrest in G1A phase with the treatment of phorbol 12-myristate 13- acetate or thymidine rendered MML-1 cells resistant to FasR-mediated apoptosis without downregulation of surface FasR expression. However, S- phase arrest with 5-fluorouracil could neither enhance nor inhibit FasR- mediated apoptosis. Simultaneous DNA/RNA quantification analysis revealed the selective loss of cells in G1B compartment, accompanied by the increase of apoptotic nuclei in sub-G1 fraction. These findings suggested that FasR-mediated apoptotic signals could be transduced into cells in G1B compartment and G1A -> G1B transition might augment the induction of FasR-mediated apoptosis.  相似文献   

17.
Ligation of CD40 inhibits apoptosis and stimulates proliferation of normal B cells, whereas ligation of CD95 (APO-1/Fas) induces apoptosis of activated lymphocytes. Aberrant signalling through the CD40 and CD95 antigens could thus participate in the pathogenesis of lymphoid malignancies. The expression and function of CD40 and CD95 on neoplastic B cells from patients with acute lymphoblastic leukaemia (ALL), chronic lymphocytic leukaemia (CLL) and non-Hodgkin’s lymphoma (NHL) were examined. CD40 was expressed by all 30 B-cell tumours, whereas CD95 was detected on neoplastic B cells in only one of 10 cases of ALL, two of 10 cases of CLL, and three of 10 cases of NHL. Incubation with an agonistic CD95 monoclonal antibody (MoAb) did not augment apoptosis in any of the unstimulated B-cell neoplasms. CD40 triggering did not consistently inhibit spontaneous apoptosis, but ultimately stimulated the growth of neoplastic B cells in most cases. Furthermore, CD40 activation led to up-regulation of the CD95 antigen in all 30 B-cell neoplasms. Ligation of CD95 on CD40-activated tumour cells augmented apoptosis in five of 10 ALL, three of 10 CLL, and nine of 10 NHL cases. The degree of apoptosis induced by CD95 triggering was greater for NHL cells than for ALL cells or CLL cells. Bcl-2 expression by ALL and NHL cells was substantially decreased after in vitro culture, whereas Bcl-2 expression by CLL cells was not significantly changed. However, there was no correlation between the level of Bcl-2 expression and sensitivity to CD95-mediated apoptosis. Thus, factors other than levels of CD95 and Bcl-2 determine susceptibility of malignant B cells to apoptosis after CD95 triggering. CD40-activated lymphoma cells appear to be very sensitive to CD95-mediated apoptosis, suggesting potential strategies for treatment of NHL. Elucidation of the mechanisms underlying resistance of ALL and CLL cells to CD95 triggering may facilitate the development of novel therapeutic approaches to these diseases as well.  相似文献   

18.
BACKGROUND/AIMS: Sepsis and lipopolysaccharides (LPS) cause mild to severe hepatic dysfunction. In this study, Kupffer cell activation, involvement of TNFalpha and caspases downstream of the TNFalpha receptor were examined in hepatocyte apoptosis induced by LPS. METHODS: In in vivo experiments, male Sprague-Dawley rats were injected intravenously with LPS, and small amounts of the blood and liver were sampled to evaluate apoptosis. Kupffer cells were inactivated by pretreatment with gadolinium chloride for 2 days. In in vitro experiments, hepatocytes and Kupffer cells were separately isolated from rat livers using collagenase perfusion. RESULTS: LPS induced time-dependent and dose-dependent increases in the number of TUNEL-positive cells, which coincided with the apoptotic features of hepatocytes demonstrated by electron microscopy and DNA ladder. Activation of caspase-3-like proteases was observed with an increase in the number of apoptotic hepatocytes. Immunostaining with activated caspase-3-specific antibody showed that caspase-3 was activated only in the cytoplasm of TUNEL-positive hepatocytes. Inactivation of Kupffer cells by gadolinium chloride was concomitantly accompanied by the prevention of caspase-3 activation, hepatocyte apoptosis and liver injury induced by LPS. The co-culture system of hepatocytes and Kupffer cells, but neither cell culture system, individually, showed LPS-induced hepatocyte apoptosis. Kupffer cell-conditioned medium induced hepatocyte apoptosis, whereas addition of anti-TNFalpha antibody to Kupffer cell-conditioned medium did not. Additions of acetyl-DEVD-CHO, acetyl-YVAD-CHO, and acetyl-IETD-CHO to Kupffer cell-conditioned medium decreased the number of apoptotic hepatocytes. CONCLUSIONS: These results suggest that the activation of Kupffer cells, TNFalpha and caspases downstream of TNFR1 were involved in hepatocyte apoptosis induced by LPS.  相似文献   

19.
Baumler  CB; Bohler  T; Herr  I; Benner  A; Krammer  PH; Debatin  KM 《Blood》1996,88(5):1741-1746
Increased apoptosis of CD4+ T cells is considered to be involved in CD4+ T-cell depletion in human immunodeficiency virus type-1 (HIV-1)- infected individuals progressing toward acquired immunodeficiency syndrome (AIDS). We have recently shown that CD95 (APO-1/Fas) expression is strongly increased in T cells of HIV-1-infected children. In this report we provide further evidence for a deregulated CD95 system in AIDS. CD95 expression in HIV-1+ children is not restricted to previously activated CD45RO+ T cells but is also increased on freshly isolated naive CD45RA+ T cells. In addition, specific CD95-mediated apoptosis is enhanced in both CD4+ and CD8+ T cells. Furthermore, levels of CD95 ligand mRNA are profoundly increased. Specific T-cell receptor/CD3-triggered apoptosis in HIV-1+ children is more enhanced in CD8+ than in CD4+ T cells. Accelerated activation induced cell death of T cells could partially be inhibited by blocking anti-CD95 antibody fragments. These data suggest an involvement of the CD95 receptor/ligand system in T-cell depletion and apoptosis in AIDS and may open new avenues of rational intervention strategies.  相似文献   

20.
We observed that N-(4-hydroxyphenyl)retinamide (4HPR), a chemopreventive and chemotherapeutic agent, effectively induced apoptosis in hepatoma cells. Interestingly, Fas-negative (Hep 3B and PLC/PRF/5) hepatoma cells were shown to be more susceptible to apoptosis induced by 4HPR than were Fas-positive (Hep G2 and SK-HEP-1) hepatoma cells. Thus, we explored the mechanisms underlying 4HPR-induced apoptosis in Fas-defective hepatoma cells. Hep 3B cells stably expressing the dominant-negative Fas-associated death domain (dnFADD) showed no alteration in 4HPR drug susceptibility, but when stably expressing E1B19K, Crm A, or dominant-negative FLICE (dnFLICE), Hep 3B cells were resistant, suggesting that 4HPR-induced apoptosis was mediated by caspase-8 activation. Furthermore, apoptosis could be completely blocked by Z-VAD-FMK (a general caspase inhibitor) or by IETD-CHO (a caspase-8 inhibitor), but was only partially blocked by Ac-DEVD-CMK (a caspase-3 inhibitor), by N-acetyl-L-cysteine (NAC) (an antioxidant), by N-acetyl-leucyl-leucyl-norleucinal (ALLN) (a calpain inhibitor I), or by Z-LEHD-FMK (a caspase-9 inhibitor). Time-sequence analysis of the induction of apoptosis by 4HPR revealed that an initial caspase-8 activation was followed by late mitochondrial cytochrome c release and minor caspase-9 activation, which suggested that caspase-8 activation is the primary upstream regulatory point. Activation of Bid or induction of proapoptotic Bax was not observed during apoptosis. In contrast, Bcl-xL expression was decreased during 4HPR-induced apoptosis. Taken together, these results indicate that 4HPR may be a potential chemotherapeutic drug, which is able to induce apoptosis in Fas-defective hepatoma cells through caspase-8 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号