共查询到20条相似文献,搜索用时 15 毫秒
1.
Photopolymerizable hydrogels for tissue engineering applications 总被引:17,自引:0,他引:17
Photopolymerized hydrogels are being investigated for a number of tissue engineering applications because of the ability to form these materials in situ in a minimally invasive manner such as by injection. In addition, hydrogels, three-dimensional networks of hydrophilic polymers that are able to swell large amounts of water, can be made to resemble the physical characteristics of soft tissues. Hydrogel materials also generally exhibit high permeability and good biocompatibility making, these materials attractive for use in cell encapsulation and tissue engineering applications. A number of hydrogel materials can be formed via photopolymerization processes mild enough to be carried out in the presence of living cells. This allows one to homogeneously seed cells throughout the scaffold material and to form hydrogels in situ. This review presents advantages of photopolymerization of hydrogels and describes the photoinitiators and materials in current use. Applications of photopolymerized hydrogels in tissue engineering that have been investigated are summarized. 相似文献
2.
背景:快速成型是基于材料堆积法,结合计算机、数控、激光和材料技术于一体的高新制造技术。
目的:综述快速成型技术在组织工程支架制备中的应用。
方法:由第一作者检索万方数据库、中国知网数据库和Elsevier Science Direct Online有关支架材料的生物力学性能、支架材料发展前景及快速成型技术在支架材料制备领域中应用研究等方面的文献。
结果与结论:快速成型技术应用于组织工程支架的制备已经越来越成熟,快速成型技术不但克服了传统制造方法中存在的支架复杂外形制造困难和内部微结构无法控制的缺陷,而且还可以通过有限元分析预先对支架的结构进行优化,以实现改善支架机械强度等某些特殊的要求。但是,由于组织器官的特殊性和排外性及细胞的黏附条件,不但要从结构上改善支架,而且需要快速成型技术与具有组织相容性及可降解的材料相结合,使支架植入生物体后,细胞能更好地增殖和分化,促进组织再生,修复缺损组织。 相似文献
3.
Tissue engineering (TE) is an important emerging area in biomedical engineering for creating biological alternatives for harvested tissues, implants, and prostheses. In TE, a highly porous artificial extracellular matrix or scaffold is required to accommodate mammalian cells and guide their growth and tissue regeneration in three-dimension (3D). However, existing 3D scaffolds for TE proved less than ideal for actual applications because they lack mechanical strength, interconnected channels, and controlled porosity or pores distribution. In this paper, the authors review the application and advancement of rapid prototyping (RP) techniques in the design and creation of synthetic scaffolds for use in TE. We also review the advantages and benefits, and limitations and shortcomings of current RP techniques as well as the future direction of RP development in TE scaffold fabrication. 相似文献
4.
Encapsulating cells in biodegradable hydrogels offers numerous attractive features for tissue engineering, including ease of handling, a highly hydrated tissue-like environment for cell and tissue growth, and the ability to form in vivo. Many properties important to the design of a hydrogel scaffold, such as swelling, mechanical properties, degradation, and diffusion, are closely linked to the crosslinked structure of the hydrogel, which is controlled through a variety of different processing conditions. Degradation may be tuned by incorporating hydrolytically or enzymatically labile segments into the hydrogel or by using natural biopolymers that are susceptible to enzymatic degradation. Because cells are present during the gelation process, the number of suitable chemistries and formulations are limited. In this review, we describe important considerations for designing biodegradable hydrogels for cell encapsulation and highlight recent advances in material design and their applications in tissue engineering. 相似文献
5.
The aim of this study was to develop a process to create highly porous three-dimensional (3D) chitosan hydrogels suitable for tissue engineering applications. Chitosan was crosslinked by glutaraldehyde (0.5 vol %) under high pressure CO(2) at 60 bar and 4 °C for a period of 90 min. A gradient-depressurisation strategy was developed, which was efficient in increasing pore size and the overall porosity of resultant hydrogels. The average pore diameter increased two fold (59 μm) compared with the sample that was depressurised after complete crosslinking and hydrogel formation (32 μm). It was feasible to achieve a pore diameter of 140 μm and the porosity of hydrogels to 87% by addition of Acacia gum (AG) as a surfactant to the media. The enhancement in porosity resulted in an increased swelling ratio and decreased mechanical strength. On hydrogels with large pores (>90 μm) and high porosities (>85%), fibroblasts were able to penetrate up to 400 μm into the hydrogels with reasonable viabilities (~80%) upon static seeding. MTS assays showed that fibroblasts proliferated over 14 days. Furthermore, aligned microchannels were produced within porous hydrogels to further promote cell proliferation. The developed process can be easily used to generate homogenous pores of controlled sizes in 3D chitosan hydrogels and may be of use for a broad range of tissue engineering applications. 相似文献
6.
Sell SA Wolfe PS Ericksen JJ Simpson DG Bowlin GL 《Tissue engineering. Part A》2011,17(21-22):2723-2737
Platelet-rich plasma (PRP) therapy has seen a recent spike in clinical interest due to the potential that the highly concentrated platelet solutions hold for stimulating tissue repair and regeneration. The aim of this study was to incorporate PRP into a number of electrospun materials to determine how growth factors are eluted from the structures, and what effect the presence of these factors has on enhancing electrospun scaffold bioactivity. PRP underwent a freeze-thaw-freeze process to lyse platelets, followed by lyophilization to create a powdered preparation rich in growth factors (PRGF), which was subsequently added to the electrospinning process. Release of protein from scaffolds over time was quantified, along with the quantification of human macrophage and adipose-derived stem cell (ADSC) chemotaxis and proliferation. Protein assays demonstrated a sustained release of protein from PRGF-containing scaffolds at up to 35 days in culture. Scaffold bioactivity was enhanced as ADSCs demonstrated increased proliferation in the presence of PRGF, whereas macrophages demonstrated increased chemotaxis to PRGF. In conclusion, the work performed in this study demonstrated that the incorporation of PRGF into electrospun structures has a significant positive influence on the bioactivity of the scaffolds, and may prove beneficial in a number of tissue engineering applications. 相似文献
7.
Unsworth JM Rose FR Wright E Scotchford CA Shakesheff KM 《Journal of biomedical materials research. Part A》2003,66(2):425-431
Tissue engineering methods are under development that will enable the repair or replacement of a variety of tissues, including articular cartilage and bone. To engineer functional tissue it is necessary that scaffolds initially be seeded with a large number of cells distributed evenly throughout the scaffold structure. It previously has been shown that, compared to static seeding conditions, seeding scaffolds under dynamic conditions facilitates high seeding densities and even distributions of cells (Li et al., Biotechnology Progress 2001;17:935-944). The efficiency of seeding HOSTE85 cells and bovine chondrocytes into needled felt scaffolds following agitation at different speeds was determined. Seeding efficiency was determined using the Hoechst 33258 assay, and cell viability was assessed using the Alamar Blue trade mark assay. The distribution of cells within the scaffolds was imaged using scanning electron microscopy. It was found that the optimum seeding conditions varied for HOSTE85 cells and bovine chondrocytes, with different agitation speeds leading to different seeding efficiencies, cell viabilities, and distributions of cells within scaffolds. The optimum agitation speeds for seeding a high number of viable cells into scaffolds so that they were arranged evenly were 300 rpm for HOSTE85 cells and 200 rpm for bovine chondrocytes. 相似文献
8.
Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering 总被引:1,自引:0,他引:1
Hoque ME Hutmacher DW Feng W Li S Huang MH Vert M Wong YS 《Journal of biomaterials science. Polymer edition》2005,16(12):1595-1610
In the field of tissue engineering new polymers are needed to fabricate scaffolds with specific properties depending on the targeted tissue. This work aimed at designing and developing a 3D scaffold with variable mechanical strength, fully interconnected porous network, controllable hydrophilicity and degradability. For this, a desktop-robot-based melt-extrusion rapid prototyping technique was applied to a novel tri-block co-polymer, namely poly(ethylene glycol)-block-poly(epsilon-caprolactone)-block-poly(DL-lactide), PEG-PCL-P(DL)LA. This co-polymer was melted by electrical heating and directly extruded out using computer-controlled rapid prototyping by means of compressed purified air to build porous scaffolds. Various lay-down patterns (0/30/60/90/120/150 degrees, 0/45/90/135 degrees, 0/60/120 degrees and 0/90 degrees) were produced by using appropriate positioning of the robotic control system. Scanning electron microscopy and micro-computed tomography were used to show that 3D scaffold architectures were honeycomb-like with completely interconnected and controlled channel characteristics. Compression tests were performed and the data obtained agreed well with the typical behavior of a porous material undergoing deformation. Preliminary cell response to the as-fabricated scaffolds has been studied with primary human fibroblasts. The results demonstrated the suitability of the process and the cell biocompatibility of the polymer, two important properties among the many required for effective clinical use and efficient tissue-engineering scaffolding. 相似文献
9.
《Biomaterials》2015
Glycopolypeptides are an emerging class of bioinspired polymers that mimic naturally occurring glycopeptides or glycoproteins, and therefore are expected to exhibit great potential for biomedical applications. In this study, a glycopolypeptide was synthesized by conjugation of poly(γ-propargyl-l-glutamate) (PPLG) with azido-modified mannose and 3-(4-hydroxyphenyl) propanamide (HPPA), via click chemistry. Injectable hydrogels based on the glycopolypeptide were developed through enzymatic crosslinking reaction in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). The physicochemical properties of the hydrogels, such as gelation time, storage modulus, swelling and degradation time, could be controlled by varying the concentrations of HRP and H2O2. The glycopolypetide copolymer as well as the extracts of the glycopolypetide hydrogels displayed good cytocompatibility in vitro. After subcutaneous injection into rats, the glycopolypeptide hydrogels were rapidly formed in situ, and exhibited acceptable biocompatibility accompanying the degradation of the hydrogels in vivo. The rabbit chondrocytes inside the glycopolypeptide hydrogels showed spherical morphology with high viability during the incubation period of 3 weeks in vitro, and exhibited a higher proliferation rate than within the hydrogel counterparts of PPLG grafted with 2-(2-(2-methoxyethoxy)ethoxy)ethane (MEO3) and HPPA. Biochemical analysis demonstrated that the production of glycosaminoglycans (GAG) and type II collagen were significantly enhanced after incubation for 2 and 3 weeks in vitro. Moreover, the chondrocyte-containing glycopolypeptide hydrogels in subcutaneous model of nude mice maintained chondrocyte phenotype and produced the cartilaginous specific matrix. These results indicated that the biomimetic glycopolypeptide-based hydrogels hold potential as three-dimensional scaffolds for cartilage tissue engineering. 相似文献
10.
Microengineered hydrogels for tissue engineering 总被引:2,自引:0,他引:2
Hydrogels have been extensively used in various biomedical applications such as drug delivery and biosensing. More recently the ability to engineer the size and shape of biologically relevant hydrogels has generated new opportunities in addressing challenges in tissue engineering such as vascularization, tissue architecture and cell seeding. Here, we discuss the use of microengineered hydrogels for tissue engineering applications. We will initially provide an overview of the various approaches that can be used to synthesize hydrogels with controlled features and will subsequently discuss the emerging applications of these hydrogels. 相似文献
11.
《Acta biomaterialia》2014,10(3):1206-1215
Poly(amido-amine) (PAA) hydrogels containing the 2,2-bisacrylamidoacetic acid-4-amminobutyl guanidine monomeric unit have a known ability to enhance cellular adhesion by interacting with the arginin–glycin–aspartic acid (RGD)-binding αVβ3 integrin, expressed by a wide number of cell types. Scientific interest in this class of materials has traditionally been hampered by their poor mechanical properties and restricted range of degradation rate. Here we present the design of novel biocompatible, RGD-mimic PAA-based hydrogels with wide and tunable degradation rates as well as improved mechanical and biological properties for biomedical applications. This is achieved by radical polymerization of acrylamide-terminated PAA oligomers in both the presence and absence of 2-hydroxyethylmethacrylate. The degradation rate is found to be precisely tunable by adjusting the PAA oligomer molecular weight and acrylic co-monomer concentration in the starting reaction mixture. Cell adhesion and proliferation tests on Madin–Darby canine kidney epithelial cells show that PAA-based hydrogels have the capacity to promote cell adhesion up to 200% compared to the control. Mechanical tests show higher compressive strength of acrylic chain containing hydrogels compared to traditional PAA hydrogels. 相似文献
12.
支架材料作为组织工程的生物学植入替代物,对细胞移植与引导新组织生长有重要的作用.几丁聚糖可制成无毒性、无刺激性、生物相容性和生物可降解性良好的生物医用材料,在人工皮肤、骨修复材料、手术缝线等方面已广泛应用.本文分析了纯几丁聚糖支架结构和它与其他天然或合成材料复合后的支架结构的物理、化学性质及其独特的生物学功能,同时还进一步介绍了其应用的范例并探讨了发展前景. 相似文献
13.
Adipose tissue engineering with naturally derived scaffolds and adipose-derived stem cells 总被引:5,自引:0,他引:5
A tissue-engineered adipose substitute would have numerous applications in plastic and reconstructive surgery. This work involves the characterization of the in vitro cellular response of primary human adipose-derived stem cells (ASC) to three dimensional, naturally derived scaffolds. To establish a more thorough understanding of the influence of the scaffold environment on ASC, we have designed several different soft tissue scaffolds composed of decellularized human placenta and crosslinked hyaluronan (XLHA). The cellular organization within the scaffolds was characterized using confocal microscopy. Adipogenic differentiation was induced and the ASC response was characterized in terms of glycerol-3-phosphate dehydrogenase (GPDH) activity and intracellular lipid accumulation. The results indicate that the scaffold environment impacts the ASC response and that the adipogenic differentiation of the ASC was augmented in the non-adhesive XLHA gels. 相似文献
14.
Conjugation of fibronectin onto three-dimensional porous scaffolds for vascular tissue engineering applications 总被引:1,自引:0,他引:1
Tissue engineering scaffolds provide the three-dimensional (3-D) geometry and mechanical framework required for regulating cell behavior and facilitating tissue maturation. Unfortunately, most synthetic scaffolds lack the biological recognition motifs required for seeded cell interaction. In order to impart this recognition, synthetic scaffolds should possess appropriate biological functionality. Here, for the first time, we present a comprehensive study of fibronectin (FN) conjugation onto highly porous 3-D poly(carbonate) urethane scaffolds through grafted poly(acrylic acid) spacers on the urethane backbone. Scanning electron microscopy was used to ensure that the porous structures of the scaffolds were preserved throughout the multiple conjugation steps, and Fourier transform infrared spectroscopy was used to monitor the reaction progress. Toluidine blue staining revealed that increasing acrylic acid concentration and grafting time increased the number of poly(acrylic acid) groups incorporated. High resolution X-ray photoelectron spectroscopy studies of the scaffolds demonstrated an increase in nitrogen and sulfur due to FN conjugation. Immunofluorescence microscopy studies showed an even distribution of conjugated FN on the 3-D scaffolds. Cell culture studies using human coronary artery smooth muscle cells demonstrated that FN-conjugated scaffolds had improved cell attachment and infiltration depth compared with scaffolds without FN conjugation and with those scaffolds on which FN was merely adsorbed. 相似文献
15.
Eileen Pedraza Ann-Christina Brady Christopher A. Fraker 《Journal of biomaterials science. Polymer edition》2013,24(9):1041-1056
Macroporous, biostable scaffolds with controlled porous architecture were prepared from poly(dimethylsiloxane) (PDMS) using sodium chloride particles and a solvent casting and particulate leaching technique. The effect of particulate size range and overall porosity on the resulting structure was evaluated. Results found 90% v/v scaffolds and particulate ranges above 100?μm to have the most optimal open framework and porosity. Resulting hydrophobic PDMS scaffolds were coated with fibronectin and evaluated as a platform for adherent cell culture using human mesenchymal stem cells. Biocompatibility of PDMS scaffolds was also evaluated in a rodent model, where implants were found to be highly biocompatible and biostable, with positive extracellular matrix deposition throughout the scaffold. These results demonstrate the suitability of macroporous PDMS scaffolds for tissue engineering applications where strong integration with the host is desired. 相似文献
16.
Salgado AJ Coutinho OP Reis RL Davies JE 《Journal of biomedical materials research. Part A》2007,80(4):983-989
Our purpose was to evaluate the in vivo endosseous response to three starch-based scaffolds implanted in rats (n = 54). We implanted the three scaffold groups; a 50/50 (wt %) blend of corn starch and ethylene-vinyl alcohol (SEVA-C), the same composition coated with a biomimetic calcium phosphate (Ca-P) layer (SEVA-C/CaP), and a 50/50 (wt %) blend of corn starch and cellulose acetate (SCA), all produced by extrusion with blowing agents, into distal femurs proximal to the epiphyseal plate, for 1, 3, or 6 weeks. Our results showed that at 1 week considerable reparative bone formed around all scaffold groups, although the bone was separated from the scaffold by an intervening soft tissue interfacial zone that comprised two distinct compartments: the surface of the scaffold was occupied by multinucleate giant cells and the compartment between these cells and the surrounding bone was occupied by a streaming fibrous-like tissue. The extracellular matrix of the latter was continuous with the extracellular bone matrix itself, labeled positively for osteocalcin and appeared mineralized by back-scattered electron imaging. All three scaffolds showed a similar tissue response, with the soft tissue interface diminishing with time. No bone contact was observed with SEVA-C at any time point, only transitory bone contact was observed with SEVA-C/CaP at 3 weeks, but SCA exhibited direct bone contact at 6 weeks where 56.23 +/- 6.46% of the scaffold surface was occupied by bone. We conclude that all materials exhibited a favorable bony response and that the rapidly forming initial "connective tissue" seen around all scaffolds was a very early form of bone formation. 相似文献
17.
Biodegradable scaffolds play an important role in tissue engineering by providing physical and biochemical support for both differentiated and progenitor cells. Here, we describe a novel method for incorporating proteins in 3D biodegradable scaffolds by utilizing protein-loaded microspheres as the building blocks for scaffold formation. Poly(l,d-lactic-co-glycolic acid) (PLGA) microspheres containing bovine serum albumin (BSA) were fused into scaffolds using dichloromethane vapor for various time intervals. Microspheres containing 0, 0.4, 1.5, 4.3% BSA showed that increased protein loading required increased fusion time for scaffold fabrication. Protein release from the scaffolds was quantified in vitro over 20 days and compared to that of loose microspheres. Scaffolds had a slightly lower (up to 20%) release over the first 10 days, however, the cumulative release from both microspheres and scaffolds at the end of the study was not statistically different and the rate of release was the same, indicating that microsphere release can be predictive of scaffold kinetics. Scaffolds fused from larger (113.3 +/- 58.0 microm) rather than smaller (11.15 +/- 11.08 microm) microspheres, generated pores on the order of 200 microm as compared to 20 microm, respectively, showing control over pore size. In addition, four dyes (carbon black, acid green, red 27, and fast green FCF) were encapsulated in PLGA microspheres and fused into homogeneous and partitioned scaffolds, indicating control over spatial distribution within the scaffold. Finally, the scaffolds were seeded with fibroblast cells, which attached and were well spread over the polymer surface after 4h of incubation. These results highlight the versatility of this simple scaffold fusion method for incorporating essentially any combination of loaded microspheres into a 3D structure, making this a powerful tool for tissue engineering and drug delivery applications. 相似文献
18.
Biomaterials and scaffolds for ligament tissue engineering 总被引:3,自引:0,他引:3
Ge Z Yang F Goh JC Ramakrishna S Lee EH 《Journal of biomedical materials research. Part A》2006,77(3):639-652
Tissue engineering has achieved much progress in an attempt to improve and recover impaired functions of tissues and organs. Although many studies have been done, progress for tissue-engineered anterior cruciate ligaments (ACLs) has been slow due to their complex structures and mechanical properties. In this review, the ACL anatomical structure, progresses achieved, material selection, structure design, and future direction have been discussed, while the challenges and requirements from materials and scaffolds are highlighted. There is a considerably huge amount work that needs to be carried out; as such, future direction in ligament tissue engineering is proposed in hope that this review will give information on future ligament tissue engineering. 相似文献
19.
de Oliveira AA de Carvalho SM Leite Mde F Oréfice RL Pereira Mde M 《Journal of biomedical materials research. Part B, Applied biomaterials》2012,100(5):1387-1396
The development of polymer/bioactive glass has been recognized as a strategy to improve the mechanical behavior of bioactive glass-based materials. Several studies have reported systems based on bioactive glass/biopolymer composites. In this study, we developed a composite system based on bioactive glass nanoparticles (BGNP), obtained by a modified St?ber method. We also developed a new chemical route to obtain aqueous dispersive biodegradable polyurethane. The production of polyurethane/BGNP scaffolds intending to combine biocompatibility, mechanical, and physical properties in a material designed for tissue engineering applications. The composites obtained were characterized by structural, biological, and mechanical tests. The films presented 350% of deformation and the foams presented pore structure and mechanical properties adequate to support cell growth and proliferation. The materials presented good cell viability and hydroxyapatite layer formation upon immersion in simulated body fluid. 相似文献
20.
Osteoarthritis (OA) is a prevalent degenerative joint disease that places a significant burden on the socioeconomic efficacy of communities around the world. Tissue engineering repair of articular cartilage in synovial joints represents a potential OA treatment strategy superior to current surgical techniques. In particular, osteochondral tissue engineering, which promotes the simultaneous regeneration of articular cartilage and underlining subchondral bone, may be a clinically relevant approach toward impeding OA progression. The unique and complex functional demands of the two contrasting tissues that comprise osteochondral tissue require the use of bilayered scaffolds to promote individual growth of both on a single integrated implant. This paper reviews the three current bilayered scaffold strategies applied to solve this challenging problem, with a focus on the need for an innovative approach to design and fabrication of new optimized scaffold combinations to reinforce materials science as an important element of osteochondral tissue engineering. 相似文献