首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess the functional significance of late inspiratory (late-I) neurons in inspiratory off-switching (IOS), membrane potential and discharge properties were examined in vagotomized, decerebrate cats. During spontaneous IOS, late-I neurons displayed large membrane depolarization and associated discharge of action potentials that started in late inspiration, peaked at the end of inspiration, and ended during postinspiration. Depolarization was decreased by iontophoresis of dizocilpine and eliminated by tetrodotoxin. Stimulation of the vagus nerve or the nucleus parabrachialis medialis (NPBM) also evoked depolarization of late-I neurons and IOS. Waves of spontaneous chloride-dependent inhibitory postsynaptic potentials (IPSPs) preceded membrane depolarization during early inspiration and followed during postinspiration and stage 2 expiration of the respiratory cycle. Iontophoresed bicuculline depressed the IPSPs. Intravenous dizocilpine caused a greatly prolonged inspiratory discharge of the phrenic nerve (apneusis) and suppressed late-inspiratory depolarization as well as early-inspiratory IPSPs, resulting in a small constant depolarization throughout the apneusis. NPBM or vagal stimulation after dizocilpine produced small, stimulus-locked excitatory postsynaptic potentials (EPSPs) in late-I neurons. Neurobiotin-labeled late-I neurons revealed immunoreactivity for glutamic acid decarboxylase as well as N-methyl-D-aspartate (NMDA) receptors. These results suggest that late-I neurons are GABAergic inhibitory neurons, while the effects of bicuculline and dizocilpine indicate that they receive periodic waves of GABAergic IPSPs and glutamatergic EPSPs. The data lead to the conclusion that late-I neurons play an important inhibitory role in IOS. NMDA receptors are assumed to augment and/or synchronize late-inspiratory depolarization and discharge of late-I neurons, leading to GABA release and consequently off-switching of bulbar inspiratory neurons and phrenic motoneurons.  相似文献   

2.
1. Intracellular recordings were made from layer V/VI neurons of the guinea pig anterior cingulate cortex to investigate postsynaptic potentials (PSPs) evoked by electrical stimulation of the subcortical white matter (forceps minor). 2. Four distinct types of PSPs were recorded (at the resting potential) under normal physiological conditions; 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)-sensitive excitatory postsynaptic potentials (EPSPs) were followed by bicuculline- or picrotoxin-sensitive depolarizing or hyperpolarizing inhibitory postsynaptic potentials (IPSPs), which were further followed by phaclofen-sensitive, long-lasting hyperpolarizing postsynaptic potentials (LPSPs). The average times-to-peak for the EPSP, depolarizing and hyperpolarizing IPSPs, and LPSP were 10, 22, 28, and 146 ms, respectively. 3. In the presence of CNQX and bicuculline, high-intensity electrical stimulation elicited a longer lasting EPSP with a time-to-peak of 21 ms. The amplitude and duration of the EPSP decreased with membrane hyperpolarization and increased with membrane depolarization. The EPSP was reversibly abolished by D,L-2-amino-5-phosphonovaleric acid (D,L-APV). 4. The bicuculline- or picrotoxin-sensitive depolarizing and hyperpolarizing IPSPs and the phaclofen-sensitive LPSP were markedly suppressed by CNQX, suggesting that glutamate (Glu) and/or aspartate nerve terminals project to GABAergic interneurons, and that the GABAergic interneurons are activated mainly by non-N-methyl-D-aspartate (non-NMDA) receptors. 5. In the presence of picrotoxin, the average reversal potential for the compound EPSP was 0 mV, which was similar to that (-6 mV) for the Glu-induced depolarization. In a solution containing D,L-APV at low concentrations, the average reversal potentials for the depolarizing and hyperpolarizing IPSPs and for the early and late components of the gamma-aminobutyric acid (GABA)-induced responses were -62, -72, -70, and -61 mV, respectively. Thus the value for the depolarizing IPSP was similar to that for the late response to GABA, whereas the value for the hyperpolarizing IPSP was almost the same as that for the early response to GABA. The average reversal potential of -90 mV for the LPSP was similar to -93 mV for the baclofen-induced hyperpolarization and to -94 mV for the spike afterhyperpolarization. 6. Application of phaclofen decreased the interspike interval of the spontaneous firing and reversed the increase in the interspike interval after subcortical stimulation. This result indicates that, even in a slice preparation, the anterior cingulate neurons are under tonic inhibitory control exerted by spontaneously active GABAergic interneurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
In vitro studies have repeatedly demonstrated that the neurotransmitters γ-aminobutyric acid (GABA) and glycine depolarize immature neurons in many areas of the CNS, including the spinal cord. This widely accepted phenomenon was recently challenged by experiments showing that the depolarizing action of GABA on neonatal hippocampus and neocortex in vitro was prevented by adding energy substrates (ES), such as the ketone body metabolite dl-β-hydroxybutyric acid (DL-BHB), lactate, or pyruvate to the artificial cerebrospinal fluid (ACSF). It was suggested that GABA-induced depolarizations in vitro might be an artifact due to inadequate energy supply when glucose is the sole energy source, consistent with the energy metabolism of neonatal rat brain being largely dependent on ESs other than glucose. Here we examined the effects of these ESs (DL-BHB, lactate, pyruvate) on inhibitory postsynaptic potentials (IPSPs) recorded from neonatal rat lumbar spinal cord motoneurons (MNs), in vitro. We report that supplementing the ACSF with physiologic concentrations of DL-BHB, lactate, or pyruvate does not alter the reversal potential of IPSPs (E(IPSP)). Only high concentrations of pyruvate hyperpolarized E(IPSP). In addition, the depolarizing action of GABA on primary afferent terminals was not affected by supplementing the ACSF with ES at physiologic concentrations. We conclude that depolarizing IPSPs in immature MNs and the primary afferent depolarizations are not caused by inadequate energy supply. Glucose at its standard concentration appears to be an adequate ES for the neonatal spinal cord in vitro.  相似文献   

4.
Hippocampal slices bathed in 4-aminopyridine (4-AP, < or =200 microM) exhibit 1) spontaneous large inhibitory postsynaptic potentials (IPSPs) in pyramidal cells, which occur without the necessity of fast glutamatergic receptors, and which hence are presumed to arise from coordinated firing in populations of interneurons; 2) spikes of variable amplitude, presumed to be of antidromic origin, in some pyramidal cells during the large IPSP; 3) bursts of action potentials in selected populations of interneurons, occurring independently of fast glutamatergic and of GABA(A) receptors. We have used neuron pairs, and a large network model (3,072 pyramidal cells, 384 interneurons), to examine how these phenomena might be inter-related. Network bursts in electrically coupled interneurons have previously been shown to be possible with dendritic gap junctions, when the dendrites were capable of spike initiation, and when action potentials could cross from cell to cell via gap junctions; recent experimental data showing that dendritic gap junctions between cortical interneurons lead to coupling potentials of only about 0.5 mV argue against this mechanism, however. We now show that axonal gap junctions between interneurons could also lead to network bursts; this concept is consistent with the occurrence of spikelets and partial spikes in at least some interneurons in 4-AP. In our model, spontaneous antidromic action potentials can induce spikelets and action potentials in principal cells during the large IPSP. The probability of observing this type of activity increases significantly when axonal gap junctions also exist between pyramidal cells. Sufficient antidromic activity in the model can lead to epileptiform bursts, independent of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors, in some principal cells, preceded by IPSPs and spikelets. The model predicts that gap junction blockers should suppress large IPSPs observed in 4-AP and should also reduce the probability of observing antidromic activity, or bursting, in pyramidal cells. Experiments show that, indeed, the gap junction blocking compound carbenoxolone does suppress spontaneous large IPSCs, occurring in 4-AP plus ionotropic glutamate blockers, together with a GABA(B) receptor blocker; carbenoxolone also suppresses large, fast inward currents, corresponding to ectopic spikes, which occur in 4-AP. Carbenoxolone does not suppress large depolarizing IPSPs induced by tetanic stimulation. We conclude that in 4-AP, axonal gap junctions could, at least in principle, account in part for both the large IPSPs, and for the antidromic activity in pyramidal neurons.  相似文献   

5.
The mechanisms of irregular firing of spontaneous action potentials in neurons from the rat suprachiasmatic nucleus (SCN) were studied in hypothalamic slices using cell-attached and whole cell recording. The firing pattern of spontaneous action potentials could be divided into regular and irregular, based on the interspike interval (ISI) histogram and the membrane potential trajectory between action potentials. Similar to previous studies, regular neurons had a firing rate about >3.5 Hz and irregular neurons typically fired about <3.5 Hz. The ISI of irregular-firing neurons was a linear function of the sum of inhibitory postsynaptic potentials (IPSPs) between action potentials. Bicuculline (10-30 microM) suppressed IPSPs and converted an irregular pattern to a more regular firing. Bicuculline also depolarized SCN neurons and induced bursting-like activity in some SCN neurons. Gabazine (20 microM), however, suppressed IPSPs without depolarization, and also converted irregular activity to regular firing. Thus GABAA receptor-mediated IPSPs appear responsible for irregular firing of SCN neurons in hypothalamic slices.  相似文献   

6.
Spike-timing modifies the efficacy of both excitatory and inhibitory synapses onto CA1 pyramidal neurons in the rodent hippocampus. Repetitively spiking the presynaptic neuron before the postsynaptic neuron induces inhibitory synaptic plasticity, which results in a depolarization of the reversal potential for GABA (E(GABA)). Our goal was to determine how inhibitory synaptic plasticity regulates CA1 pyramidal neuron spiking in the rat hippocampus. We demonstrate electrophysiologically that depolarizing E(GABA) by 24.7 mV increased the spontaneous action potential firing frequency of cultured hippocampal neurons 254% from 0.12+/-0.07 Hz to 0.44+/-0.13 Hz (n=11; P<0.05). Next we used a single compartment model of a CA1 pyramidal neuron to explore in detail how inhibitory synaptic plasticity of feedforward and feedback inhibition regulates the generation of action potentials, spike latency, and the minimum excitatory conductance required to generate an action potential; plasticity was modeled as a depolarization of E(GABA), which effectively weakens inhibition. Depolarization of E(GABA) at feedforward and feedback inhibitory synapses decreased the latency to the 1st spike by 2.27 ms, which was greater that the sum of the decreases produced by depolarizing E(GABA) at feedforward (0.85 ms) or feedback inhibitory synapses (0.02 ms) alone. In response to a train of synaptic inputs, depolarizing E(GABA) decreased the inter-spike interval and increased the number of output spikes in a frequency dependent manner, improving the reliability of input-output transmission. Moreover, a depolarizing shift in E(GABA) at feedforward and feedback synapses triggered by spike trains recorded from CA1 pyramidal layer neurons during field theta from anesthetized rats, significantly increased spiking on the up- and down-strokes of the first half of the theta rhythm (P<0.05), without changing the preferred phase of firing (P=0.783). This study provides the first explanation of how depolarizing E(GABA) affects pyramidal cell output within the hippocampus.  相似文献   

7.
Jang IS  Nakamura M  Ito Y  Akaike N 《Neuroscience》2006,138(1):25-35
Mossy fiber-derived giant spontaneous miniature excitatory postsynaptic currents have been suggested to be large enough to generate action potentials in postsynaptic CA3 pyramidal neurons. Here we report on the functional roles of presynaptic GABA(A) receptors on excitatory terminals in contributing to spontaneous glutamatergic transmission to CA3 neurons. In mechanically dissociated rat hippocampal CA3 neurons with adherent presynaptic nerve terminals, spontaneous excitatory postsynaptic currents were recorded using conventional whole-cell patch clamp recordings. In most recordings, unusually large spontaneous excitatory postsynaptic currents up to 500 pA were observed. These large spontaneous excitatory postsynaptic currents were highly sensitive to group II metabotropic glutamate receptor activation, and were still observed even after the blockade of voltage-dependent Na(+) or Ca(2+) channels. Exogenously applied muscimol (0.1-3 microM) significantly increased the frequency of spontaneous excitatory postsynaptic currents including the large ones. This facilitatory effect of muscimol was completely inhibited in the presence of 10 microM 6-imino-3-(4-methoxyphenyl)-1(6H)-pyridazinebutanoic acid HBr, a specific GABA(A) receptor antagonist. Pharmacological data suggest that activation of presynaptic GABA(A) receptors directly depolarizes glutamatergic terminals resulting in the facilitation of spontaneous glutamate release. In the current-clamp condition, a subset of large spontaneous excitatory postsynaptic potentials triggered action potentials, and muscimol greatly increased the frequency of spontaneous excitatory postsynaptic potential-triggered action potentials in postsynaptic CA3 pyramidal neurons. The results suggest that presynaptic GABA(A) receptors on glutamatergic terminals play an important role in the excitability of CA3 neurons as well as in the presynaptic modulation of glutamatergic transmission onto hippocampal CA3 neurons.  相似文献   

8.
To elucidate neuronal mechanisms underlying phase-switching from expiration to inspiration, or inspiratory on-switching (IonS), postsynaptic potentials (PSPs) of bulbar respiratory neurons together with phrenic nerve discharges were recorded during IonS evoked by vagal stimulation in decerebrate and vagotomized cats. A single shock stimulation of the vagus nerve applied at late-expiration developed an inspiratory discharge in the phrenic neurogram after a latency of 79+/-11 ms (n = 11). Preceding this evoked inspiratory discharge, a triphasic response was induced, consisting of an early silence (phase 1 silence), a transient burst discharge (phase 2 discharge) and a late pause (phase 3 pause). During phase 1 silence, IPSPs occurred in augmenting inspiratory (aug-I) and expiratory (E2) neurons, and EPSPs in postinspiratory (PI) neurons. During phase 2 discharge, EPSPs arose in aug-I neurons and IPSPs in PI and E2 neurons. These initial biphasic PSPs were comparable with those during inspiratory off-switching evoked by the same stimulation applied at late-inspiration. In both on- and off-switching, phase-transition in respiratory neuronal activities started to arise concomitantly with the phrenic phase 3 pause. These results suggest that vagal inputs initially produce a non-specific, biphasic response in bulbar respiratory neurons, which consecutively activates a more specific process connected to IonS.  相似文献   

9.
The thalamic reticular nucleus (nRt) provides an important inhibitory input to thalamic relay nuclei and is central in the generation of both normal and abnormal thalamocortical activities. Although local inhibitory interactions between these neurons may play an important role in controlling thalamocortical activities, the physiological features of this interaction have not been fully investigated. Here we sought to establish the nature of inhibitory interaction between nRt neurons with intracellular and extracellular recordings in slices of ferret nRt maintained in vitro. In many nRt neurons, intracellular recordings revealed spontaneous inhibitory postsynaptic potentials (IPSPs). In addition, the local excitation of nRt cells with glutamate led to the generation of IPSPs in the intracellularly recorded nRt neuron. These evoked IPSPs exhibited an average reversal potential of -72 mV and could be blocked by picrotoxin, a GABA(A)-receptor antagonist. These results indicate that nRt neurons interact locally through the activation of GABA(A) receptor-mediated inhibitory postsynaptic potentials. This lateral inhibition may play an important role in controlling the responsiveness of these cells to cortical and thalamic excitatory inputs in both normal and abnormal thalamocortical function.  相似文献   

10.
Recent electrophysiological studies on the rat hippocampus (in vivo and in vitro) provide further evidence that neuronal and glial uptake of the inhibitory transmitter gamma-aminobutyric acid (GABA) limits the intensity and the duration of effects not only of locally applied exogenous GABA but also of GABAergic inhibitory synaptic potentials (IPSPs). There is good reason to believe that such uptake is at least partly responsible for the 'fading' of GABA action. Moreover, because it is probably driven by the transmembrane Na+ electrochemical gradient and is accompanied by Na+ influx, GABA uptake is potentially electrogenic and therefore may have a depolarizing effect on both neurons and glia.  相似文献   

11.
Previous studies have shown that GABA can have a depolarizing and excitatory action through GABA(A) receptors in mature CNS neurons in vitro. However, it remains unknown whether this occurs under physiological conditions. In this study, using intracellular recording and staining in vivo technique, we show a late depolarizing postsynaptic potential (L-PSP) in CA1 pyramidal neurons of adult Wistar rats under halothane anesthesia. This L-PSP was elicited in approximately 70% of the recorded neurons on stimulation of the Schaffer collaterals or the contralateral commissural path. The size of L-PSP was linearly correlated to the decay time constant but not the rising slope of the initial excitatory PSP (EPSP). Intravenous administration of the N-methyl-D-aspartate (NMDA) receptor blocker MK-801 and the GABA(A) receptor blocker picrotoxin significantly reduced the size of the L-PSP. The spine density and apical dendritic branching length of the neurons that displayed L-PSPs was significantly greater than those that do not. These results indicate that NMDA receptor and GABA(A) receptor-mediated depolarizing postsynaptic potentials can be revealed in CA1 pyramidal neurons of adult rats in vivo, supporting the physiological relevance of GABA(A)-mediated depolarization in normal neuronal information processing. The difference in electrophysiological properties and morphological features between neurons that display the L-PSP and the other neurons suggest that they might represent two different subtypes of CA1 pyramidal neurons.  相似文献   

12.
The regulation of activity in the subthalamic nucleus (STN) by GABAergic inhibition from the reciprocally connected globus pallidus (GP) plays an important role in normal movement and disorders of movement. To determine the precise manner in which GABAergic synaptic input, acting at A-type receptors, influences the firing of STN neurons, we recorded the response of STN neurons to GABA-A inhibitory postsynaptic potentials (IPSPs) that were evoked by supramaximal electrical stimulation of the internal capsule using the perforated-patch technique in slices at 37 degrees C. The mean equilibrium potential of the GABA-A IPSP (EGABA-A IPSP) was -79.4 +/- 7.0 mV. Single IPSPs disrupted the spontaneous oscillation that underlies rhythmic single-spike firing in STN neurons. As the magnitude of IPSPs increased, the effectiveness of prolonging the interspike interval was related more strongly to the phase of the oscillation at which the IPSP was evoked. Thus the largest IPSPs tended to reset the oscillatory cycle, whereas the smallest IPSPs tended to produce relatively phase-independent delays in firing. Multiple IPSPs were evoked at various frequencies and over different periods and their impact was studied on STN neurons held at different levels of polarization. Multiple IPSPs reduced and/or prevented action potential generation and/or produced sufficient hyperpolarization to activate a rebound depolarization, which generated a single spike or restored rhythmic spiking and/or generated a burst of activity. The pattern of IPSPs and the level of polarization of STN neurons were critical in determining the nature of the response. The duration of bursts varied from 20 ms to several hundred milliseconds, depending on the intrinsic rebound properties of the postsynaptic neuron. These data demonstrate that inhibitory input from the GP can produce a range of firing patterns in STN neurons, depending on the number and frequencies of IPSPs and the membrane properties and voltage of the postsynaptic neuron.  相似文献   

13.
Gao TM  Pulsinelli WA  Xu ZC 《Neuroscience》1999,90(3):771-780
We have previously identified three distinct populations of CA1 pyramidal neurons after reperfusion based on differences in synaptic response, and named these late depolarizing postsynaptic potential neurons (enhanced synaptic transmission), non-late depolarizing postsynaptic potential and small excitatory postsynaptic neurons (depressed synaptic transmission). In the present study, spontaneous activity and membrane properties of CA1 neurons were examined up to 48 h following approximately 14 min ischemic depolarization using intracellular recording and staining techniques in vivo. In comparison with preischemic properties, the spontaneous firing rate and the spontaneous synaptic activity of CA1 neurons decreased significantly during reperfusion; spontaneous synaptic activity ceased completely 36-48 h after reperfusion, except for a low level of activity which persisted in non-late depolarizing postsynaptic potential neurons. Neuronal hyperactivity as indicated by increasing firing rate was never observed in the present study. The membrane input resistance and time constant decreased significantly in late depolarizing postsynaptic potential neurons at 24-48 h reperfusion. In contrast, similar changes were not observed in non-late depolarizing postsynaptic potential neurons. The rheobase, spike threshold and spike frequency adaptation in late depolarizing postsynaptic potential neurons increased progressively following reperfusion. Only a transient increase in rheobase and spike threshold was detected in non-late depolarizing postsynaptic potential neurons and spike frequency adaptation remained unchanged in these neurons. The amplitude of fast afterhyperpolarization increased in all neurons after reperfusion, with the smallest increment in non-late depolarizing postsynaptic potential neurons. Small excitatory postsynaptic potential neurons shared similar changes to those of late depolarizing postsynaptic potential neurons. These results suggest that the enhancement and depression of synaptic transmission following ischemia are probably due to changes in synaptic efficacy rather than changes in intrinsic membrane properties. The neurons with enhanced synaptic transmission following ischemia are probably the degenerating neurons, while the neurons with depressed synaptic transmission may survive the ischemic insult.  相似文献   

14.
1. Fetal rat striatal primordia were implanted into the neostriatum of adult rats 2 days after kainic acid lesion. Two to 6 mo after transplantation, in vivo intracellular recording and staining were performed to study the responses of spiny neurons in the grafts to the cortical and thalamic stimuli. The physiological characteristics and synaptic responses of 27 cells recorded in the grafts were compared with a sample of 23 neurons recorded from the surrounding host neostriatum in the same animals. Nineteen of the graft neurons and 19 of the host neurons were identified as spiny neurons by intracellular staining with biocytin. The responses of the remaining neurons were the same as those of identified spiny cells. 2. The spontaneous synaptically driven membrane potential shifts and long-lasting responses to afferent stimulation that are characteristic of neostriatal cells in normal animals were greatly reduced or absent in graft neurons. Presumably this reflects the reduction in synaptic input to the grafts and the lack of convergence of inputs from diverse sources. 3. Short-latency synaptic responses to cortical and thalamic stimulation were present and could consist of either excitatory postsynaptic potentials (EPSPs) or inhibitory postsynaptic potentials (IPSPs). The IPSPs were accompanied by a membrane conductance increase, and their reversal potentials could be altered by injection of chloride ions. Several minutes after impaling the cell, the IPSPs gradually disappeared, and the same stimuli could then evoke EPSPs. The disappearance of the IPSPs was independent of the presence of chloride in the electrodes. Most of the EPSP responses appeared to be monosynaptic but occurred at longer latencies than those seen in host neurons of the same type. 4. In cells not exhibiting IPSPs, or after the IPSP responses disappeared, cortical or thalamic stimulation could evoke slow depolarizing potentials and bursts of action potentials. These could not be evoked by current injection. They could be prevented or delayed by an exaggerated action potential after hyperpolarization that developed in neurons maintained in a depolarized state for several seconds, but could not be prevented by passage of hyperpolarizing current from the recording electrode. 5. The input resistance of graft spiny neurons was higher than that of the host cells, and time constants were longer. Both of these properties appeared to be due to the absence of the strong inward rectification that is usually present at resting membrane potentials in neostriatal neurons.  相似文献   

15.
To elucidate synaptic mechanisms and the involvement of N-methyl-D-aspartate (NMDA) receptors in inspiratory off-switching (IOS) evoked by the stimulation of the nucleus parabrachialis medialis (NPBM), excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) were recorded from bulbar augmenting inspiratory (aug-I) and postinspiratory (PI) neurons in vagotomized cats. Stimulation of NPBM produced either transient inhibition or premature termination of inspiration (reversible or irreversible IOS), depending on the stimulus intensity. Each neuron displayed four-phasic postsynaptic responses during the reversible IOS, i.e. Phase 1 EPSPs, Phase 2 IPSPs, Phase 3 EPSPs and Phase 4 IPSPs in aug-I neurons, and Phase 1 plus 2 EPSPs, Phase 3 IPSPs and Phase 4 EPSPs in PI neurons. During the irreversible IOS, Phase 4 responses were replaced by sustained hyperpolarization in aug-I neurons and decrementing depolarization in PI neurons. Blockade of NMDA receptors by dizocilpine (0.3 mg kg(-1) i.v.) selectively increased Phase 4 potentials in both types of neurons and decreased the thresholds for evoking the irreversible IOS. The NPBM-induced responses had a pattern and time-course similar to those induced by vagal stimulation. The present results suggest that pneumotaxic and vagal inputs converge on the common IOS circuit, and the effectiveness of both inputs is modulated by NMDA receptors.  相似文献   

16.
1. The relationship between membrane properties of neostriatal neurons and spontaneous and evoked synaptic potentials was studied with the use of intracellular recordings from anesthetized rats. Most of these neurons showed regular or irregular spontaneous depolarizing potentials that only in a few cases triggered action potentials at resting level. 2. The stimulation of the ipsilateral substantia nigra or of the sensorimotor cortex produced a relatively fast depolarizing post-synaptic potential (EPSP). In some cells this potential was followed by an inhibitory period that appeared as an hyperpolarization when the cell was depolarized from the resting level (inhibitory postsynaptic potential, IPSP). A late and long-lasting depolarization (LD) followed the EPSP or the EPSP-IPSP sequence. 3. Repetitive discharge with little adaptation was observed during direct depolarization. Most of the neurons tested for current-voltage (I-V) relationship showed nonlinearity of the input resistance in the hyperpolarizing direction. Spontaneous and evoked EPSPs were decreased in their amplitude and duration when the membrane potential was held at levels more hyperpolarized than -85 mV because of the strong rectification at these levels of hyperpolarization. 4. Local microiontophoretic application of bicuculline (BIC) or systemic administration of BIC and pentylenetetrazole (PTZ) produced a reduction of the IPSPs. The reduction of the inhibitory transmission caused a strong increase of the LD. The current-evoked firing pattern was not greatly altered. 5. The intracellular application of cesium increased the amplitude and the duration of the spontaneous depolarizations that triggered bursts of action potentials under this condition. Spikes were broadened and the rectification in the hyperpolarization direction was reduced. 6. Iontophoretically applied cadmium strongly depressed the amplitude of the spontaneous and evoked postsynaptic potentials. During cadmium application, nigral stimulation produced constant latency, all-or-none spikes in the absence of any synaptic potential. 7. Repetitive stimulation of the ipsilateral substantia nigra by electrical shocks (5 Hz, 25 s) produced a progressive and reversible decrease of the spontaneous depolarizing potentials (SDPs) and a decrease of the firing rate. In the same cells, when the train of stimulation was delivered in the ipsilateral cortex, a membrane depolarization coupled with an increase of the firing rate was observed. 8. We conclude that although synaptic circuits mediate a phasic inhibition in neostriatum, the low level of spontaneous firing of most neostriatal neurons is mainly because of the effects that membrane properties exert on the spontaneous and the evoked synaptic depolarizations in the striatum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The action of somatostatin on GABA-mediated transmission was investigated in cat and rat thalamocortical neurons of the dorsal lateral geniculate nucleus and ventrobasal thalamus in vitro. In the cat thalamus, somatostatin (10 microM) had no effect on the passive membrane properties of thalamocortical neurons and on the postsynaptic response elicited in these cells by bath or iontophoretic application of (+/-)baclofen (5-10 microM) or GABA, respectively. However, somatostatin (1-10 microM) decreased by a similar amount (45-55%) the amplitude of electrically evoked GABA(A) and GABA(B) inhibitory postsynaptic potentials in 71 and 50% of neurons in the lateral geniculate and ventrobasal nucleus, respectively. In addition, the neuropeptide abolished spontaneous bursts of GABA(A) inhibitory postsynaptic potentials in 85% of kitten lateral geniculate neurons, and decreased (40%) the amplitude of single spontaneous GABA(A) inhibitory postsynaptic potentials in 87% of neurons in the cat lateral geniculate nucleus. Similar results were obtained in the rat thalamus. Somatostatin (10 microM) had no effect on the passive membrane properties of thalamocortical neurons in this species, or on the outward current elicited by puff-application of (+/-)baclofen (5-10 microM). However, in 57 and 22% of neurons in the rat lateral geniculate and ventrobasal nuclei, respectively, somatostatin (1 microM) reduced the frequency, but not the amplitude, of miniature GABA(A) inhibitory postsynaptic currents by 31 and 37%, respectively. In addition, the neuropeptide (1 microM) decreased the amplitude of evoked GABA(A) inhibitory postsynaptic currents in 20 and 55% of rat ventrobasal neurons recorded in normal conditions and during enhanced excitability, respectively: this effect was stronger on bursts of inhibitory postsynaptic currents(100% decrease) than on single inhibitory postsynaptic currents (41% decrease).These results demonstrate that in the sensory thalamus somatostatin inhibits GABA(A)- and GABA(B)-mediated transmission via a presynaptic mechanism, and its action is more prominent on bursts of GABAergic synaptic currents/potentials.  相似文献   

18.
Changes in intracellular chloride concentration, mediated by chloride influx through GABA(A) receptor-gated channels, may modulate GABA(B) receptor-mediated inhibitory postsynaptic potentials (GABA(B) IPSPs) via unknown mechanisms. Recording from CA3 pyramidal cells in hippocampal slices, we investigated the impact of chloride influx during GABA(A) receptor-mediated IPSPs (GABA(A) IPSPs) on the properties of GABA(B) IPSPs. At relatively positive membrane potentials (near -55 mV), mossy fiber--evoked GABA(B) IPSPs were reduced (compared with their magnitude at -60 mV) when preceded by GABA(A) receptor--mediated chloride influx. This effect was not associated with a correlated reduction in membrane permeability during the GABA(B) IPSP. The mossy fiber--evoked GABA(B) IPSP showed a positive shift in reversal potential (from -99 to -93 mV) when it was preceded by a GABA(A) IPSP evoked at cell membrane potential of -55 mV as compared with -60 mV. Similarly, when intracellular chloride concentration was raised via chloride diffusion from an intracellular microelectrode, there was a reduction of the pharmacologically isolated monosynaptic GABA(B) IPSP and a concurrent shift of GABA(B) IPSP reversal potential from -98 to -90 mV. We conclude that in hippocampal pyramidal cells, in which "resting" membrane potential is near action potential threshold, chloride influx via GABA(A) IPSPs shifts the reversal potential of subsequent GABA(B) receptor--mediated postsynaptic responses in a positive direction and reduces their magnitude.  相似文献   

19.
Early in development, network activity in the hippocampus is characterized by giant depolarizing potentials (GDPs). These potentials consist of recurrent membrane depolarizations with superimposed fast action potentials separated by quiescent intervals. They are generated by the interplay of glutamate and gamma-aminobutyric acid (GABA) that, in the immediate postnatal period, is depolarizing and excitatory. Here, we review some recent data concerning the functional role of GDPs in shaping synaptic currents at low-probability mossy-fiber (MF)-CA3 synapses. A pairing procedure was used to correlate GDPs-associated calcium increase in the postsynaptic cell with stimulation of afferent inputs. The pairing protocol caused the appearance of synaptic responses or persistently enhanced the number of successes in "presynaptically" silent or low-probability synapses, respectively. In double-pulses experiments, this effect was associated with a significant reduction in the paired-pulse ratio and a significant increase in the inverse squared value of the coefficient of variation of response amplitude, suggesting that long-term potentiation (LTP) expression was due to the increased probability of transmitter released. In the absence of pairing, no significant changes in synaptic efficacy could be detected. When the interval between GDPs and MF stimulation was increased, the potentiating effect progressively declined and reached the control level in less than 4 s. Mossy-fiber responses were identified on the basis of their paired-pulse facilitation, short-term frequency facilitation, and sensitivity to the group III metabotropic glutamate receptor (mGluR) agonist, 2-amino-4-phosphonobutyric acid (L-AP4). Using these criteria, we found that MFs release mainly GAB A onto CA3 pyramidal cells or GABAergic interneurons. In line with their GABAergic nature, MF responses were blocked by the GABAA receptor antagonists bicuculline or gabazine and were potentiated by NO-711, a blocker of the GABA transporter GAT-1, and by flurazepam, an allosteric modulator of GABAA receptors. In addition, chemical stimulation of granule cell dendrites with glutamate in the presence of 6,7-dinitroquinoxaline-2,3-dione (DNQX) induced into target neurons barrages of L-AP4-sensitive GABAA-mediated postsynaptic currents, further supporting the GABAergic phenotype of granule cells. As in MF, pairing GDPs with Schaffer collateral stimulation induced a persistent potentiation of spontaneous and evoked alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-mediated responses at poorly developed CA3-CA1 synapses. This effect was mediated by an increase in calcium in the postsynaptic cell via voltage-dependent calcium channels activated by the depolarizing action of GABA during GDPs. We provide evidence also that, at these connections, cyclic AMP-dependent protein kinase A (PKA) is the signaling molecule necessary for enhancing synaptic efficacy, since GDPs-induced potentiation was prevented by the membrane permeable PKA inhibitor (PKI 14-22) applied in the bath or by the membrane impermeable form of PKI (PKI 6-22) applied via the patch pipette. In conclusion, it is suggested that GDPs translate specific patterns of pre- and postsynaptic activity into long-lasting changes in synaptic strength and stabilize synaptic connections, thus contributing to the structural refinement of the hippocampal circuit.  相似文献   

20.
Gamma-aminobutyric acid type A receptor (GABA(A)-R) activation leads to depolarization of pyramidal cells during the first postnatal week and produces hyperpolarization from the second week. However, immunohistochemical evidence has suggested that during the second and third postnatal weeks the NKCC1 cotransporter relocates from the soma to the dendrites of CA3 pyramidal cells. We hypothesized that this leads to depolarizing responses in apical dendrites. Here we show that the activation of GABA(A)-R in the distal dendrites of CA3 pyramidal cells at P15 by restricted application of muscimol or synaptic activation by stimulation of interneurons in stratum radiatum (SR) causes depolarizing postsynaptic potentials (PSPs), which are blocked by NKCC1 cotransporter antagonists. By contrast, activation of proximal GABA(A)-R by muscimol application or by stimulation of interneurons in s. oriens (SO) leads to hyperpolarizing PSPs. Activation of the dentate gyrus (DG) in the presence of glutamatergic blockers evokes hyperpolarizing responses during the second postnatal week; however, the reversal potential of the DG-evoked inhibitory (I)PSPs is more depolarized than that of IPSPs evoked by activation of SO interneurons. Despite the shift of GABA action from depolarizing to hyperpolarizing, DG-evoked field potentials (f-PSPs) recorded in s. lucidum/radiatum (SL/R) do not change in polarity until the third week. Current source density analysis yielded results consistent with depolarizing actions of GABA in the dendritic compartment. Our data suggest that GABAergic input to apical dendrites of pyramidal cells of CA3 evokes depolarizing PSPs long after synaptic inhibition has become hyperpolarizing in the somata, in the axon initial segments and in basal dendrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号