首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study compares the physicochemical properties of carbamazepine (CBZ) solid dispersions prepared by either a conventional solvent evaporation versus a supercritical fluid process. Solid dispersions of carbamazepine in polyvinylpyrrolidone (PVP) K30 with either Gelucire 44/14 or Vitamin E TPGS, NF (d-alpha-tocopheryl polyethylene glycol 1000 succinate) were prepared and characterized by intrinsic dissolution, differential scanning calorimetry, powder X-ray diffraction and Fourier transform infrared spectroscopy. CBZ/PVP K30 and CBZ/PVP K30/TPGS solid dispersions showed increased dissolution rate. The best intrinsic dissolution rate (IDR) was obtained for supercritically processed CBZ/PVP K30 that was four-fold higher than pure CBZ. Thermograms of various solid dispersions did not show the melting peak of CBZ, indicating that CBZ was in amorphous form inside the carrier system. This was further confirmed by X-ray diffraction studies. Infrared spectroscopic studies showed interaction between CBZ and PVP K30 in solid dispersions. The amorphous state of CBZ coupled with presence of interaction between drug and PVP K30 suggests fewer, if any, stability problems. Because the supercritical-based process produced solid dispersions with IDR better than conventional solid dispersions augmented with amphiphilic carriers, stability issues associated with lipid carriers do not apply, which, in turn, implies easier scale up under current Good Manufacturing Practice for this technique.  相似文献   

2.
Solid dispersions of carbamazepine (CBZ) were formulated by supercritical fluid processing (SCP) and conventional solvent evaporation in polyethylene glycol (PEG) 8000 with either Gelucire 44/14 or vitamin E TPGS NF (d-alpha-tocopheryl PEG 1000 succinate). Formulations were evaluated by dissolution, scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry, and excipient cytotoxicity in Caco-2 cells by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] assay. CBZ release was enhanced from supercritical fluid-treated CBZ and the CBZ/PEG 8000 (1:5), CBZ/PEG 8000/TPGS or Gelucire 44/14 (1:4:1) solid dispersions. The radically altered morphologies of SCP samples seen by scanning electron microscopy suggested polymorphic change that was confirmed by the X-ray diffraction and differential scanning calorimetry. Disappearance of the characteristic CBZ melting peak indicated that CBZ was dissolved inside the carrier system. Polymorphic change of CBZ during SCP led to faster dissolution. Therefore, SCP provides advantages over solid dispersions prepared by conventional processes.  相似文献   

3.
The purpose of this study was to prepare and characterize solid dispersions of the antiviral thiocarboxanilide UC-781 with PEG 6000 and Gelucire 44/14 with the intention of improving its dissolution properties. The solid dispersions were prepared by the fusion method. Evaluation of the properties of the dispersions was performed using dissolution studies, differential scanning calorimetry, Fourier-transform infrared spectroscopy and X-ray powder diffraction. To investigate the possible formation of solid solutions of the drug in the carriers, the lattice spacings [d] of PEG 6000 and Gelucire 44/14 were determined in different concentrations of UC-781. The results obtained showed that the rate of dissolution of UC-781 was considerably improved when formulated in solid dispersions with PEG 6000 and Gelucire 44/14 as compared to pure UC-781. From the phase diagrams of PEG 6000 and Gelucire 44/14 it could be noted that up to approximately 25% w/w of the drug was dissolved in the liquid phase in the case of PEG 6000 and Gelucire 44/14. The data from the X-ray diffraction showed that the drug was still detectable in the solid state below a concentration of 5% w/w in the presence of PEG 6000 and Gelucire 44/14, while no significant changes in the lattice spacings of PEG 6000 or Gelucire 44/14 were observed. Therefore, the possibility of UC-781 to form solid solutions with the carriers under investigation was ruled out. The results from infrared spectroscopy together with those from X-ray diffraction and differential scanning calorimetry showed the absence of well-defined drug–polymer interactions.  相似文献   

4.
A non-solubilizing solid dispersion formulation (polyethylene glycol 6000) and two solubilizing solid dispersions (Vitamin E TPGS and a Gelucire 44/14/Vitamin E TPGS blend) containing the antimalarial, Halofantrine (Hf), were formulated for bioavailability assessment in fasted beagles to determine if the oral absorption of Hf can be enhanced by these delivery systems. Solid dispersions comprising varying proportions of drug to carrier were prepared by the fusion method. Whilst the non-solubilizing formulation was assessed according to its dispersion characteristics, the solubilizing solid dispersions were assessed by their ability to form microemulsions upon dispersion. Studies in fasted beagles showed that the solid dispersions afforded a five- to seven-fold improvement in absolute oral bioavailability when compared with the commercially available tablet formulation. The delivery of Hf in either a solubilizing or non-solubilizing solid dispersion did not result in significant differences in oral bioavailability. The physical stability of the solid dispersions was studied using differential scanning calorimetry and X-ray powder diffraction.  相似文献   

5.
This paper describes the physical stability of solid dispersions of UC-781 with PEG 6000, Gelucire 44/14 and PVP K30 prepared by the solvent and melting methods. The concentration of the drug in the solid dispersions ranged from 5 to 80% w/w. The solid dispersions were stored at 4-8 and 25 degrees C (25% RH), then their physicochemical properties were analysed by differential scanning calorimetry (DSC), X-ray powder diffraction and dissolution studies as a function of storage time. The DSC curves of solid dispersions of UC-781 with PVP K30 did not show any melting peaks corresponding to UC-781 after storage, indicating no recrystallization of the drug. The DSC data obtained from PEG 6000 and Gelucire 44/14 showed some variations in melting peak temperatures and enthalpy of fusion of the carriers. It was shown that the enthalpy of fusion of PEG 6000 in the dispersions increased after storage; it was more pronounced for samples stored at 25 degrees C compared to those at 4-8 degrees C indicating the reorganization of the crystalline domains of the polymer. Similarly, the enthalpy of fusion of Gelucire 44/14 in the solid dispersions increased as a function of time. Dissolution of UC-781 from all solid dispersions decreased as a function of storage time. While these observations concurred with the DSC data for all solid dispersions, they were not reflected by X-ray powder diffraction data. It was concluded that it is the change of the physical state of the carriers and not that of the drug, which is responsible for the decreased dissolution properties of the solid dispersions investigated.  相似文献   

6.
Amalgamation of solid dispersion and melt adsorption technologies was utilized for enhancing the dissolution rate of poorly soluble drugs. Glibenclamide was employed as a model drug. PEG6000 and Gelucire44/14 were used as hydrophilic carriers for the preparation of solid dispersions, and lactose was utilized as an adsorbent for the preparation of solid dispersion adsorbates. A high dissolution rate of solid dispersion adsorbates was observed when compared to solid dispersions alone and one of the marketed products.  相似文献   

7.
Tacrolimus has a poor solubility in water ranging from 4 to 12 μg mL?1. The mean bioavailability is ~21 %.The present study was carried out with a view to enhance the dissolution rate of poorly water-soluble drug tacrolimus using Gelucire 44/14® and Gelucire 50/13® as carriers and lactose monohydrate as an adsorbent. A combination of melt and adsorption techniques was employed for the preparation of solid dispersions (SD) to make final product easy for handling. Phase solubility study was conducted to evaluate the effect of carriers on aqueous solubility of tacrolimus. In order to elucidate the mechanism of dissolution enhancement, solid state characteristics were investigated using Fourier transform infrared spectroscopy, differential scanning calorimetry and powder X-ray diffraction. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsemeyer–Peppas model and the drug release kinetics primarily as Fickian/anomalous diffusion. All prepared solid dispersions showed dissolution improvement compared to pure drug, with Gelucire 50/13® as the superior carrier over Gelucire 44/14®. Almost similar dissolution profile was obtained as a function of storage time; this can be explained by no change in XRD and DSC pattern after 45 days storage period.  相似文献   

8.
Famotidine (FM) is a potent H2-receptor antagonist used for the treatment of peptic ulcer. It has a low and variable bioavailability which is attributed to its low water solubility. In this study, the dissolution of the drug was enhanced by a preparation of solid dispersion using two hydrophilic carriers, namely Gelucire 50/13 and Pluronic F-127. The prepared solid dispersions were characterized by differential scanning calorimetry (DSC), which indicated that there were no signs of interaction of the drug with the carriers used in the case of solid dispersions containing higher polymeric contents (1:3 and 1:5). FM solid dispersions in the matrices of Gelucire 50/13 and Pluronic F-127 (1:3) were used to prepare pellets. The scanning electron microscope (SEM) images of pellets showed that the pellets have spherical shape and their size depends on the carrier used. The dissolution of the drug from either solid dispersion or pellets was performed. The dissolution study depicted that, the presence of the drug in solid dispersion enhanced its dissolution in comparison with the drug itself. Also, the drug release from the manufactured pellets was found to be improved in the case of solid dispersions (drug:carrier 1:3). A complete drug release occurred after 30 min from pellets containing solid dispersions, while only about 30% of the loaded FM was released from pellets containing untreated drug after 2 h.  相似文献   

9.
The poor solubility and wettability of Candesartan cilexetil (CAN) leads to poor dissolution and hence, low bioavailability after oral administration. The aim of the present study was to improve the solubility and dissolution rate and hence the permeability of CAN by preparing solid dispersions/inclusion complexes. Solid dispersions were prepared using PEG 6000 [hydrophilic polymer] and Gelucire 50/13 [amphiphilic surfactant] by melt agglomeration (MA) and solvent evaporation (SE) methods in different drug-to-carrier ratios, while inclusion complexes were made with hydroxypropyl-β-cyclodextrin (HP-β-CD) [complexing agent] by grinding and spray drying method. Saturation solubility method was used to evaluate the effect of various carriers on aqueous solubility of CAN. Based on the saturation solubility data, two drug-carrier combinations, PEG 6000 (MA 1:5) and HP-β-CD (1:1 M grinding) were selected as optimized formulations. FTIR, DSC, and XRD studies indicated no interaction of the drug with the carriers and provided valuable insight on the possible reasons for enhanced solubility. Dissolution studies showed an increase in drug dissolution of about 22 fold over the pure drug for PEG 6000 (MA 1:5) and 12 fold for HP-β-CD (1:1 M grinding). Ex-vivo permeability studies revealed that the formulation having the greatest dissolution also had the best absorption through the chick ileum. Capsules containing solid dispersion/ complex exhibited better dissolution profile than the marketed product. Thus, the solid dispersion/inclusion complexation technique can be successfully used for enhancement of solubility and permeability of CAN.  相似文献   

10.
Role of various water-soluble carriers was studied for dissolution enhancement of a poorly soluble model drug, rofecoxib, using solid dispersion approach. Diverse carriers viz. polyethylene glycols (PEG 4000 and 6000), polyglycolized fatty acid ester (Gelucire 44/14), polyvinylpyrollidone K25 (PVP), poloxamers (Lutrol F127 and F68), polyols (mannitol, sorbitol), organic acid (citric acid) and hydrotropes (urea, nicotinamide) were investigated for the purpose. Phase-solubility studies revealed AL type of curves for each carrier, indicating linear increase in drug solubility with carrier concentration. The sign and magnitude of the thermodynamic parameter, Gibbs free energy of transfer, indicated spontaneity of solubilization process. All the solid dispersions showed dissolution improvement vis-à-vis pure drug to varying degrees, with citric acid, PVP and poloxamers as the most promising carriers. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsemeyer-Peppas model and the drug release kinetics primarily as Fickian diffusion. Solid state characterization of the drug-poloxamer binary system using XRD, FTIR, DSC and SEM techniques revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement in dissolution rate.  相似文献   

11.
The objective of the present study was to prepare multiple-unit formulations of carbamazepine (CBZ) using an emulsion congealing technique. CBZ-hydrogenated castor oil (HCO) (Cutina? HR) wax microparticles were prepared without organic solvents as an alternative to polymeric microparticles. The process involved emulsification and solidification of CBZ-HCO melt at a significantly low temperature (5°C). Five amphiphilic excipients (Pluronic F-68 (PL), Labrasol (LB), Gelucire 44/14 (GL 44/14), D-α-tocopheryl PEG 1000 succinate (TPGS) and Docusate sodium (DOSS) were added with the wax melt. The microparticles were characterized with respect to their particle size distribution, drug loading, morphological character, drug-excipient interaction, differential scanning calorimetry, Fourier-transform infra-red (FT-IR) and release properties. An average value for production yield was 83.45%. Evaluation of the release data indicates that the release mechanism from the prepared Cutina? HR microparticles follows both the Higuchi model of diffusion and anomalous release mechanism. Microparticles containing 5% Labrasol, TPGS and GL 44/14 had the highest extent of dissolution.  相似文献   

12.
Abstract

The aim of this study was to investigate the permeability of unique dispersion systems prepared by supercritical fluid (SCF) processing, to deliver bioidentical progesterone (PGN) across mouse skin. Semisolid dispersions of PGN were made up of either polyethylene glycol (PEG) 400/4000, Gelucire 44/14, d-α-tocopheryl PEG 1000 succinate (TPGS), tanscutol P or myritol 318. SCF dispersion systems were compared with various control formulations; a market cream, aqueous suspension, and three conventionally prepared dispersions comelted, cosolvent and physically mixed systems. The permeability coefficient in the absence or presence of a permeation enhancer was evaluated using ex vivo mouse skin. The permeation study results for the TPGS/myritol/transcutol P dispersion system prepared using supercritical carbon dioxide (SC-CO2) had a two-fold improvement in transdermal permeation over 24?h compared to the control formulation, 245.7 and 126?µg?cm?2, respectively (p value?<?0.05). In this study, the skin integrity and morphology was also investigated for changes due to the formulation constituents using histological examination and Fourier transform infrared spectroscopy. The particles from the gas-saturated suspension method and SC-CO2 together with TPGS/myritol/transcutol P may offer potential advantages over the available cream on the market based on the vastly improved lag time and flux of PGN across the skin.  相似文献   

13.
The incorporation of drugs into Gelucires has been reported to increase the dissolution rate of poorly soluble drugs, often leading to improved drug bioavailability. In pharmaceutical applications, it is important to know how the excipient interacts with the drug, and how the mixture behaves during manufacturing, storage as well as during administration. The uptake of water by an amphiphilic excipient, Gelucire 44/14, has been investigated in two ways: storage in humid air and addition of liquid water. During exposure to humid air, the uptake goes in stages that correspond to the dissolution of the components of the excipient, starting with the most hydrophilic ones: glycerol, then polyethylene glycol (PEG), PEG esters (PEG monolaurate and PEG dilaurate), and finally glycerides (trilaurin). At each stage, the remaining crystals are in equilibrium with an interstitial solution made of water and the dissolved components. In this range of hydrations, the total uptake is close to the sum of the equilibrium hydrations of the components. In the pharmaceutical formulation, the active ingredient could dissolve in the liquid phase. At larger hydrations, obtained through addition of liquid water, the state of Gelucire 44/14 differs from those of its components. Gelucire 44/14 forms a lamellar phase and this phase melts at 30 degrees C whereas the pure PEG esters form hexagonal and cubic mesophases. The cubic mesophases do not melt until the temperature exceeds 40 degrees C. At body temperature, all crystals in Gelucire 44/14 melt to an isotropic fluid as soon as the total water content exceeds 5%. Therefore the formulation of amphiphilic excipients can be optimized to avoid the formation of mesophases that impede dissolution of the excipient at body temperature.  相似文献   

14.
Solid dispersions of a poorly water-soluble drug [REV 5901; alpha-pentyl-3-(2-quinolinylmethoxy)benzenemethanol; 1] in an amphiphilic vehicle [Gelucire 44/14; 2] and in polyethylene glycol (PEG) 1000, PEG 1450, and PEG 8000 were prepared. The vehicle 2 was a mixture of hydrogenated fatty acid esters with a mp of 44 degrees C, and had a HLB value of 14. Compound 1 was dissolved or dispersed in molten vehicles at elevated temperatures. The pulverization and compression of solid dispersions were avoided by encapsulating the hot solutions directly into hard gelatin capsules. At room temperature, the dispersions solidified forming plugs inside the capsules. On storage, greater than 180 mg of 1 remained dissolved per gram of vehicle, while the excess drug formed fine crystals (less than 20 micron). When mixed with water, the dissolved drug separated as a metastable liquid. Due to the surfactant property of 2, the oily form of 1 that separated from this vehicle formed an emulsified system with a globular size of less than 1 micron, while greater than 80% of 1 that separated from the other three formulations coalesced to form large oily masses. As a result of the large difference in surface area, the dissolution rate of 1 in simulated gastric fluid from capsules containing 2 was much higher than that of a PEG-based formulation. The bioavailability (AUC) of 1 in dogs from capsules containing 2 was also higher than that from PEG 1000-based capsules.  相似文献   

15.
17Beta-estradiol hemihydrate (17beta-E2) is a poorly water-soluble drug. Physical methods for improving the solubility and dissolution rate, e.g. micronization, have certain inherent disadvantages. The method of choice in this study, melt extrusion, proved to overcome many of the shortcomings of conventional methods. Different compositions of excipients such as PEG 6000, PVP (Kollidon 30) or a vinylpyrrolidone-vinylacetate-copolymer (Kollidon VA64) were used as polymers and Sucroester WE15 or Gelucire 44/14 as additives during melt extrusion. The solid dispersions resulted in a significant increase in dissolution rate when compared to the pure drug or to the physical mixtures. For example, a 30-fold increase in dissolution rate was obtained for a formulation containing 10% 17beta-E2, 50% PVP and 40% Gelucire 44/14. The solid dispersions were then processed into tablets. The improvement in the dissolution behavior was also maintained with the tablets. The USP XXIII requirement for estradiol tablets reaching greater than 75% drug dissolved after 60 min was obtained in this investigation.  相似文献   

16.
Objectives Cefuroxime axetil (CA), a poorly soluble, broad spectrum cephalosporin ester prodrug, is hydrolysed by intestinal esterase prior to absorption, leading to poor and variable bioavailability. The objective was therefore to formulate a stable amorphous solid dispersion of the drug with enhanced solubility and stability against enzymatic degradation. Methods Spray drying was used to obtain a solid dispersion of CA with Gelucire 50/13 and Aerosil 200 (SDCAGA), and a solid dispersion of CA with polyvinyl pyrrolidone (SDCAP); amorphous CA (ACA) was obtained by spray drying CA alone. The formulations were characterized by differential scanning calorimetry, X‐ray powder diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy studies, and compared for solubility, dissolution and bioavailability in rats. Key findings SDCAP and SDCAGA showed improved solubility and dissolution profiles owing to amorphization and formation of solid dispersions with hydrophilic carriers. The improved stability of amorphous CA in solid dispersions compared to ACA alone was attributed to hydrogen bonding interactions involving the amide of CA with the carbonyl of polyvinyl pyrrolidone in SDCAP, whereas in SDCAGA the interactions were at multiple sites involving the amide and carbonyl of CA with the carbonyl and hydroxyl of Gelucire 50/13. However, SDCAGA showed superior bioavailability compared to SDCAP, ACA and CA. Conclusions Improvement in physical stability of solid dispersions was attributed to hydrogen bonding, while improvement in bioavailability of SDCAGA compared to SDCAP, in spite of comparable solubility and dissolution profile, may be attributed to Gelucire, which utilizes intestinal esterase for lipolysis, protecting the prodrug from enzymatic degradation to its non‐absorbable base form.  相似文献   

17.
布格呋喃固体分散体的体外研究   总被引:1,自引:0,他引:1  
布格呋喃(buagafuran,AF-5)是以( )香芹酮为起始原料通过立体选择性合成的沉香呋喃类化合物[1].它具有显著的抗焦虑作用,毒副作用低,市场前景广阔.布格呋喃为油状液体,脂溶性强,不溶于水.用植物油稀释进行小鼠灌胃,抗焦虑活性与空白组比较无统计学意义,不能较好地发挥药效.室温放置易发生降解,化学稳定性差.这些缺  相似文献   

18.
The aim of this study was to prepare by melt agglomeration agglomerates containing solid dispersions of diazepam as poorly water-soluble model drug in order to evaluate the possibility of improving the dissolution rate. Lactose monohydrate was melt agglomerated with polyethylene glycol (PEG) 3000 or Gelucire 50/13 (mixture of glycerides and PEG esters of fatty acids) as meltable binders in a high shear mixer. The binders were added either as a mixture of melted binder and diazepam by a pump-on procedure or by a melt-in procedure of solid binder particles. Different drug concentrations, maximum manufacturing temperatures, and cooling rates were investigated. It was found to be possible to increase the dissolution rate of diazepam by melt agglomeration. A higher dissolution rate was obtained with a lower drug concentration. Admixing the binders by the melt-in procedure resulted in similar dissolution rates as the pump-on procedure. The different maximum manufacturing temperatures and cooling rates were found to have complex effects on the dissolution rate for formulations containing PEG 3000, whereas only minor effects of the cooling procedure were found with Gelucire 50/13. Gelucire 50/13 resulted in faster dissolution rates compared to PEG 3000.  相似文献   

19.
Solid dispersions are one of methods for solubilizing water-insoluble drugs. To enhance the bioavailability, maintenance of the supersaturated state and absorption of the dissolved drug in the gastrointestinal tract are important. We designed and synthesized amphiphilic 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymers as carriers for solid dispersions and evaluated the dissolution behavior in test solutions with different pH and additives. Solid dispersion of troglitazone with amphiphilic MPC copolymers having both aromatic rings and urethane bonds in the side chains showed rapid dissolution and excellent supersaturation maintenance. It was indicated that the balance between the interactions with drug molecules and the water affinity of the polymer should be considered when carriers for solid dispersions are designed. In addition, cell membrane permeability of the solid dispersion with the amphiphilic MPC copolymer was evaluated by the Dissolution / Permeation system, which consists of two liquid chambers and a monolayer of epithelial cells that mimics the intestinal dissolution and permeation process. Further, blood concentration of the drug when solid dispersions were orally administered in mice was also evaluated. The cell membrane permeability and oral absorbability were significantly improved, compared to the solid dispersions with poly(N-vinylpyrrolidone) and suspension or solution of crystalline troglitazone.  相似文献   

20.
侯永利  杨建彬 《中国药房》2007,18(16):1239-1241
目的:制备卡维地洛固体分散体并考察其体外溶出度。方法:以聚乙二醇(PEG)、聚乙烯吡咯烷酮(PVP)的混合物(2∶1、1∶2)为载体,采用溶剂熔融法和共沉淀法制备载体与药物不同比例的固体分散体并比较其体外溶出度。结果:药物溶出度随载体比例增加而增加;载体与药物比例越小,固体分散体与药物原料粉之间溶出度差异越显著;PEG∶PVP(1∶2)所制分散体体外溶出行为较优,以3、10、30、60min时溶出百分率进行比较,固体分散体是药物原料粉的3~8倍。结论:所制卡维地洛固体分散体能增加药物体外溶出度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号