首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of repeated ingestions of fructose, sucrose, and various amounts of glucose on muscle glycogen synthesis during the first 6 h after exhaustive bicycle exercise was studied. Muscle biopsies for glycogen determination were taken before and after exercise, and every second hour during recovery. Blood samples for plasma glucose and insulin determination were taken before and after exercise, and every hour during recovery. When 0.35 (low glucose: N = 5), 0.70 (medium glucose: N = 5), or 1.40 (high glucose: N = 5) g.kg-1 body weight of glucose were given orally at 0, 2, and 4 h after exercise, the rates of glycogen synthesis were (mean +/- SE) 2.1 +/- 0.5, 5.8 +/- 1.0, and 5.7 +/- 0.9 mmol.kg-1.h-1, respectively. When 0.70 g.kg-1 body weight of sucrose (medium sucrose: N = 5), or fructose (medium fructose: N = 7) was ingested accordingly, the rates were 6.2 +/- 0.5 and 3.2 +/- 0.7 mmol.kg-1.h-1. Average plasma glucose level during recovery were similar in low glucose, medium glucose, and high glucose groups (5.76 +/- 0.24, 6.31 +/- 0.64, and 6.52 +/- 0.24 mM), while average plasma insulin levels were higher with higher glucose intake (16 +/- 1, 21 +/- 3, and 38 +/- 4 microU.ml-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
PURPOSE: This study examined whether creatine (Cr) supplementation could enhance long-term repeated-sprint exercise performance of approximately 80 min in duration. METHODS: Fourteen active, but not well-trained, male subjects initially performed 10 sets of either 5 or 6 x 6 s maximal bike sprints, with varying recoveries (24, 54, or 84 s between sprints) over a period of 80 min. Work done (kJ) and peak power (W) were recorded for each sprint, and venous blood was collected preexercise and on four occasions during the exercise challenge. Muscle biopsies (vastus lateralis) were obtained preexercise as well as 0 min and 3 min postexercise. Subjects were then administered either 20 g.d-1 Cr.H2O (N = 7) or placebo (N = 7) for 5 d. Urine samples were collected for each 24 h of the supplementation period. Subjects were then retested using the same procedures as in test 1. RESULTS: Total work done increased significantly (P < 0.05) from 251.7 +/- 18.4 kJ presupplementation to 266.9 +/- 19.3 kJ (6% increase) after Cr ingestion. No change was observed for the placebo group (254.0 +/- 10.4 kJ to 252.3 +/- 9.3 kJ). Work done also improved significantly (P < 0.05) during 6 x 6 s sets with 54-s and 84-s recoveries and approached significance (P = 0.052) in 5 x 6 s sets with 24-s recovery in the Cr condition. Peak power was significantly increased (P < 0.05) in all types of exercise sets after Cr loading. No differences were observed for any performance variables in the placebo group. Resting muscle Cr and PCr concentrations were significantly elevated (P < 0.05) after 5 d of Cr supplementation (Cr: 48.9%; PCr: 12.5%). Phosphocreatine levels were also significantly higher (P < 0.05) immediately and 3 min after the completion of exercise in the Cr condition. CONCLUSION: The results of this study indicate that Cr ingestion (20 g.day-1 x 5 d) improved exercise performance during 80 min of repeated-sprint exercise, possibly due to an increased TCr store and improved PCr replenishment rate.  相似文献   

3.
PURPOSE: This double-blind study investigated the effects of vitamin and mineral complex supplementation on the neuromuscular function of the knee-extensor muscles after a prolonged trail running race. METHODS: Twenty-two well-trained endurance runners took either placebo (Pl group) or vitamins and minerals (Vm group) for 21 d before the race and for 2 d after the race. Maximal voluntary contractions (MVC) and surface EMG activity of the vastus lateralis (VL) muscle were recorded before (pre) and 1 h (post), 24 h (post 24) and 48 h (post 48) after the race. Central activation ratio (CAR), neural (M-wave), and contractile (muscular twitch) properties of the quadriceps muscles were analyzed using electrical stimulation techniques. RESULTS: The knee-extensor MVC was significantly (P < 0.01) reduced after exercise for both groups (Vm: 36.5 +/- 3.0 %; Pl: 36.9 +/- 2.1%), but MVC recovery was greater for Vm than Pl after 48 h (11%, P < 0.05). The reduced MVC after exercise was associated with a significant reduction in maximal EMG normalized to the M-wave in VL muscle and in CAR for both groups. Characteristics of the muscular twitch were not significantly altered for either groups, whereas M-wave duration increased significantly (P < 0.05) after exercise. CONCLUSIONS: The reduction of MVC immediately after the race appeared to result from peripheral mechanisms such as a failure in muscle membrane excitation and, to a lesser extent, from reduced central activation. The cause of the depressed MVC 24 h after the race seemed to be located within the muscle itself. A dietary supplementation of a vitamin and mineral complex does not attenuate the loss of contractile function immediately after the running exercise, and it may accelerate the recovery of maximal force capacity.  相似文献   

4.
The effect of forced liquid (L) or solid (S) carbohydrate (CHO)-rich feedings on plasma glucose, insulin, and glycogenesis after glycogen depletion was investigated. The relationship between glycogen restoration and maximal physical working capacity (MPWC) was studied as well. Eight males performed two experiments, with 2 weeks interval, on a bicycle ergometer. In each experiment, MPWC was determined in a graded test, which was immediately followed by interval work until exhaustion. After exercise cessation (EC), the subjects started to consume a standardized amount of concentrated L or CHO-rich food. Insulin and glucose concentration in blood were determined. Muscle glycogen was determined before, immediately after, 5 h after, and 22 h after EC. MPWC was determined again 22 h after EC. Four subjects performed a third experiment, in which solid food consumption was left ad libitum (AL). A rapid glycogen repletion was found 5 h after EC, i.e., from 72 +/- 40 to 198 +/- 38 mmol/kg in the S, and from 69 +/- 39 to 192 +/- 40 mmol/kg in the L experiment. The higher plasma glucose and insulin levels (P less than 0.05) during the 5 h after EC in the S experiments did not elicit a difference in glycogen repletion. Glycogen synthesis rate in the AL experiment was lower (P less than 0.05) than in the L and S experiments. Glycogen restoration in the L and S experiments was complete 22 h after depletion. However, despite repletion of glycogen, MPWC was decreased (P less than 0.05) in both experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
BACKGROUND: This investigation determined whether pre-exercise oral Cr ingestion could enhance prolonged intermittent sprint exercise performance. METHODS: EXPERIMENTAL DESIGN: a randomised, double-blind crossover design was employed. SETTING: testing was performed at the Western Australian Institute of Sport and participants were monitored and treated by both scientific and medical personnel. PARTICIPANTS: eight active, but not well-trained males with a background in multiple-sprint based sports acted as subjects for this investigation. INTERVENTIONS: subjects ingested either 15 g Cr.H2O or placebo 120 min and 60 min prior to the start of an 80-min maximal sprint cycling task (10 sets of multiple 6-sec sprints with varying active recoveries). Subjects were retested 14 days later, being required to ingest the alternate supplement and repeat the exercise test. MEASURES: performance variables (work done and peak power) were obtained throughout the exercise challenge. Muscle biopsies (vastus lateralis) were raised to a peak of 2348+/-223 micromol x l(-1) prior to the commencement of exercise after Cr ingestion. There were no significant changes in any cycling performance parameters following Cr ingestion, although blood La- was significantly lower (p<0.05) than placebo at all time points during were taken preexercise as well as immediately and 3 min post-exercise in order to determine concentrations of ATP, PCr, Cr, La- and glycogen. Venous blood was drawn prior to and on four occasions during the exercise test, and analysed for Cr, NH3+, La- and pH. RESULTS: Serum Cr concentrations exercise, and plasma NH3+ accumulation was also significantly reduced (p<0.05) in the Cr condition, but only in the second half of the 80-min exercise test. Muscle ATP and TCr levels as well as postexercise PCr replenishment were unaffected following Cr administration. CONCLUSIONS: The data suggest that although the pre-exercise ingestion of a large Cr dose was shown to have some impact on blood borne metabolites, it does not improve maximal prolonged intermittent sprint exercise performance, possibly due to an insufficient time allowed for uptake of serum Cr by skeletal muscle to occur. Therefore, this form of loading does not provide an alternative method of Cr supplementation to the traditional five-day supplementation regimes established by previous research.  相似文献   

6.
PURPOSE: To examine muscle and blood metabolites during soccer match play and relate it to possible changes in sprint performance. METHODS: Thirty-one Danish fourth division players took part in three friendly games. Blood samples were collected frequently during the game, and muscle biopsies were taken before and after the game as well as immediately after an intense period in each half. The players performed five 30-m sprints interspersed by 25-s recovery periods before the game and immediately after each half (N=11) or after an intense exercise period in each half (N=20). RESULTS: Muscle lactate was 15.9+/-1.9 and 16.9+/-2.3 mmol.kg d.w. during the first and second halves, respectively, with blood lactate being 6.0+/-0.4 and 5.0+/-0.4 mM, respectively. Muscle lactate was not correlated with blood lactate (r=0.06-0.25, P>0.05). Muscle glycogen decreased (P<0.05) from 449+/-23 to 255+/-22 mmol.kg d.w. during the game, with 47+/-7% of the muscle fibers being completely or almost empty of glycogen after the game. Blood glucose remained elevated during the game, whereas plasma FFA increased (P<0.05) from 0.45+/-0.05 to 1.37+/-0.23 mM. Mean sprint time was unaltered after the first half, but longer (P<0.05) after the game (2.8+/-0.7%) as well as after intense periods in the first (1.6+/-0.6%) and second halves (3.6+/-0.5%). The decline in sprint performance during the game was not correlated with muscle lactate, muscle pH, or total glycogen content. CONCLUSION: Sprint performance is reduced both temporarily during a game and at the end of a soccer game. The latter finding may be explained by low glycogen levels in individual muscle fibers. Blood lactate is a poor indicator of muscle lactate during soccer match play.  相似文献   

7.
PURPOSE: It is not known whether it is possible to repeatedly supercompensate muscle glycogen stores after exhaustive exercise bouts undertaken within several days. METHODS: We evaluated the effect of repeated exercise-diet manipulation on muscle glycogen and triacylglycerol (IMTG) metabolism and exercise capacity in six well-trained subjects who completed an intermittent, exhaustive cycling protocol (EX) on three occasions separated by 48 h (i.e., days 1, 3, and 5) in a 5-d period. Twenty-four hours before day 1, subjects consumed a moderate (6 g.kg)-carbohydrate (CHO) diet, followed by 5 d of a high (12 g.kg.d)-CHO diet. Muscle biopsies were taken at rest, immediately post-EX on days 1, 3, and 5, and after 3 h of recovery on days 1 and 3. RESULTS: Compared with day 1, resting muscle [glycogen] was elevated on day 3 but not day 5 (435+/-57 vs 713+/-60 vs 409+/-40 mmol.kg, P<0.001). [IMTG] was reduced by 28% (P<0.05) after EX on day 1, but post-EX levels on days 3 and 5 were similar to rest. EX was enhanced on days 3 and 5 compared with day 1 (31.9+/-2.5 and 35.4+/-3.8 vs 24.1+/-1.4 kJ.kg, P<0.05). Glycogen synthase activity at rest and immediately post-EX was similar between trials. Additionally, the rates of muscle glycogen accumulation were similar during the 3-h recovery period on days 1 and 3. CONCLUSION: We show that well-trained men cannot repeatedly supercompensate muscle [glycogen] after glycogen-depleting exercise and 2 d of a high-CHO diet, suggesting that the mechanisms responsible for glycogen accumulation are attenuated as a consequence of successive days of glycogen-depleting exercise.  相似文献   

8.
PURPOSE: This study investigated whether acute (5 d) and/or short-term (28 d) creatine (Cr) ingestion altered glucose tolerance or insulin action in healthy, untrained men (aged 26.9 +/- 5.7 yr; SD). METHODS: Subjects were randomly allocated to either a Cr ( N= 8) or placebo group (N = 9) and were tested in the control condition (presupplementation), and after 5 and a further 28 d of supplementation. The Cr group ingested 20 g and 3 g.d (-1) of Cr for the first 5 and following 28 d, respectively. The placebo group ingested similar amounts of glucose over the same time period. During each testing period, subjects underwent an oral glucose tolerance test (OGTT) to determine insulin sensitivity, and six subjects from each group underwent a muscle biopsy before each OGTT. RESULTS: Cr supplementation resulted in an increased (P< 0.05) muscle TCr content after both the acute and short-term loading phase compared with placebo. Neither acute nor short-term Cr supplementation influenced skeletal muscle glycogen content, glucose tolerance, or measures of insulin sensitivity. CONCLUSIONS: These findings demonstrated that acute Cr supplementation (20 g.d(-1) for 5 d) followed by short-term Cr supplementation (3 g.d(-1) for 28 d) did not alter insulin action in healthy, active untrained men.  相似文献   

9.
Determinants of post-exercise glycogen synthesis during short-term recovery   总被引:1,自引:0,他引:1  
The pattern of muscle glycogen synthesis following glycogen-depleting exercise occurs in two phases. Initially, there is a period of rapid synthesis of muscle glycogen that does not require the presence of insulin and lasts about 30-60 minutes. This rapid phase of muscle glycogen synthesis is characterised by an exercise-induced translocation of glucose transporter carrier protein-4 to the cell surface, leading to an increased permeability of the muscle membrane to glucose. Following this rapid phase of glycogen synthesis, muscle glycogen synthesis occurs at a much slower rate and this phase can last for several hours. Both muscle contraction and insulin have been shown to increase the activity of glycogen synthase, the rate-limiting enzyme in glycogen synthesis. Furthermore, it has been shown that muscle glycogen concentration is a potent regulator of glycogen synthase. Low muscle glycogen concentrations following exercise are associated with an increased rate of glucose transport and an increased capacity to convert glucose into glycogen.The highest muscle glycogen synthesis rates have been reported when large amounts of carbohydrate (1.0-1.85 g/kg/h) are consumed immediately post-exercise and at 15-60 minute intervals thereafter, for up to 5 hours post-exercise. When carbohydrate ingestion is delayed by several hours, this may lead to ~50% lower rates of muscle glycogen synthesis. The addition of certain amino acids and/or proteins to a carbohydrate supplement can increase muscle glycogen synthesis rates, most probably because of an enhanced insulin response. However, when carbohydrate intake is high (> or =1.2 g/kg/h) and provided at regular intervals, a further increase in insulin concentrations by additional supplementation of protein and/or amino acids does not further increase the rate of muscle glycogen synthesis. Thus, when carbohydrate intake is insufficient (<1.2 g/kg/h), the addition of certain amino acids and/or proteins may be beneficial for muscle glycogen synthesis. Furthermore, ingestion of insulinotropic protein and/or amino acid mixtures might stimulate post-exercise net muscle protein anabolism. Suggestions have been made that carbohydrate availability is the main limiting factor for glycogen synthesis. A large part of the ingested glucose that enters the bloodstream appears to be extracted by tissues other than the exercise muscle (i.e. liver, other muscle groups or fat tissue) and may therefore limit the amount of glucose available to maximise muscle glycogen synthesis rates. Furthermore, intestinal glucose absorption may also be a rate-limiting factor for muscle glycogen synthesis when large quantities (>1 g/min) of glucose are ingested following exercise.  相似文献   

10.
Since the time sequence of exercise-induced muscle soreness corresponds well with the time sequence of exercise-induced morphological changes in animal skeletal muscle, it has been suggested that muscle soreness is related to an inflammatory response. Prostaglandins are assumed to play a role in the inflammatory process. The influence of a cyclo-oxygenase-inhibiting drug (flurbiprofen) on the subjective symptoms of soreness and eventual structural changes was investigated in six male subjects. The subjects performed one concentric and two eccentric work bouts of 30 min at 80% of the individual maximal work load on the bicycle ergometer. Muscle biopsies taken before, immediately after, and 24 h after work were used to examine structural, ultrastructural changes as well as for assessment of glycogen content. Plasma levels of muscle enzymes and subjective soreness were determined at regular intervals. Eccentric work elicited muscle soreness in all subjects: however, the soreness was consistently less in the second eccentric trial. No significant enzyme release was noticed in any of the subjects, whereas ultrastructural changes were restricted to the mitochondria. No influence of flurbiprofen on subjective soreness was noticed. After both eccentric trials muscle glycogen was lower 24 h after work compared to the content immediately after work. The results suggest that eccentric exercise interferes with glycogen synthesis and that prostaglandins do not play a major role in exercise-induced muscle soreness.  相似文献   

11.
PURPOSE: One limitation shared by all published carbohydrate-loading regimens is that 2-6 d are required for the attainment of supranormal muscle glycogen levels. Because high rates of glycogen resynthesis are reported during recovery from exercise of near-maximal intensity and that these rates could in theory allow muscle to attain supranormal glycogen levels in less than 24 h, the purpose of this study was to examine whether a combination of a short bout of high-intensity exercise with 1 d of a high-carbohydrate intake offers the basis for an improved carbohydrate-loading regimen. METHODS: Seven endurance-trained athletes cycled for 150 s at 130% VO2peak followed by 30 s of all-out cycling. During the following 24 h, each subject was asked to ingest 12 g.kg-1 of lean body mass (the equivalent of 10.3 g.kg-1 body mass) of high-carbohydrate foods with a high glycemic index. RESULTS: Muscle glycogen increased from preloading levels (+/- SE) of 109.1 +/- 8.2 to 198.2 +/- 13.1 mmol.kg-1 wet weight within only 24 h, these levels being comparable to or higher than those reported by others over a 2- to 6-d regimen. Densitometric analysis of muscle sections stained with periodic acid-Schiff not only corroborated these findings but also indicated that after 24 h of high-carbohydrate intake, glycogen stores reached similar levels in Type I, IIa, and IIb muscle fibers. CONCLUSION: This study shows that a combination of a short-term bout of high-intensity exercise followed by a high-carbohydrate intake enables athletes to attain supranormal muscle glycogen levels within only 24 h.  相似文献   

12.
PURPOSE: Our purpose was to study effects of creatine (Cr) supplementation on muscle metabolites noninvasively by means of magnetic resonance spectroscopy (MRS) before and after supplementation with Cr or placebo. METHODS: 1H-MRS was used in a comprehensive, double-blind, cross-over study in 10 volunteers to measure Cr in m. tibialis anterior and m. rectus femoris at rest. PCr/ATP was observed in m. quadriceps femoris by 31P-MRS at rest and after exercise. RESULTS: A significant increase in total Cr was observed with Cr intake in m. tibialis anterior (+9.6 +/- 1.7%, P = 0.001) and in m. rectus femoris (+18.0 +/- 1.8%, P < 0.001). PCr/ATP showed a significant increase (+23.9 +/- 2.3%, P < 0.001) in m. quadriceps femoris at rest with Cr supplementation. Post-Cr supplementation recovery rates from exercise were significantly lower (k = 0.029 s(-1), P < 0.01) compared with postplacebo consumption (k = 0.034 s(-1)) and presupplementation (k = 0.037 s(-1)). However, higher levels of PCr/ATP at rest compensate for this reduction of the recovery rate after Cr supplementation. The increase of PCr/ATP determined by 31P-MRS correlates with the increase of Cr observed by 1H-MRS (r = 0.824, P < 0.001). CONCLUSION: Noninvasive observation of Cr and PCr after Cr supplementation shows an increase in a muscle specific manner. Higher preexercise levels of PCr/ATP at rest compensate for significantly slower recovery rates of PCr/ATP after Cr supplementation.  相似文献   

13.
Prolonged low-frequency force depression (PLFFD) induced by fatiguing exercise is characterized by a persistent depression in submaximal contractile force during the recovery period. Muscle glycogen depletion is known to limit physical performance during prolonged low- and moderate-intensity exercise, and accelerating glycogen resynthesis with post-exercise carbohydrate intake can facilitate recovery and improve repeated bout exercise performance. Short-term, high-intensity exercise, however, can cause PLFFD without any marked decrease in glycogen. Here, we studied whether recovery from PLFFD was accelerated by carbohydrate ingestion after 60 minutes of moderate-intensity glycogen-depleting cycling exercise followed by six 30-seconds all-out cycling sprints. We used a randomized crossover study design where nine recreationally active males drank a beverage containing either carbohydrate or placebo after exercise. Blood glucose and muscle glycogen concentrations were determined at baseline, immediately post-exercise, and during the 3-hours recovery period. Transcutaneous electrical stimulation of the quadriceps muscle was performed to determine the extent of PLFFD by eliciting low-frequency (20 Hz) and high-frequency (100 Hz) stimulations. Muscle glycogen was severely depleted after exercise, with a significantly higher rate of muscle glycogen resynthesis during the 3-hours recovery period in the carbohydrate than in the placebo trials (13.7 and 5.4 mmol glucosyl units/kg wet weight/h, respectively). Torque at 20 Hz was significantly more depressed than 100 Hz torque during the recovery period in both conditions, and the extent of PLFFD (20/100 Hz ratio) was not different between the two trials. In conclusion, carbohydrate supplementation enhances glycogen resynthesis after glycogen-depleting exercise but does not improve force recovery when the exercise also involves all-out cycling sprints.  相似文献   

14.
15.
AIM: Hypothetically, supplementation with the antioxidant vitamins C could alleviate exercise-induced lipid peroxidation. The purpose of this study was to evaluate the effect of vitamin C supplementation on exercise-induced lipid peroxidation, muscle damage and inflammation. METHODS: Sixteen healthy untrained male volunteers participated in a 30-min exercise at 75% Vo2max. Subjects were randomly assigned to one of two groups: 1) placebo and 2) vitamin C (VC: 1 000 mg vitamin C). Blood samples were obtained prior to supplementation (baseline), 2 h after supplementation (immediately pre-exercise), post-exercise, 2 and 24 h after exercise. Plasma levels of VC, total antioxidant capacity (TAC), creatine kinase (CK), malondealdehyde (MDA), total leukocytes, neutrophils, lymphocytes, interleukin-6 (IL-6) and cortisol were measured. RESULTS: Plasma vitamin C concentrations increased significantly in the VC in response to supplementation and exercise (P<0.05). TAC decreased significantly in Placebo group 24 h after exercise compared to pre-exercise (P<0.05). Although MDA levels were similar between groups at baseline, it increased significantly 2 h after exercise only in the Placebo group (P<0.05). CK increased immediately and 2 h after exercise in both groups and 24 h after exercise only in placebo group compared to pre-exercise (P<0.05). Markers of inflammation (total leukocyte counts, neutrophil counts and IL-6) were increased significantly in response to the exercise (P<0.05). In VC group, there was significant increase in lymphocyte counts immediately after exercise compared with pre-exercise (P<0.05). Serum cortisol concentrations significantly declined after supplementation compared with baseline (P<0.05) as well as declined 2 and 24 h after exercise compared with immediately after exercise in VC group (P<0.05). CONCLUSION: VC supplementation prevented endurance exercise-induced lipid peroxidation and muscle damage but had no effect on inflammatory markers.  相似文献   

16.
The purpose of this study was to investigate the effect of local cold application on muscle glycogen re-synthesis after exercise. Recreationally active male subjects (n=11) completed a 90-minute glycogen depleting ride, followed by 4 h of recovery. During recovery, ice was applied intermittently to one leg (IL) while the subjects other leg (CL) acted as a control. Intramuscular and rectal temperature was recorded continuously. A carbohydrate (1.8 g?kg-1 bodyweight) beverage was supplied at 0 and 2 h post exercise. Muscle biopsies were taken immediately after exercise from the vastus lateralis and at 4 h post exercise for the analysis of muscle glycogen and muscle lactate. Leg circumference was measured 30, 60, 120, 180, and 240 minutes into recovery. The IL was colder than the CL from 15 minutes after initial ice application until the end recovery (P<0.05). Immediate post-exercise glycogen was similar between legs (55.3±7.4 vs. 56.1±7 mmol?kg-1 wet weight for the iced vs. control, respectively). However, muscle glycogen was lower in the IL compared to the CL at 4 h post exercise (72±8.4 vs. 95±8.4 mmol?kg-1 wet weight, respectively; P<0.05). Muscle lactate was lower in the IL after 4 h of recovery compared to the CL (1.6±.2 vs. 2.6±.2 mmol?L-1, respectively; P<0.05). There was no difference in circumference between IL and CL. These data demonstrate a reduction in muscle glycogen re-synthesis with local cold application.  相似文献   

17.
PURPOSE: To determine the depletion of muscle glycogen during five consecutive days of endurance exercise in Alaskan sled dogs consuming a high-fat, low-carbohydrate diet. METHODS: Forty-two fit Alaskan sled dogs were used in the study, of which six dogs served as nonexercising control animals. The remaining 36 dogs ran 160 km x d(-1) for up to 5 d while consuming a diet providing approximately 50% of calories as fat and 15% as carbohydrate. Muscle biopsies were performed on six randomly selected dogs before feeding and within 4 h after each 160-km run was completed. Muscle samples were prepared for analysis of glycogen content and myosin ATPase staining. Serum creatine kinase (CK) activity was measured once before exercise and after each 160-km run. RESULTS: Thirty-three of 36 dogs completed the runs. Muscle glycogen concentration was highest in sedentary dogs (340 +/- 102 mmol x kg(-1) dry weight), declined to 73 +/- 16 after 160 km and subsequently increased to similar levels between 320 and 800 km (320 km: 177 +/- 34; 800 km: 213 +/- 44). Postexercise serum CK activity was significantly elevated throughout the study. CONCLUSION: Skeletal muscle in Alaskan sled dogs has remarkable glyconeogenic ability as demonstrated by repletion to greater than 50% of resting muscle glycogen concentrations after the second of five consecutive 160-km runs even when fed a low-carbohydrate, high-fat diet. Whether this finding is attributable to rapid repletion of muscle glycogen during brief recovery periods versus progressive utilization of alternative substrates remains to be investigated.  相似文献   

18.
PURPOSE: This investigation was designed to examine the influence of creatine (Cr) supplementation on acute cardiovascular, renal, temperature, and fluid-regulatory hormonal responses to exercise for 35 min in the heat. METHODS: Twenty healthy men were matched and then randomly assigned to consume 0.3 g.kg(-1) Cr monohydrate (N = 10) or placebo (N = 10) for 7 d in a double-blind fashion. Before and after supplementation, both groups cycled for 30 min at 60-70% VO2(peak) immediately followed by three 10-s sprints in an environmental chamber at 37 degrees C and 80% relative humidity. RESULTS: Body mass was significantly increased (0.75 kg) in Cr subjects. Heart rate, blood pressure, and sweat rate responses to exercise were not significantly different between groups. There were no differences in rectal temperature responses in either group. Sodium, potassium, and creatinine excretion rates obtained from 24-h and exercise urine collection periods were not significantly altered in either group. Serum creatinine was elevated in the Cr group but within normal ranges. There were significant exercise-induced increases in cortisol, aldosterone, renin, angiotensin I and II, atrial peptide, and arginine vasopressin. The aldosterone response was slightly greater in the Cr (263%) compared with placebo (224%) group. Peak power was greater in the Cr group during all three 10-s sprints after supplementation and unchanged in the placebo group. There were no reports of adverse symptoms, including muscle cramping during supplementation or exercise. CONCLUSION: Cr supplementation augments repeated sprint cycle performance in the heat without altering thermoregulatory responses.  相似文献   

19.
The aim of this study was to examine the effects of a high carbohydrate diet on glycaemic control, resting muscle glycogen levels and exercise performance in athletes with insulin dependent diabetes (IDDM). Seven trained (mean +/- S.D., VO2max 50.3 +/- 7.4 ml/kg/min) IDDM males consumed a high carbohydrate diet (HCD) or a normal mixed diet (NMD) for 3 week periods in a randomised crossover trial with a one week wash-out. Carbohydrate provided 59% or 50% of total energy intake, respectively, on the two diets. Fasting plasma lipids, mean blood glucose (over 96 h), fructosamine and muscle glycogen were measured and insulin use recorded. Exercise performance was evaluated by a 15 min time trial following a 50 min pre-loading block. Statistical significance was assessed using two tailed paired Student t-tests. Mean blood glucose was 10% higher on HCD than NMD (p = 0.005), fructosamine levels were 375 +/- 54 and 353 +/- 51 (mol/L on HCD and NMD, resp., p = 0.04) and daily insulin requirements were 15% higher on HCD than NMD (p = 0.02). Fasting blood lipids were similar on the two diets. Muscle glycogen was significantly lower on HCD than NMD (88.2 +/- 19.2 and 95.6 +/- 14.6 mmol/kg ww, respectively, p = 0.02). Exercise completed during the time trial was 6% less on HCD than on NMD (p = 0.007). An increased carbohydrate intake for three weeks, in IDDM athletes, is associated with a deterioration in glycaemic control, increased insulin requirements, decreased muscle glycogen and reduced exercise performance. These data do not support recommendations for IDDM athletes to consume a high carbohydrate diet, at least not when glycaemic control worsens upon following this advice, as was observed in this short-term study.  相似文献   

20.
This study examined the effect of carbohydrate (CHO) intake during a 4 h recovery from prolonged running on muscle glycogen metabolism during subsequent exercise. On 2 occasions, 7 male subjects ran for 90 min at 70 % maximum oxygen uptake VO(2 max) on a motorized treadmill (R1) followed by a 4 h rest period (REC) and a 15 min run (R2) consisting of 5 min at 60 % and 10 min at 70 % VO(2 max) During REC, each subject ingested a total of 2.7 l of an isotonic solution containing either 50 g of CHO (LOW) or 175 g of CHO (HIGH). Biopsy samples were obtained from the vastus lateralis immediately after R1, REC and R2. During REC, a higher muscle glycogen resynthesis was observed in HIGH when compared with LOW trial (75 +/- 20 vs. 31 +/- 11 mmol x kg dry matter (dm) -1, respectively; p < 0.01). Muscle glycogen utilization during R2 was similar between the HIGH and LOW trials (39 +/- 10 vs. 46 +/- 11 mmol x kg dm -1, respectively). These results suggest that ingestion of a large amount of CHO at frequent intervals during recovery from exercise does not affect the rate of muscle glycogen utilization during subsequent exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号