首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microdialysis measurements of dopamine (DA) and DA metabolites were carried out in the putamen and substantia nigra of unilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned rhesus monkeys that received intraventricular injections of vehicle or glial-derived neurotrophic factor (GDNF, 300 μg) 3 weeks prior to the microdialysis studies. Following behavioral measures in the MPTP-lesioned monkeys, they were anesthetized with isoflurane and placed in a stereotaxic apparatus. Magnetic resonance imaging (MRI)-guided sterile stereotaxic procedures were used for implantations of the microdialysis probes. Basal extracellular levels of DA and the DA metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), were found to be decreased by >95% in the right putamen of the MPTP-lesioned monkeys as compared to normal animals. In contrast, basal DA levels were not significantly decreased, and DOPAC and HVA levels were decreased by only 65% and 30%, respectively, in the MPTP-lesioned substantia nigra. Significant reductions in -amphetamine-evoked DA release were also observed in the MPTP-lesioned substantia nigra and putamen of the monkeys as compared to normal animals. A single intraventricular administration of GDNF into one group of MPTP-lesioned monkeys elicited improvements in the parkinsonian symptoms in these animals at 2–3 weeks post-administration. In addition, -amphetamine-evoked overflow of DA was significantly increased in the substantia nigra but not the putamen of MPTP-lesioned monkeys that had received GDNF. Moreover, post-mortem brain tissue studies showed increases in whole tissue levels of DA and DA metabolite levels primarily within the substantia nigra in MPTP-lesioned monkeys that had received GDNF. Taken together, these data support that single ventricular infusions of GDNF produce improvements in motoric behavior in MPTP-lesioned monkeys that correlate with increases in DA neuronal function that are localized to the substantia nigra and not the putamen.  相似文献   

2.
Glial cell line-derived neurotrophic factor (GDNF) is a trophic factor for peripheral organs, spinal cord, and midbrain dopamine (DA) neurons. Levels of GDNF deteriorate in the substantia nigra in Parkinson's disease (PD). A heterozygous mouse model was created to assess whether chronic reductions in this neurotrophic factor impact motor function and the nigrostriatal dopamine system during the aging process. Due to the important role GDNF plays in kidney development, kidney function and histology were assessed and were found to be normal in both wild-type (WT) and GDNF+/- mice up to 22 months of age. Further, the animals of both genotypes had similar weights throughout the experiment. Locomotor activity was assessed for male WT and GDNF+/- mice at 4-month intervals from 4 to 20 months of age. Both GDNF+/- and WT mice exhibited an age-related decline in horizontal activity, although this was found 4 months earlier in GDNF+/- mice, at 12 months of age. Comparison of young (8 month old) and aged (20 month old) GDNF+/- and WT mice on an accelerating rotarod apparatus established a deficiency for aged but not young GDNF+/- mice, while aged WT mice performed as well as young WT mice on this task. Finally, both WT and GDNF+/- mice exhibited an age-related decrease in substantia nigra TH immunostaining, which was accelerated in the GDNF+/- mice. These behavioral and histological alterations suggest that GDNF may be an important factor for maintenance of motor coordination and spontaneous activity as well as DA neuronal function during aging, and further suggest that GDNF+/- mice may serve as a model for neuroprotective or rescue studies.  相似文献   

3.
Incidental Lewy body disease (ILBD) is the term used when Lewy bodies are found in the nervous system of subjects without clinically documented parkinsonism or dementia. The prevalence of ILBD in the elderly population has been estimated at between 3.8 and 30%, depending on subject age and anatomical site of sampling. It has been speculated that ILBD represents the preclinical stage of Parkinson’s disease (PD) and/or dementia with Lewy bodies (DLB). Studies of ILBD could potentially identify early diagnostic signs of these disorders. At present, however, it is impossible to know whether ILBD is a precursor to PD or DLB or is just a benign finding of normal aging. We hypothesized that, if ILBD represents an early stage of PD or DLB, it should be associated with depletion of striatal dopaminergic markers. Eleven subjects with ILBD and 27 control subjects were studied. The ILBD subjects ranged in age from 74 to 96 years (mean 86.5) while the control subjects’ age ranged from 75 to 102 years (mean 86.7). Controls and subjects did not differ in terms of age, postmortem interval, gender distribution, medical history conditions, brain weight, neuritic plaque density or Braak neurofibrillary stage. Quantitative ELISA measurement of striatal tyrosine hydroxylase (TH), the principal enzyme for dopamine synthesis, showed a 49.8% (P = 0.01) reduction in ILBD cases, as compared with control cases. The finding suggests that ILBD is not a benign condition but is likely a precursor to PD and/or DLB.  相似文献   

4.
Sustained neurotrophic factor treatment in neurodegenerative disorders such as Parkinson's disease is likely to affect both degenerating and intact neurons. To investigate the effect of long-term glial cell line-derived neurotrophic factor (GDNF) overexpression on intact nigrostriatal dopamine neurons, we injected a recombinant lentiviral vector encoding GDNF, or green fluorescent protein, in the right striatum of young adult rats. Thirteen months after viral injection GDNF levels were 4.5 ng/mg tissue in the striatum and 0.9 ng/mg in the substantia nigra as measured by ELISA, representing a 25-100-fold increase above control vector- or nontransduced tissue. GDNF overexpression significantly reduced tyrosine hydroxylase mRNA levels (by 39-72%) in the substantia nigra and ventral tegmental area neurons, and the optical density of tyrosine hydroxylase-immunoreactive innervation in the striatum was reduced by 25-52% with the most prominent reductions appearing caudally. No significant reduction was seen in striatal vesicular monoamine transporter 2-immunoreactivity or [3H]mazindole binding autoradiography to dopamine uptake sites, two other presynaptic markers in dopamine axon terminals. The striatal D1 and D2 receptor binding as determined by [3H]SCH23390 and [3H]spiperone binding, respectively, was unaltered relative to the intact side in both treatment groups. Preproenkephalin mRNA levels in postsynaptic striatal neurons, which increase upon removal of striatal dopamine, were also unaffected by the GDNF treatment. Taken together our findings indicate that sustained GDNF administration to intact nigrostriatal dopamine neurons selectively reduces tyrosine hydroxylase expression, without altering striatal dopamine transmission to the extent that compensatory changes in several other components related to dopamine storage and signalling occur.  相似文献   

5.
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to induce parkinsonism in man and non-human primates. Hypotheses concerning the mechanism of action of MPTP have been related to the pathogenesis of nigral cell death in Parkinson's disease. For instance, alterations of calcium influxes have been reported to be implicated in both MPTP-induced parkinsonism and Parkinson's disease. Recently, we reported that nimodipine, a blocker of L-type calcium channels, prevents dopaminergic MPTP-induced neurotoxicity in C57B1/6 black mice. The present study extended these rodent findings to the non-human primate model of Parkinson's disease and assessed the effects of nimodipine, continuously applied by pellet for 18 days, on behavioural, biochemical and histological parameters, following systemic application of MPTP in common marmosets (Callithrix jacchus). The experimental design involved five groups of common marmosets and a total of 24 animals. Monkeys assigned to group I (n = 4) received subcutaneously implanted vehicle pellets 7 days prior to subcutaneous saline injections (control). Monkeys of group II (n = 4) were treated with nimodipine pellets (80 mg) and saline injections. Marmosets in group III (n = 8) were treated with vehicle pellets and received 4 times MPTP (MPTP-HCI, 2 mg/kg body weight subcutaneously, separated by an interval of 24 h for a total of 4 days). Monkeys in group IV (n = 4) and V (n = 4) were treated as group-III animals except for the implantation of nimodipine pellets (80 mg and 120 mg, respectively) 7 days prior to toxin exposure. In common marmosets MPTP induced severe parkinsonian symptoms, a pronounced dopamine depletion in the caudate-putamen (more than 99% of control) and a loss of tyrosine hydroxylase immunoreactive cells in the substantia nigra (50% percent of control) 7 days after MPTP-administration. Pretreatment with nimodipine (120 mg pellets) did neither attenuate the behavioural impairments in MPTP-treated animals nor antagonize the striatal neurotoxin-induced dopamine depletion, but almost completely prevented (in a dose-dependent manner) the MPTP-induced decrease of nigral tyrosine hydroxylase immunoreactive cells. These data suggest that application of nimodipine, during the observation period of 7 days, protects against MPTP-induced neurotoxicity in common marmosets at the cellular nigral level, but not at the synaptic striatal level, implicating differential mechanisms of actions of MPTP-induced neurotoxicity at the nigral versus the striatal level.  相似文献   

6.
This study investigated survival and neurotrophic effects of Sertoli cells transplanted in the striatum of 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats. Primary cultures of Sertoli cells were established from 3-week old rats and characterized by associated marker, placental cadherin (P-cadherin). Two months after transplantation, amphetamine-induced rotations of rats transplanted with Sertoli cells were significantly lower than those of control rats. However, restoration of tyrosine hydroxylase (TH) immunoreactivity and Sertoli cells that expressed P-cadherin were only found in the striatum of the rat that showed full recovery from amphetamine-induced rotation 3 months after transplantation without immunosuppression. These results suggest that Sertoli cells transplanted in striatum of hemiparkinsonian rats may survive for at least 3 months, and improve amphetamine-induced rotation and restore TH immunoreactivity.  相似文献   

7.
In order to analyze the putative neuroprotective role of nicotine and cotinine in parkinsonian syndromes, these two compounds were administered in male C57Bl6 mice for 4 weeks. On day 8, four injections of 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP) were administered. MPTP intoxication induced a 50% loss of dopaminergic neurons in the substantia nigra and a 45% reduction in dopaminergic fibers in the striatum. Administration of cotinine did not affect MPTP toxicity in the nigrostriatal system but chronic nicotine treatment showed a slight protection (15%) of nigrostriatal dopaminergic neurons against MPTP.  相似文献   

8.
Fox CM  Gash DM  Smoot MK  Cass WA 《Brain research》2001,896(1-2):56-63
In young adult rats, glial cell line-derived neurotrophic factor (GDNF) can completely protect against 6-hydroxydopamine-induced loss of nigral dopamine neurons when administered 6 h prior to the 6-hydroxydopamine. The present study was undertaken to determine if GDNF would provide similar protective effects in aged rats. Male, Fischer 344 x Brown Norway hybrid rats of 3, 18 and 24 months of age were given an intranigral injection of GDNF or vehicle followed 6 h later with an intranigral injection of 6-hydroxydopamine. Nigral dopamine neuron cell survival, and striatal and nigral dopamine and DOPAC levels, were evaluated 2 weeks after the lesions. In vehicle treated animals cell survival on the lesioned side ranged from 15 to 27%. GDNF promoted significant cell survival in the nigra of all three age groups; however, the percent survival was lowest in the 24-month-old animals (85% at 3 months, 75% at 18 months, 56% at 24 months). Similarly, dopamine levels in the striatum and substantia nigra on the lesioned side remained significantly greater in the GDNF treated animals compared to the vehicle treated animals. As with the cell survival experiment, the protective effects of GDNF on dopamine levels were less in the 24-month-old animals. GDNF pretreatment also protected against 6-hydroxydopamine-induced reductions in striatal DOPAC levels in all age groups. Overall, these results indicate that GDNF can protect nigrostriatal dopamine neurons against the effects of 6-hydroxydopamine in aged as well as young adult rats. However, the extent of protection is less in the aged (24-month-old) animals.  相似文献   

9.
This study examined whether damage to dopamine (DA) nerve terminals via inhibition of energy metabolism in the striatum would result in the retrograde loss of cell bodies in the substantia nigra. Infusion of 2 μmol malonate into the left striatum of rats resulted in a 67% loss of striatal DA and a 40% loss of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. No change in the number of Nissl-positive-TH-negative neurons was observed. These findings demonstrate the retrograde destruction of DA cell bodies in the substantia nigra resulting from energy impairment at their terminal projection site.  相似文献   

10.
Previous studies on rats have shown that the opioid antagonist naloxone attenuates amphetamine-induced stimulation of locomotor activity and increases in extracellular dopamine in the brain. However, in this study, naloxone did not attenuate amphetamine-induced rotational behavior or increases of extracellular dopamine in the intact striatum of nigrally-lesioned rats. These results suggest differences in the way in which endogenous opioids contribute to the behavioral and neurochemical effects of amphetamine in nigrally-lesioned compared to intact rats  相似文献   

11.
Brain-derived neurotrophic factor (BDNF) acts through the neurotrophin receptor TrkB and promotes survival and differentiation of dopaminergic ventral mesencephalic neurons. To further evaluate the role of TrkB in the nigrostriatal pathway, we studied neurotrophin levels, dopamine metabolism, and morphology of dopaminergic neurons of the substantia nigra (SN-DA) in young adult hypomorphic trkB mice (trkBfbz/fbz), which express only approximately 25% of wild type levels of TrkB. Tyrosine hydroxylase immunostaining revealed altered morphology of SN-DA neurons in trkBfbz/fbz when compared to wild type mice, in particular a significant enlargement of nuclear size. Cell counts revealed a pronounced loss of SN-DA neurons in these mice. Measurement of monoamine levels by high performance liquid chromatography (HPLC) showed that dopamine (DA) levels in the target field (striatum) were significantly elevated in trkBfbz/fbz compared to trkB+/fbz and wild type mice (P < 0.05), without altering DA turnover. Likewise, enzyme-linked immunosorbent assay (ELISA) for neurotrophic factors measurement showed that BDNF levels were increased in the striatum (P < 0.01) and frontal cortex (P < 0.005) of trkBfbz/fbz mice, but not in the SN when compared to trkB+/fbz and wild type mice. These data suggest that elevated neurotransmitter and neurotrophic factor levels might be a compensatory mechanism following dopaminergic cell loss in the SN. Thus, TrkB-activation seems essential for the maintenance of the nigrostriatal dopaminergic system.  相似文献   

12.
In Parkinson's disease dopamine depletion imbalances the two major output pathways of the striatum. L-DOPA replacement therapy is believed to correct this imbalance by providing effective D1 and D2 receptor stimulation to striatonigral and striatopallidal neurons, respectively. Here we tested this assumption in the rat model of Parkinsonism by monitoring the spike response of identified striatal neurons to cortical stimulation. As predicted, in 6-hydroxydopamine lesioned rats we observed that L-DOPA (6 mg/kg + benserazide), apomorphine and the D2 agonist quinpirole (0.5 mg/kg i.p.) counteract the enhanced responsiveness of striatopallidal neurons. Unexpectedly, the depressed responsiveness of striatonigral neurons was corrected by quinpirole whereas D1 stimulation exerted no (apomorphine, cPB) or worsening effects (L-DOPA, SKF38393 10 mg/kg). Therefore, quinpirole, but not D1 stimulation, restores functional equilibrium between the two striatal output pathways. Our results might explain the therapeutic effect of D2-based medications in Parkinson's disease.  相似文献   

13.
The subacute and long-term biochemical effects of methylenedioxymeth-amphetamine (MDMA) were assessed in homozygous and heterozygous transgenic (Tg) mice that carry the complete sequence of the human copper-zinc (CuZn) superoxide dismutase (SOD) gene. Non-transgenic (Non-Tg) mice showed significant decreased in striatal dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) levels both at 24 h and at 2 weeks after a single injection of MDMA (50 mg/kg). Heterozygous SOD-Tg mice showed DA depletion only at the 24 h time point. In contrast, homozygous SOD-Tg mice show no DA or DOPAC depletion at either the 24 h or at the 2 week time points. Moreover, three injections of MDMA (50 mg/kg) given 24 h apart also caused marked reduction of striatal DA and DOPAC in Non-Tg mice when these substances were measured 2 weeks after the last MDMA injection. That injection schedule also caused small decreases in DA levels in the heterozygous animals but no changes in the homozygous mice; DOPAC levels were not affected in the heterozygous nor in the homozygous SOD-Tg mice. Furthermore, the multiple injection schedule caused significant decreases in DA and DOPAC in female Non-Tg mice but not in the two strains of transgenic mice. Neither the single dose nor the multiple dose schedule of MDMA injections affected striatal serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIM)levels in any of the three strains of mice. These results support previous observations that MDMA-induced biochemical effects are observed in the DA systems of mice, whereas these effects are seen in the 5-HT systems of rats. The present observations also document for the first time a role for the production of superoxide radicals in these effects of MDMA. These mice are an important tool for dissecting pathways involved in drug-induced neurotoxicity. © 1995 Wiley-Liss, Inc. 1
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    14.
    Mouse purified striatal synaptosomes were used to study the release of newly synthesised [3H]-dopamine ([3H]-DA) or of previously taken up [3H]-DA. Quinpirole (QP, 10 μM), a D2/D3 dopaminergic agonist, was found to reduce the release of newly synthesised [3H]-DA with a larger amplitude when 4-aminopyridine (100 μM) instead than veratridine (1 μM) or potassium (25 mM) was used to evoke DA release. Among the different D2/D3 dopaminergic agonists tested R(−)-propylnorapomorphine (NPA) and quinpirole were the most potent. These compounds reduced, in a concentration-dependent manner, the 4-aminopyridine-evoked release of [3H]-DA previously taken up by synaptosomes (50% maximal inhibition). In contrast, the D3 agonist PD-128,907 had little effect even when used at 100 nM. The QP (100 nM)-induced response was completely antagonised by sulpiride (1 μM). Strikingly, the NPA (100 nM) and PD-128,907 (100 nM)-evoked responses were completely suppressed in D2 receptor-deficient mice. This data strongly suggest that only D2 but not D3 receptors are involved in the autoreceptor-mediated inhibition of the evoked release of [3H]-DA. Interestingly, while amphetamine-induced release of [3H]-DA was not modified, a slight reduction of [3H]-DA efflux induced by the dopamine (DA) uptake inhibitor cocaine was observed in D2 receptor-deficient mice.  相似文献   

    15.
    The effects of lesions of the substantia nigra (electrolytic 2 mA 10 sec, or 6-OHDA 2 or 8 micrograms) and of the midbrain raphé nuclei (electrolytic 2 X 1.0 mA 10 sec) at 7 days postlesion on striatal levels of beta-phenylethylamine, DA, DOPAC, HVA, 5-HT and 5-HIAA and on hypothalamic levels of beta-phenylethylamine, DA, NA, 5-HT and 5-HIAA were investigated. In the presence of deprenyl (2 mg kg-1 2 hr SC), both electrolytic and 6-OHDA-induced dopamine-depleting lesions of the nigra but not 5-HT-depleting lesions of the raphé nuclei resulted in a marked decrease in the accumulation of beta-phenylethylamine. The marked reduction in accumulation of striatal beta-phenylethylamine in response to lesions of the substantia nigra indicates that the intraneuronal compartment is a major site of striatal beta-phenylethylamine synthesis. An equivalent decrease (approximately 40%) in the accumulation of 5-HT was observed following electrolytic lesions of the substantia nigra or raphé nuclei after administration of L-5-HTP (200 mg kg-1 hr IP). As L-5-HTP at the dose employed in this study is taken up non-selectively by both DA- and 5-HT-containing neurones the loss of L-AAD following nigral and raphé lesions was apparently equivalent. These results indicate that depletion of beta-phenylethylamine may not be simply attributable to a general loss of L-AAD following lesions of monoamine-containing neurones and suggest either co-localisation of beta-phenylethylamine and DA or the existence of distinct beta-phenylethylamine-containing neurones.  相似文献   

    16.
    Autoradiographic measurements of peroxidase labelled tyrosine immunoreactivity in brain sections from rats with unilateral 6-hydroxydopamine lesions were obtained using enhanced chemiluminescence. The autoradiograms required only 5–60 s exposure and displayed a good sinnal-to-noise ratio. The autoradiograms were quantitated using densitometry and by comparison with a standard curve. Following acquisition of the autoradiograms the sections were stained with the chromogen diaminobenzidine (DAB). Distribution of the DAB closely followed the grain densities observed in the autoradiograms on both the lesioned and unlesioned side of the brain. This method represents a simple, rapid and inexpensive technique for performing both quantitative autoradiography and cytochemical studies in individual tissue sections of any perosidase labllled immunoreactivity.  相似文献   

    17.
    IntroductionTo investigate whether neurodegeneration underlying Parkinson's disease (PD) accounts for a substantial proportion of cases of minimal parkinsonism in the elderly.MethodsWe recruited 48 consecutive subjects with minimal parkinsonism who visited the clinic with cognitive complaints. All subjects did not show findings compatible with PD on 18F-FP-CIT PET scans, and had no evidence of other neurodegenerative disorders. Striatal dopamine transporter (DAT) availability was quantified, and mean diffusivity (MD) values in the pons were calculated to characterize structural damage using diffusion tensor imaging. Additionally, 35 patients with PD and 21 healthy controls were included as reference groups.ResultsIndividuals with minimal parkinsonism (mean age, 73.23 ± 7.03 years) exhibited mild decrease in DAT availability in the posterior putamen, which was at a level between that of healthy controls and patients with PD. DAT availability in the caudate and anterior putamen was also mildly decreased in the minimal parkinsonism group. Individuals with minimal parkinsonism also tended to have higher MD values in the pons compared to healthy controls.ConclusionsOur results suggest that a substantial proportion of minimal parkinsonism is associated with nigrostriatal dopamine depletion and pontine structural damage, which may be related to the disease process of prodromal PD.  相似文献   

    18.
    Calbindin-D 28kD is a calcium binding protein reported to protect neurons from degeneration by buffering intracellular calcium. It is expressed in midbrain dopaminergic neurons reported to be relatively resistant to degeneration in Parkinson's disease and certain of its animal models. Lesions of the nigrostriatal pathway produced in rats following injection of 6-hydroxydopamine result in a neurochemical profile similar to that seen in patients with Parkinson's disease. In the present study, brains were processed to exhibit tyrosine hydroxylase- and calbindin-D 28kD immunoreactivities in sections through the ventral mesencephalon at 3, 7, 10, 14 and 21 days after 6-hydroxydopamine had been injected into the medial forebrain bundle. Numbers of ventral mesencephalic calbindin-D 28kD immunoreactive neurons were significantly reduced ipsilateral to the lesions at 3 days post-lesion and, following slight recovery, remained significantly depleted through post-lesion day 21. The densities of calbindin-D 28kD and tyrosine hydroxylase immunoreactive neurons were different only at the 3 day post-lesion time point, when the apparent loss of calbindin-D 28 kD immunoreactive profiles was significantly greater. A lesion-induced increase in the proportion of neurons exhibiting both calbindin-D 28kD and tyrosine hydroxylase immunoreactivities, expected if calbindin-D 28kD is neuroprotective, was observed in the substantia nigra, pars compacta, but not in the ventral tegmental area. It is concluded that, while the observed losses of tyrosine hydroxylase and calbindin-D 28kD immunoreactivities do not necessarily reflect neuronal degeneration, they are not consistent with CB confering a neuroprotective advantage in the ventral tegmental area following 6-OHDA lesions as administered in this study.  相似文献   

    19.
    The topographical changes in proenkephalin (PEK) mRNAs which occur in the caudate-putamen (CPu) after 6-hydroxydopamine (6-OHDA)-induced unilateral lesion of the mesostriatal dopamine (DA) pathway were evaluated by quantitative in situ hybridization. These lesions caused significant increases in PEK mRNA in all regions of the caudate-putamen (CPu). The chronic intraventricular administration of NGF potentiated the increases in PEK mRNA, with the magnitude of changes being greater in the dorsomedial and dorsolateral regions of the striatum. NGF did not affect the loss of tyrosine hydroxylase mRNA observed in the substantia nigra ipsilateral to the 6-OHDA-induced lesion. These results demonstrate that alterations which occur in a neuropeptide system as a consequence to 6-OHDA-induced denervation of the striatum can respond to NGF administration in a topographical fashion.  相似文献   

    20.
    These studies were designed to investigate whether there are convergent prelimbic and sensorimotor cortical inputs onto striatal neurons in the rat and whether dopaminergic (DA) nigrostriatal fibers regulate these inputs. The influence of the nigrostriatal DA system was assessed in rats with either small or large 6-hydroxydopamine-induced lesions of the substantia nigra. In normal rats 39 out of 74 neurons (52.7%) were excited by stimulation of both the prelimbic and the sensorimotor cortex. No marked change in corticostriatal transmission was evident in rats with small 6-OHDA-induced lesions (defined as 10–35% decrease in [3H]DA uptake in striatal synaptosomes). In rats with large lesions (75–85% decrease in striatal [3H]DA uptake), however, a complete rearrangement of the corticostriatal transmission occurred. This was evident in a decrease of thresholds to obtain cortical responses, by modifications of the discharge properties of striatal neurons receiving input from cortices and by an increase in the number of neurons responding to cortical stimulation. In addition, a significantly higher percentage of striatal neurons responded to stimulation of both prelimbic and sensorimotor cortices in rats with large lesions than in rats with small lesions or in control rats. This data suggests that: (1) no functional separation of prelimbic and sensorimotor cortical inputs occurs in the rat striatum, (2) the nigrostriatal DA system exerts a focusing effect on these inputs, (3) the striatum is actively involved in the integrative processing of descending cortical information.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号