首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brain-derived neurotrophic factor (BDNF) has emerged as an important molecular mediator of synaptic plasticity. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that the intracortical microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the projection from the basolateral nucleus of the amygdala (Bla) to the IC of adult rats in vivo. Recently, we have found that intracortical microinfusion of BDNF previous to CTA training modifies the retention of this task. In this work, we present experimental data showing that BDNF effects on CTA retention are dependent on both the activation of mitogen-activated protein kinases (MAPK) and phosphatidylinositol-3-kinase (PI-3K) at the insular cortex. Our results are evidence of the crucial role of both pathways in the modification of the CTA trace of memory caused by BDNF at a neocortical area.  相似文献   

2.
In vivo insular cortex LTP induced by brain-derived neurotrophic factor   总被引:4,自引:0,他引:4  
Recent studies suggest that brain-derived neurotrophic factor (BDNF) plays a critical role in long-term synaptic plasticity in the adult brain. Previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of different aversive learning tasks, have demonstrated that tetanic stimulation of the basolateral nucleus of the amygdala (Bla) induces an N-methyl-D-aspartate (NMDA)-dependent form of long-term potentiation (LTP) in the IC of adult rats in vivo. Here, we show that acute intracortical microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the Bla-IC projection of anesthetized adult rats. This constitutes an in vivo demonstration of neurotrophin-induced potentiation of synaptic transmission in the neocortex. These findings support the concept that BDNF could be a synaptic messenger involved in activity-dependent synaptic plasticity.  相似文献   

3.
Long-lasting changes in synaptic strength, such as long-term potentiation (LTP), are thought to underlie memory formation. Recent studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and retention of conditioned taste aversion (CTA), have demonstrated that tetanic stimulation of the basolateral nucleus of the amygdala (Bla) induce LTP in the IC of adult rats in vivo, as well as, that blockade of N-methyl-D-aspartate (NMDA) receptors disrupts CTA and IC-LTP induction in vivo. Here, we present experimental data showing that induction of LTP in the Bla-IC projection previous to CTA training enhances the retention of this task. These findings are of particular interest since they provide support for the view that the neural mechanisms underlying neocortical LTP may contribute to memory related functions performed by the IC.  相似文献   

4.
Changes in synaptic efficacy and morphology have been proposed as mechanisms underlying learning and memory processes. In our previous studies, high frequency stimulation (HFS) sufficient to induce LTP at the hippocampal mossy fiber (MF) pathway, leads to MF synaptogenesis, in a prominent contralateral form, at the stratum oriens of hippocampal CA3 area. Recently we reported that acute intrahippocampal microinfusion of BDNF induces a lasting potentiation of synaptic efficacy at the MF projection accompanied by a structural reorganization at the CA3 area within the stratum oriens region in a prominent ipsilateral form. It is considered that the capacity of synapses to express plastic changes is itself subject to variation dependent on previous experience. Here we used intrahippocampal microinfusion of BDNF to analyze its effects on functional and structural synaptic plasticity induced by subsequent mossy fiber HFS sufficient to induce LTP in adult rats, in vivo. Our results show that BDNF modifies the ability of the MF pathway to present LTP by HFS. Moreover BDNF modified the structural reorganization pattern produced by HFS, presenting a balanced bilateral appearance. Microinfusion of K252a blocks the functional and morphological effects produced by BDNF, revealing that the BDNF modulation is dependent on its TrkB receptor activation. These findings support the idea that BDNF actions modify subsequent synaptic plasticity; a homeostatic mechanism thought to be essential for synaptic integration among prolonged temporal domains in the adult mammalian brain. © 2010 Wiley Periodicals, Inc., Inc.  相似文献   

5.
It has been proposed that long-term potentiation (LTP), a form of activity-dependent modification of synaptic efficacy, may be a synaptic mechanism for certain types of learning. Recent studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that tetanic stimulation of the basolateral nucleus of the amygdala (Bla) induce an N-methyl-D-aspartate (NMDA) dependent LTP in the IC of adult rats in vivo. Here we present experimental data showing that intracortical administration of the NMDA receptor competitive antagonists CPP (-3(-2 carboxipiperazin-4-yl)-propyl-1-phosphonic acid, 0.03 microg per hemisphere) and AP-5 (D(-)-2-amino-5-phosphonopentanoic, 2.5 microg per hemisphere) disrupt the acquisition of conditioned taste aversion, as well as IC-LTP induction in vivo. In contrast, administration of the metabotropic glutamate receptor antagonist MCPG ((RS)-alpha-methyl-4-carboxyphenylglycine, 2.5 microg per hemisphere) does not disrupt the acquisition of CTA nor IC-LTP induction. These findings are of particular interest since they provide support for the view that the neural mechanisms underlying NMDA-dependent neocortical LTP constitute a possible mechanism for the learning-related functions performed by the IC.  相似文献   

6.
It has been proposed that long-term potentiation (LTP) a form of activity-dependent modification of synaptic efficacy, may be a synaptic mechanism for certain types of learning. Recent studies on the insular cortex (IC) a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that tetanic stimulation of the basolateral nucleus of the amygdala (Bla) induce an N-methyl- -aspartate (NMDA) dependent LTP in the IC of adult rats in vivo. Here we present experimental data showing that intracortical administration of the NMDA receptor competitive antagonist CPP (-3(-2 carboxipiperazin-4-yl)-propyl-1-phosphonic acid) disrupts the acquisition of conditioned taste aversion, as well as, the IC-LTP induction in vivo. These findings are of particular interest since they provide support for the view that the neural mechanisms underlying NMDA dependent neocortical LTP, constitute a possible mechanism for the learning related functions performed by the IC.  相似文献   

7.
Changes in synaptic efficacy and morphology are considered as the downstream mechanisms of consolidation of memories and other adaptive behaviors. In the last decade, neurotrophin‐3 (NT‐3) has emerged as one potent mediator of synaptic plasticity. In the adult brain, expression of NT‐3 is largely confined to the hippocampal dentate gyrus (DG). Our previous studies show that application of high‐frequency stimulation (HFS) sufficient to elicit long‐term potentiation (LTP) at the DG‐CA3 pathway as well as acute intrahippocampal microinfusion of brain‐derived neurotrophin factor produce mossy fiber (MF) structural reorganization. Here, we show that intrahippocampal microinfusion of NT‐3 induces a long‐lasting potentiation of synaptic efficacy in the DG‐CA3 projection accompanied by an MF structural reorganization of adult rats in vivo. It is considered that the capacity of synapses to express plastic changes is itself subject to variation depending on previous experience; taking into consideration the effects of NT‐3 on MF synaptic plasticity, we thus used intrahippocampal microinfusion of NT‐3 to analyse its effects on functional and structural plasticity induced by subsequent MF‐HFS sufficient to induce LTP in adult rats, in vivo. Our results show that NT‐3 modifies the ability of the MF pathway to present subsequent LTP by HFS, and modifies the structural reorganization pattern. The modifications in synaptic efficacy and morphology elicited by NT‐3 at the MF‐CA3 pathway were blocked by the presence of a Trk receptor inhibitor (K252a). These findings support the idea that NT‐3 actions modify subsequent synaptic plasticity, a homeostatic mechanism thought to be essential for maintaining synapses in the adult mammalian brain.  相似文献   

8.
Brain-derived neurotrophic factor (BDNF) regulates both short-term synaptic functions and activity-dependent synaptic plasticity such as long-term potentiation. In the present study, we investigated the role of BDNF in the spatial reference and working memory in a radial arm maze test. The radial arm maze training resulted in a significant increase in the BDNF mRNA expression in the hippocampus, although the expression in the frontal cortex did not change. When spatial learning was inhibited by treatment with 7-nitroindazole, an inhibitor of brain nitric oxide synthase, the increase in the hippocampal BDNF mRNA did not occur. To clarify the causal relation between BDNF mRNA expression and spatial memory formation, we examined the effects of antisense BDNF treatment on spatial learning and memory. A continuous intracerebroventricular infusion of antisense BDNF oligonucleotide resulted in an impairment of spatial learning, although the sense oligonucleotide had no effect. Treatment with antisense, but not sense, BDNF oligonucleotide was associated with a significant reduction of BDNF mRNA and protein levels in the hippocampus. Furthermore, treatment with antisense BDNF oligonucleotide in rats, which had previously acquired spatial memory by an extensive training, impaired both reference and working memory. There were no differences in locomotor activity, food consumption, and body weight between the antisense and sense oligonucleotide-treated rats. These results suggest that BDNF plays an important role not only in the formation, but also in the retention and/or recall, of spatial memory.  相似文献   

9.
10.
Although neurotrophins are critical for neuronal survival and differentiation, recent studies suggest that they also regulate synaptic plasticity. Brain-derived neurotrophic factor (BDNF) rapidly increases synaptic transmission in hippocampal neurons, and enhances long-term potentiation (LTP), a cellular and molecular model of learning and memory. Loci and precise mechanisms of BDNF action remain to be defined: evidence supports both pre- and postsynaptic sites of action. To help elucidate the synaptic mechanisms of BDNF action, we used antisera directed against the extracellular and intracellular domains of trkB receptors, anti-trkBout and anti-trkBin, respectively, to localize the receptors in relation to synapses. Synaptic localization of BDNF was examined in parallel using anti-BDNF antisera. By light microscopy, trkBin and trkBout immunoreactivities were localized to hippocampal neurons and all layers of the overlying visual cortex. Immunoelectron microscopic analysis of the cerebral cortex revealed that trkB and BDNF localize discretely to postsynaptic densities (PSD) of axo-spinous asymmetric synaptic junctions, that are the morphological correlates of excitatory, glutamatergic synapses. TrkB immunoreactivity was also detected in the nucleoplasm by light and electron microscopy. Western blot analysis indicated that both anti-trkBout and anti-trkBin antisera react with a protein band in the PSD corresponding to the molecular weight expected for trkB; however, molecular species distinct from that for trkB were recognized in the nuclear fraction by both anti-trkBin and anti-trkBout antisera, indicating that the nuclear immunoreactivity, seen by immunocytochemistry, reflects cross-reactivity with proteins closely related to, but distinct from, trkB. The PSD localization of both BDNF and trkB supports the contention that this receptor/ligand pair participates in postsynaptic plasticity.  相似文献   

11.
12.
The neurotrophin brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival, axonal and dendritic growth and synapse formation. BDNF has also been reported to mediate visual cortex plasticity. Here we studied the cellular mechanisms of BDNF-mediated changes in synaptic plasticity, excitatory synaptic transmission and long-term potentiation (LTP) in the visual cortex of heterozygous BDNF-knockout mice (BDNF(+/-)). Patch-clamp recordings in slices showed an approximately 50% reduction in the frequency of miniature excitatory postsynaptic currents (mEPSCs) compared to wild-type animals, in the absence of changes in mEPSC amplitudes. A presynaptic impairment of excitatory synapses from BDNF(+/-) mice was further indicated by decreased paired-pulse ratio and faster synaptic fatigue upon prolonged repetitive stimulation at 40 Hz. In accordance, presynaptic theta-burst stimulation (TBS) failed to induce LTP at layer IV to layers II-III synapses during extracellular field-potential recordings in BDNF(+/-) animals. Changes in postsynaptic function could not be detected, as no changes were observed in either the amplitudes of evoked EPSCs, the ratios of AMPA : NMDA currents or the kinetics of evoked AMPA and NMDA EPSCs. In line with this observation, an LTP pairing paradigm that relies on direct postsynaptic depolarization under patch-clamp conditions could be induced successfully in BDNF(+/-) animals. These data suggest that a chronic reduction in the expression of BDNF to nearly 50% attenuates the efficiency of presynaptic glutamate release in response to repetitive stimulation, thereby impairing presynaptically evoked LTP in the visual cortex.  相似文献   

13.
Both cholinergic and serotonergic modulatory projections to mammalian striate cortex have been demonstrated to be involved in the regulation of postnatal plasticity, and a striking alteration in the number and intracortical distribution of cholinergic and serotonergic receptors takes place during the critical period for cortical plasticity. As well, agonists of cholinergic and serotonergic receptors have been demonstrated to facilitate induction of long-term synaptic plasticity in visual cortical slices supporting their involvement in the control of activity-dependent plasticity. We recorded field potentials from layers 4 and 2/3 in visual cortex slices of 60--80 day old kittens after white matter stimulation, before and after a period of high frequency stimulation (HFS), in the absence or presence of either cholinergic or serotonergic agonists. At these ages, the HFS protocol alone almost never induced long-term changes of synaptic plasticity in either layers 2/3 or 4. In layer 2/3, agonist stimulation of m1 receptors facilitated induction of long-term potentiation (LTP) with HFS stimulation, while the activation of serotonergic receptors had only a modest effect. By contrast, a strong serotonin-dependent LTP facilitation and insignificant muscarinic effects were observed after HFS within layer 4. The results show that receptor-dependent laminar stratification of synaptic modifiability occurs in the cortex at these ages. This plasticity may underly a control system gating the experience-dependent changes of synaptic organization within developing visual cortex.  相似文献   

14.
A long-lasting increase in the efficiency of synaptic transmission in the central nervous system has been thought to be one of the bases of learning and memory. To explore the possibility that the motor cortex (area 4γ) itself is involved in motor learning, the existence of long-term potentiation (LTP) was examined by recording excitatory postsynaptic potentials (EPSPs) from motor cortical neurons. Short tetanic intracortical microstimulation (ICMS) of the somatic sensory cortex produced a marked potentiation of the EPSPs in a small group of motor cortical neurons. The results raised the possibility that the input from the sensory cortex participates in motor learning and retention of the learned motor skills.  相似文献   

15.
《Brain research bulletin》2010,83(5-6):284-288
β-Adrenergic receptor stimulation can significantly facilitate synaptic potentiation in the hippocampus and enhance memory processes, but its effect on neocortical plastic mechanisms is less conclusive. In the present study we determined the effect of propranolol, a β-adrenoceptor antagonist, on long-term potentiation (LTP) induced in vivo in rat occipital cortex by tetanizing stimulation of corpus callosum and observed a dose-dependent inhibition of LTP. We further administered propranolol through mini-osmotic pumps during 3 days, and observed the performance of rats in a complex operant conditioning learning paradigm and assessed the expression of brain-derived neurotrophic factor (BDNF) in the occipital cortex. Propranolol exposure depressed both the number of reinforced responses in the operant conditioning task and BDNF expression in occipital cortex. Taken together, our results suggest that propranolol impairs memory formation by inhibiting cortical LTP induction and associated BDNF expression.  相似文献   

16.
Brain-derived growth factor (BDNF) acutely regulates synaptic transmission and modulates hippocampal long-term potentiation (LTP) and long-term depression (LTD), cellular models of plasticity associated with learning and memory. Our previous studies revealed that BDNF rapidly increases phosphorylation of NMDA receptor subunits NR1 and NR2B in the postsynaptic density (PSD), potentially linking receptor phosphorylation to synaptic plasticity. To further define molecular mechanisms governing BDNF actions, we examined tyrosine phosphorylation of GluR1, the most well-characterized subunit of AMPA receptors. Initially, we investigated synaptoneurosomes that contain intact pre- and postsynaptic elements. Incubation of synaptoneurosomes with BDNF for 5 min increased tyrosine phosphorylation of GluR1 in a dose-dependent manner, with a maximal, 4-fold enhancement at 10 ng/ml BDNF. NGF had no effects, suggesting the specificity of BDNF actions. Subsequently, we found that BDNF elicited a maximal, 2.5-fold increase in GluR1 phosphorylation in the PSD at 250 ng/ml BDNF within 5 min, suggesting that BDNF enhances the phosphorylation through postsynaptic mechanisms. Activation of trkB receptors was critical as k252-a, an inhibitor of trk receptor tyrosine kinase, blocked the BDNF-activated GluR1 phosphorylation. In addition, AP-5 and MK 801, NMDA receptor antagonists, blocked BDNF enhancement of phosphorylation in synaptoneurosomes or PSDs. Conversely, NMDA, the specific receptor agonist, evoked respective 3.8- and 2-fold increases in phosphorylation in synaptoneurosomes and PSDs within 5 min, mimicking the effects of BDNF. These findings raise the possibility that BDNF modulates GluR1 activity via changes in NMDA receptor function. Moreover, incubation of synaptoneurosomes or PSDs with BDNF and ifenprodil, a specific NR2B antagonist, reproduced the results of AP-5 and MK-801. Finally, coexposure of synaptoneurosomes or PSDs to BDNF and NMDA was not additive, suggesting that BDNF and NMDA activate the same tyrosine phosphorylation site(s) in GluR1. Our findings suggest that BDNF-mediated GluR1 tyrosine phosphorylation potentially regulates synaptic plasticity postsynaptically through NR2B subunits of the NMDA receptor.  相似文献   

17.
The prefrontal cortex has been extensively implicated in autism to explain deficits in executive and other higher brain functions related to cognition, language, sociability and emotion. Hyper-connectivity and hyper-plasticity at the level of the neuronal microcircuit in the medial prefrontal cortex (mPFC) in the valproic acid (VPA) animal model of autism has been suggested. However, the possible alterations at the system levels are not well understood. The present study investigated the basal synaptic transmission and synaptic plasticity in the mPFC in vivo in the VPA rat model of autism. Furthermore, short-term and long-term retention of fear memories were also examined. The findings displayed that paired-pulse facilitation (PPF) and long-term potentiation (LTP), representing short- and long-term synaptic plasticity, were enhanced by the prenatal exposure to VPA. In addition, the short- and long-term fear memories were enhanced. These results suggest that enhanced synaptic plasticity in the mPFC and fear memories might be one of the mechanisms underlying some symptoms of autism.  相似文献   

18.
Brain-derived neurotrophic factor (BDNF) is reported to enhance synaptic transmission and to play a role in long-term potentiation in hippocampus and neocortex. If so, a shortage or blockade of BDNF might lead to another form of synaptic plasticity, long-term depression (LTD). To test this possibility and to elucidate mechanisms if it is the case, EPSCs evoked by test stimulation of layer IV were recorded from layer II/III neurons in visual cortical slices of young rats in the whole-cell voltage-clamp mode. LTD was induced by low-frequency stimulation (LFS) at 1 Hz for 10-15 min if each pulse of the LFS was paired with depolarization of neurons to -30 mV but was not induced if their membrane potentials were kept at -70 mV. Such an LTD was blocked by exogenously applied BDNF, probably through presynaptic mechanisms. Suppression of endogenous BDNF activity by the anti-BDNF antibody or an inhibitor for BDNF receptors made otherwise ineffective stimuli (LFS without postsynaptic depolarization) effective for LTD induction, suggesting that endogenous BDNF may prevent low-frequency inputs from inducing LTD in the developing visual cortex.  相似文献   

19.
Stress has been reported to disrupt the induction of synaptic plasticity in different fimbria target structures. The aim of the present study was to investigate whether chronic mild stress may also affect synaptic plasticity in the medial prefrontal cortex, a fimbria target structure. Fimbria tetanus (100 Hz) did not produce any changes in medial prefrontal cortex synaptic efficacy in non-stressed rats. Rats exposed to chronic mild stress, however, developed significant long-term potentiation. Treatment with fluoxetine (10 mg/kg, intraperitoneal) suppressed long-term potentiation induction in the chronic mild stress group. These data demonstrate that stress not only inhibits long-term potentiation development, as often demonstrated, but can also facilitate long-term potentiation development in certain brain circuits.  相似文献   

20.
Cyclooxygenase (COX), which is present in two isoforms (COX1 and 2), synthesizes prostaglandins from arachidonic acid; it plays a crucial role in inflammation in both central and peripheral tissues. Here, we describe its role in synaptic plasticity and spatial learning in vivo via an effect on brain-derived neurotrophic factor (BDNF) and prostaglandin E2 (PGE2; both measured by Elisa). We found that broad-spectrum COX inhibition (BSCI) inhibits the induction of long-term potentiation (LTP; the major contemporary model of synaptic plasticity), and causes substantial and sustained deficits in spatial learning in the watermaze. Increases in BDNF and PGE2 following spatial learning and LTP were also blocked. Importantly, 4 days of prior exercise in a running wheel increased endogenous BDNF levels sufficiently to reverse the BSCI of LTP and spatial learning, and restored a parallel increase in LTP and learning-related BDNF and PGE2. In control experiments, we found that BSCI had no effect on baseline synaptic transmission or on the nonhippocampal visible-platform task; there was no evidence of gastric ulceration from BSCI. COX2 is inhibited by glucorticoids; there was no difference in blood corticosterone levels as measured by radioimmunoassay in any condition. Thus, COX plays a previously undescribed, permissive role in synaptic plasticity and spatial learning via a BDNF-associated mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号