首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Intermediate filament expression of various cell types in the adult canine normal and gliotic retina was determined by an immunoperoxidase method of using monoclonal antibodies on aldehyde-fixed tissues. In the normal retina, vimentin was present in astrocytes in the nerve fibre layer, horizontal cell processes, and Müller cell fibres from the internal limiting membrane to the outer nuclear layer. Neurofilamentous axons were noted in the nerve fibre, inner plexiform layer, and outer plexiform layer, although the degree of staining intensity varied among the three molecular weight neurofilament antisera used. Glial fibrillary acidic protein (GFAP) staining was confined to the nerve fibre and ganglion cell layer; this was interpreted as representing fibrous astrocytes. Astrocyte density varied according to retinal topography with an increased number around retinal blood vessels and in the peripapillary retina. Quantitative, but not qualitative differences in staining for vimentin and the neurofilaments were noted in degenerative, gliotic retinas. In common with several other mammalian species previously studied, the canine Müller cells accumulate or express GFAP under pathological conditions involving a gliotic response.  相似文献   

3.
目的:观察人胎视网膜超氧化物歧化酶(SOD)和波形蛋白(VIM)免疫阳性细胞的分布发育。方法:不同孕龄的人胎16例,ABC免疫细胞化学方法显示视网膜SOD和VIM免疫阳性细胞,结果:(1)SOD免疫阳性细胞:E15w节细胞层开始出现SOD免疫阳性细胞;D20W和E28W SOD免疫阳性细胞排列较整齐,分布于视网膜的外核层,内核层,节细胞层,其数量增多,其中内核层SOD免疫阳性细胞增多明显。(2)VIM免疫阳性细胞的发育:E15w内界膜开始出现Muller细胞的VIM免疫阳性终足,并见VIM免疫阳性突起伸向外界膜;E20 人VIM免疫阳性物质集中于内界膜,并见VIM免疫阳性突起伸向外界膜;E28wVIM免疫阳性物质的数量较E20w以前各孕龄明显增多,除色素上皮和视杆视锥层外均有VIM免疫阳性物质出现,除伸向外界膜的VIM免疫阳性突起外,还内网层,内核层,节细胞层和神经纤维层还可见水平走行的细胞突起,结论:(1)视网膜发育基本成熟后,视网膜SOD可能主要来源于内核层的SOD免疫阳性细胞。(3)视网膜神经纤维髓鞘是从内向外逐渐形成的。  相似文献   

4.
Jeong C  Shin T 《Acta histochemica》2012,114(1):18-23
In order to investigate the expression of protein kinase C (PKC) beta I in the retinas of pigs during postnatal development, we analyzed retinas sampled from 3-day-old and 6-month-old pigs by Western blotting and immunohistochemistry. Western blot analysis detected the expression of PKC beta I in the retinas of 3-day-old piglets and it was increased significantly in the retinas of 6-month-old adult pigs. Immunohistochemical staining showed PKC beta I in the retinas of both groups. Immunohistochemistry of 3-day-old retinas revealed weak PKC beta I reactivity in the ganglion cell layer, inner plexiform layer, inner nuclear cell layer, outer plexiform layer and rod and cone cell layer. In the 6-month-old pig retina, the cellular localization of PKC beta I immunostaining was similar to that of the 3-day-old retina, where PKC beta I was localized in some glial fibrillary acidic protein-positive cells, glutamine synthetase-positive cells, parvalbumin-positive cells, and PKC alpha-positive cells in the retina. This is the first study to show the expression and cellular localization of PKC beta I in the retina of pigs with development, and these results suggest that PKC beta I, in accordance with PKC alpha, plays important roles in signal transduction pathways in the pig retina with development.  相似文献   

5.
Purinergic signaling is represented in both the peripheral and central nervous system (CNS), and in particular in the retina, which may be regarded as a part of the CNS. While purigenic signaling is relatively well studied in mammalian retinas, little is known about it in retinas of lower vertebrates. The aim of present study was to investigate, using immunocytochemistry, the distribution of purinoreceptors P2X in retinas of frog and turtle, which are appropriate models of the brain neuron-to-glia interactions. The results showed widespread expression of all seven ionotropic purinoreceptors (P2X1–P2X7) in both frog and turtle retinas. They were predominantly expressed in Müller cells, the principal glial cells in the retina. All structures typical of Müller cells: the outer and the inner limiting membranes, the cells bodies in the inner nuclear layer, the radial processes in the inner plexiform layer (IPL), and the so called endfeet (frog) or the orthogonal arrays of particles (turtle) in the ganglion cells layer were immunostained. Colocalizations between P2X1–P2X7 and the glial cell marker Vimentin proved that the immunostaining was in the Müller cells. In addition to the glial staining, neuronal staining was also seen as fine puncta in the inner plexiform layer and by small dots and patches in the outer plexiform layer. Some cell bodies of horizontal, amacrine and ganglion cells were also stained. The results obtained imply that the purinergic P2X receptors may significantly contribute to the neuron-to-glia signaling in retinas of the lower vertebrates.  相似文献   

6.
Summary Putative dopaminergic neurons in theXenopus retina were identified using an immunoreaction against tyrosine hydroxylase. A single class of cell was stained whose perikaryon (12–15 m in diameter) was located at the border of the inner nuclear and inner plexiform layers. About 2% of the stained cell bodies were located in the ganglion cell layer, but the distribution of the processes of displaced cells had the same geometry as for the majority of stained cells. Tyrosine hydroxylase-like immunoreactive perikarya gave rise to one to four stout processes that descended to the most proximal level of the inner plexiform layer, within which they branched repeatedly to generate a diffuse network of fine processes. Secondary branches ascended to the most distal sublayer of the inner plexiform layer where they ramified into fine processes that joined other fibres arising horizontally from the cell body and confined to the distal inner plexiform layer throughout their course. The diameter of the dendritic arbor of stained cells was in the range of 350–600 m. The dense network of fine fibres within the distal inner plexiform layer was arrayed in rings that surrounded other amacrine cells; using an antiserum against glycine we found that at least some of these were glycinergic neurons. Most tyrosine hydroxylase-positive neurons emitted one or two fine ascending processes that arose from the perikaryon, traversed the inner plexiform layer and arborized within the outer plexiform layer. Additionally, fine varicose fibres arising from the sublayer 1 of the inner plexiform layer and running to the outer retina were observed. Thus, based on light microscopic criteria, dopaminergic neurons in theXenopus retina appeared to be interplexiform cells. A few tyrosine hydroxylase-immunoreactive fibres were observed in the optic nerve, some of which entered the inner retina where they ramified, thus indicating that they were centrifugal axons. In addition, a small number of stout smooth processes were observed to traverse the entire inner nuclear layer and course laterally at the level of the photoreceptor bases. Whether this second class of ascending process arises from the tyrosine hydroxylase-like immunoreactive efferents remains to be determined. The total number of dopaminergic neurons per retina was 750–800, equivalent to an average density of 30 cells mm–2. The dendritic fields of adjacent cells strongly overlapped, with an estimated coverage factor of 4.8.  相似文献   

7.
The cellular localization and protein expression level of protein kinase C (PKC)-alpha was examined in pig retina at different ages. Western blot analysis detected PKC-alpha in the retinas of 3-day-old piglets and indicated significantly increased expression in 6-month-old young adult and 2-year-old adult pigs. Immunohistochemistry of 3-day-old retinas revealed intense PKC-alpha reactivity in the inner plexiform and inner nuclear cell layers, weak reactivity in the ganglion cell layer, and few positive cells in the outer nuclear cell layer. The cellular localization of PKC-alpha in the adult retina was similar, with staining more intense than that in neonates. PKC-alpha was co-localized in some glial fibrillary acidic protein-positive cells and glutamine synthetase-positive cells in the retina. This study demonstrates that the protein level of retinal PKC-alpha is increased with maturation and suggests that PKC-alpha plays a role in signal transduction pathways for postnatal development in porcine retina.  相似文献   

8.
The grass goby is a mud-burrowing fish with a rich retinal vasculature appropriate to its hypoxic habitat. NADPH-diaphorase histochemistry was performed on retinal sections and wholemounts to reveal cells that contain nitric oxide synthase and so may be presumed to synthesise nitric oxide, a gaseous intercellular messenger with many roles including vasodilation. Structures that were consistently stained by this method included cone ellipsoids, horizontal cells, Müller cells and their processes, large displaced ganglion cells in the inner nuclear layer (identified by their axons), large interstitial ganglion cells in the inner plexiform layer, and capillary endothelial cells. In wholemounts, horizontal cells were seen to form a regular pattern, contacting each other at their dendritic terminals. Some cells in the ganglion cell layer were weakly stained, but stained bipolar and amacrine cells were not seen. The diaphorase-positive large ganglion cells all formed large, sparsely branched dendritic trees, arborizing near the scleral border of the inner plexiform layer. The displaced and interstitial cells seemed to belong to distinct morphological types, the interstitial cells having smaller somata and trees. Analysis of their spatial distributions in one representative retina confirmed this: the displaced cells formed a highly regular mosaic with a mean spacing (nearest-neighbour distance) of 303 µm, whereas the interstitial cells formed a separate mosaic, almost as regular but with a smaller mean spacing of 193 µm, rising to 217 µm in a sample that excluded the area retinae temporalis. Spatial correlogram analysis showed that these two mosaics were spatially independent. Nitric oxide probably has many roles in the retina. The presence of its synthetic enzyme in Müller cells, which communicate with retinal blood vessels, is consistent with a role in the control of retinal blood flow. Its function in large, mosaic-forming retinal ganglion cells is unknown.  相似文献   

9.
The grass goby is a mud-burrowing fish with a rich retinal vasculature appropriate to its hypoxic habitat. NADPH-diaphorase histochemistry was performed on retinal sections and wholemounts to reveal cells that contain nitric oxide synthase and so may be presumed to synthesise nitric oxide, a gaseous intercellular messenger with many roles including vasodilation. Structures that were consistently stained by this method included cone ellipsoids, horizontal cells, Müller cells and their processes, large displaced ganglion cells in the inner nuclear layer (identified by their axons), large interstitial ganglion cells in the inner plexiform layer, and capillary endothelial cells. In wholemounts, horizontal cells were seen to form a regular pattern, contacting each other at their dendritic terminals. Some cells in the ganglion cell layer were weakly stained, but stained bipolar and amacrine cells were not seen. The diaphorase-positive large ganglion cells all formed large, sparsely branched dendritic trees, arborizing near the scleral border of the inner plexiform layer. The displaced and interstitial cells seemed to belong to distinct morphological types, the interstitial cells having smaller somata and trees. Analysis of their spatial distributions in one representative retina confirmed this: the displaced cells formed a highly regular mosaic with a mean spacing (nearest-neighbour distance) of 303 μm, whereas the interstitial cells formed a separate mosaic, almost as regular but with a smaller mean spacing of 193 μm, rising to 217 μm in a sample that excluded the area retinae temporalis. Spatial correlogram analysis showed that these two mosaics were spatially independent. Nitric oxide probably has many roles in the retina. The presence of its synthetic enzyme in Müller cells, which communicate with retinal blood vessels, is consistent with a role in the control of retinal blood flow. Its function in large, mosaic-forming retinal ganglion cells is unknown. Accepted: 29 April 1999  相似文献   

10.
Enkephalin (ENK) peptides are present in the retina of several vertebrate species and play a crucial role in establishing specific circuits during retinal development. However, there is no information available concerning the development of ENKergic neurons in the mouse retina. To address this question, we used preproenkephalin-enhanced green fluorescent protein (GFP) transgenic mice, in which ENKergic neurons are revealed by GFP. Our results showed that most GFP-positive cells were located in the proximal part of the inner nuclear layer with a scattering of GFP-immunoreactive cells in the ganglion cell layer (GCL) in the adult retina. Double immunostaining with syntaxin indicates that GFP expression was restricted to a population of amacrine cells. The proportions of glycine transporter-1 and γ-aminobutyric acid-positive cells among ENKergic neurons were 57.3 ± 2.4% and 10.1 ± 1.8%, respectively. We then injected retrograde tracer into the superior colliculus and observed that none of the ENKergic neurons in the GCL were retrogradely labeled with the tracer. GFP-positive cells were first observed at embryonic day (E) 15 in the inner neuroblastic layer at only very low levels, which gradually increased until E18. After birth, there was a steep rise in GFP expression levels, reaching maximal activity by postnatal day (P) 7. The distribution and intensity of GFP-positive cells at P15 were similar to those of adult retina. It was found that immunoreactive processes in the inner plexiform layer formed strongly stained patches. The present results provide detailed morphological evidence of the cell type and spatial and temporal distribution of ENKergic neurons in the retina.  相似文献   

11.
N-Methyl-D-aspartate (NMDA) is a potent neurotoxin that affects cells in the inner layers of the embryonic chick retina exposed in vitro. After exposure of the embryonic day 12 neural retina to 0.5-10.0 mM NMDA for 30 min, 50-80% of the cells in the inner region of the inner nuclear layer and 50-100% of the cells in the ganglion cell layer were hypochromatic. When retinas were incubated with Mg2+ (0.5-10.0 mM) for 15 min and then incubated with Mg2+ and NMDA (0.5 mM) for 30 min, the NMDA effect in the inner layers was dramatically reduced but not abolished. Removal of Mg2+ before NMDA exposure produced retinas as seriously affected as retinas not exposed to Mg2+. Studying the effects of NMDA inhibitors, such as Mg2+, may help elucidate the mechanism of the cytotoxic events that occur in the retina in response to certain excitatory acidic amino acids.  相似文献   

12.
The retina of the adult ferret, Mustelo furo, was studied with light and transmission electron microscopy to provide an anatomical basis for use of the ferret as a model for retinal research. The pigment epithelium is a simple cuboidal layer of cells characterized by a zone of basal folds, apical microvilli, and pigment granules at various stages of maturation. The distinction between rod and cone photoreceptor cells is based on their location, morphology, heterochromatin pattern and the electron density of their inner segments. The round, light-staining cone cell nuclei occupy the layer of perikarya along the apical border of the outer nuclear layer. The remainder of the outer nuclear layer consists of oblong, deeply-stained rod cell nuclei. Ribbon type synaptic complexes involving photoreceptor cell axons, horizontal cell processes, and bipolar cell dendrites characterize the outer plexiform layer. The inner nuclear layer is comprised of horizontal, bipolar, and amacrine cell perikarya as well as the perikarya of the Müller cells. The light-staining horizontal cell nuclei are prominent along the apical border of the inner nuclear layer. The light-staining amacrine cell nuclei form a more or less continuous layer along the basal border of the inner nuclear layer. Both conventional and ribbon-type synapses characterize the inner plexiform layer. The ganglion cells form a single cell layer. The optic fiber layer contains bundles of axons surrounded by Müller cell processes. Small blood vessels and capillaries are present in the basal portion of the retina throughout the region extending from the internal limiting membrane to the outer plexiform layer. The adult one-year-old retina is compared with the retina at the time of eye opening.  相似文献   

13.
The dendritic morphology and retinal distribution of substance P(SP)-immunoreactive neurons was determined in two Australian lizard species Pogona vitticeps and Varanus gouldii, by using immunohistochemistry on retinal wholemounts and sectioned materials. In both species, two classes of SP-immunoreactive neurons were described in the inner nuclear layer (INL) and classified as amacrine cells (types A and B). Type A amacrine cells had large somata and wide-field, bistratified dendrites branching in sublaminas 1 and 5 of the inner plexiform layer (IPL). Their morphology and retinal distribution differed between the two species. Type B amacrine cells in both species had small somata and small-field dendritic branching. A population of SP-immunoreactive neurons with classical ganglion cell morphology were identified in the ganglion cell layer (GCL). Immunostained ganglion cells occurred in larger numbers of Varanus gouldii than in Pogona vitticeps. In both species type B SP cells were the most numerous and were estimated to be about 60,000-70,000. They were distributed non-uniformly with a high density band across the horizontal meridian of the retina, from where the density decreased towards the dorsal and ventral retinal margins. In both species type A amacrine cells occurred in small numbers distributed sparsely in the peripheral retina. The faint immunostaining of SP-immunoreactive neurons in the GCL, did not allow us to reliably determine their numbers and retinal distribution. The functional significance of SP-immunoreactive amacrine and ganglion cells in the lizard retina remains to be determined.  相似文献   

14.
Summary Although a wide variety of neuropeptides have been localized in vertebrate retinas, many questions remain about the function of these peptides and the amacrine cells that contain them. This is because many of these peptidergic amacrine cells have been studied using only immunocytochemical techniques. To address this limitation, the present study used a combination of quantitative anatomy, biochemistry and electrophysiology to examine amacrine cells in the turtle retina that contain the neuropeptide glucagon. In the turtle retina, there is a small population of 2500 glucagonergic amacrine cells, which probably represents <1% of the total number of amacrine cells. Circular distribution statistics indicated that many of these tristratified amacrine cells had asymmetric dendritic arborizations that were radially oriented toward the retinal periphery. The cells were found to have similar dendritic coverage factors, to be distributed in a non-random arrangement in all regions of the retina, and to peak in density in the visual streak region. Electron microscopic studies indicated that glucagonergic amacrine cells made synaptic contacts primarily with other amacrine cells, and small numbers of bipolar cells. The synaptic inputs and outputs were balanced in the inner strata of the inner plexiform layer, and were biased toward synaptic outputs in the outer strate of the inner plexiform layer. These contacts involved small unlabelled synaptic vesicles, and not the large labelled dense core vesicles also found in these neurons. The biochemical studies indicated that glucagon could be released from the retina in a calcium dependent manner by high potassium stimulation. The electrophysiology found no color opponency, and the glucagonergic amacrine cells gave sustained hyperpolarizing responses to small stimulation spots and had antagonistic surrounds. The results of these studies suggest that there are significant regional specializations of glucagonergic amacrine cells, and that they may provide OFF-modulation in interactions between the ON- and OFF centre visual pathways in the turtle retina.  相似文献   

15.
In this study, we demonstrate that explanted neonatal rat retina can be maintained in culture for periods up to 3 weeks. The cultured retinas displayed a distinct layering that was almost identical to litter-matched retinas of the same age, but the majority of the ganglion cells did not survive and photoreceptor outer segments did not develop properly. Distinct synaptophysin immunoreactivity was expressed in both the inner and outer plexiform layers of cultured retina and the pattern mimicked that one observed in vivo. After 2-3 weeks in vitro, the inner retina expressed immunoreactivities to various components of the cholinergic and nitrergic transmitter systems, including nitric oxide activated cyclic GMP immunoreactivity. The investigated cell populations displayed similar distribution patterns as in situ, but morphological differences appeared in vitro. Such differences were mainly observed as irregularities in the arborization patterns in the inner part of the inner plexiform layer. We suggest that these discrepancies may arise as a result of reduced ganglion cell survival. Our observations demonstrate that some neurotransmitter systems develop in vitro and their neural circuitry appears similar to the in vivo situation. The presence of synapses, receptor proteins and transmitter substances implies that neural communication can occur in cultured retinas.  相似文献   

16.
Oxidative stress affects numerous intracellular macromolecules, and may result in cell death unless precisely regulated. Unregulated oxidative stress can be controlled by various cellular defense mechanisms such as glutathione (GSH) which can critically counteract the damaging effects of oxidative stress in mammalian cells. We determined the effects of unregulated oxidative stress induced by GSH depletion on cells in mouse retina. Mice were intraperitoneally injected with buthionine sulphoximine (BSO) at 1.5 g/kg. After 0, 1, 4, and 7 days of BSO administration, retinas were excised and sections were subjected to GSH assay and terminal uridine deoxynucleotidyl nick end labeling (TUNEL) analysis. After 4 days of BSO administration, the number of TUNEL positive cells was significantly increased. However, after 7 days, TUNEL positive cells returned to the basal level. The retinal region most affected by the BSO treatment appeared to be the outer nuclear layer where the photoreceptor cells reside. Different from cells in other regions, retinal cells in the inner nuclear layer increased in their apoptosis even after the first day of BSO injection, and the increase was further potentiated after 4 days. Taken together, our studies suggested that GSH depletion may cause unregulated oxidative stress to the cells in the retina and indeed increased cell death in the retina. The cells in the inner nuclear layer seemed to be affected earlier than the cells in other layers of the retina. The GSH level in the retina may be a crucial therapeutic target in preventing blindness.  相似文献   

17.
人胎视网膜细胞凋亡与小白蛋白免疫阳性神经元的发育   总被引:2,自引:2,他引:0  
目的:观察人胎视网膜细胞凋亡与小白蛋白Parvalbumin,PV)免疫阳性神经元的分布与发育。方法:不同孕龄的人胎16例,TUNEL法标记凋亡细胞,ABC免疫细胞化学方法观察PV免疫阳性神经元的发育。结果:(1)细胞凋亡观察:12周人胎视网膜未见凋亡细胞;15周、17周凋亡细胞较多,大小不一,分布于视网膜的全局;20周凋亡细胞主要集中在内核层,数量减少;28周凋亡细胞仅见于内核层,呈指环样外观,着色较深,数量较20周减少明显。(2)PV免疫阳性神经元发育:12周人胎视网膜未见PV免疫阳性神经元;15周、17周视网膜节细胞层和内核层有弱阳性的PV免疫阳性神经元的分布与20周相似,但内核层的数量减少,呈整齐的带状排列,着色增强。结论:在胚胎28周视网膜神经元之间的突触联系已基本建立,而PV免疫阳性神经元发育和细胞凋亡在时间和数量变化上的一致性提示Ca^2 在视网膜的发育中起重要作用。  相似文献   

18.
We investigated patterns of cell death in the turtle retina that could potentially be associated with the innervation of the optic tectum, and looked for mechanisms of retinal development that might be common to reptilian and homeotherm vertebrates. We used retinas of turtle embryos between the 23rd day of incubation (E23) (before the first optic fibres reach the optic tectum) and hatching (when all the optic fibres have established synaptic connections). Dying retinal neurons were identified in paraffin sections by the TUNEL technique, which specifically labels fragmented DNA. Apoptotic cells were found in the ganglion cell layer (GCL), the inner nuclear layer (INL), and the outer nuclear layer (ONL). Cell death in the GCL was intense between E29 and E47, and had disappeared by the day of hatching. In the INL, dead and dying cells were most abundant between E31 and E34, and progressively disappeared. The temporal pattern in the ONL was similar to the INL although the density was very low. In all the nuclear layers cell death spread from the dorso-temporal area of the central retina to the periphery. Additional dorsal to ventral and temporal to nasal gradients were distinguishable in a quantitative TUNEL analysis. The patterns of cell death observed in the developing turtle retina were thus similar to those found in birds and mammals. This process could be under the control of differentiation gradients in all the vertebrate classes.  相似文献   

19.
Lee J  Kim H  Lee JM  Shin T 《Neuroscience letters》2006,406(3):227-231
The expression of heat shock protein 27 (HSP27) was examined in the retinas of pigs. Western blot analysis detected the expression of HSP27 in the retinas of 1-day-old piglets and showed that it was enhanced in the retinas of 6-month-old adult pigs. Immunohistochemically, HSP27 immunostaining was seen mainly in ganglion cell bodies in the ganglion cell layer, and in some processes of astrocytes in the innermost nerve fiber layer. In 1-day-old piglets, HSP27 was detected weakly in the inner plexiform, inner nuclear cell, outer plexiform, and rod and cone layers. The HSP27 immunoreactivity across the retinal layers was enhanced in the retinas of 6-month-old pigs compared with newborn piglets. The HSP27 immunoreactivity in the radial processes of Müller cells was particularly prominent in adult pig retinas. In summary, this finding suggests that HSP27 plays an important role in signal transduction of glial cells and neuronal cells in the retina.  相似文献   

20.
人视网膜星形胶质细胞发育及与血管前体细胞的关系   总被引:2,自引:0,他引:2  
目的:研究人视网星菜胶质细胞的发育及与血管前体细胞的关系。材料和方法:收集134例发育各期胎儿视网膜和4例成人视网膜、石蜡包埋切片整装铺片,四种抗体免疫组分染色,光镜观察,结果:星形胶质细胞分为三种:(1)S-100(+)/胶质纤维酸性蛋白(GFAP)(+)的双极形星形胶质细胞,视盘进入视网膜,与跟随其后的纤连蛋白(Fn)(+)的血管前体细胞接触并相伴向锯齿缘迁移,足月后和成人此类星形胶质细胞主要  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号