首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The control of cell multiplication and differentiation by tumor-promoting phorbol esters including 12-O-tetradecanoylphorbol-13-acetate (TPA) has been studied with different clones of mouse myeloid leukemic cells, a line of human myeloid leukemic cells, and normal mouse bone marrow myeloblasts. TPA induced normal cell differentiation in one of the mouse leukemic clones and this was mediated by induction of the protein inducer of differentiation to macrophages or granulocytes (MGI) in the cells that then differentiated. Other mouse clones were not induced to differentiate by TPA. In one of these clones, TPA induced cell susceptibility to externally added MGI. This effect was not due to a general induction of susceptibility to all compounds because TPA did not induce susceptibility to lypopolysaccharide or dexamethasone in this clone. In the human leukemic cell line, TPA also induced differentiation with the induction of MGI activity and enhanced susceptibility to added MGI. It is suggested that the clonal differences in induction of MGI activity and increased susceptibility to MGI may be associated with differences in receptors for TPA and the ability of TPA to modify receptors for MGI. Studies with normal bone marrow cells have indicated that TPA stimulated MGI activity and also increased susceptibility of normal myeloblasts to induction of multiplication by MGI. The ability of different phorbol esters to produce these effects on normal myeloblasts and myeloid leukemic cells paralleled their ability to act as tumor promoters. The results indicate that a tumor promoter such as TPA can induce the production of and increase cell susceptibility to a normal regulator of cell multiplication and differentiation. TPA has pleiotropic effects. It is suggested that, by these mechanisms, TPA may thus act as a tumor promoter by increasing cell multiplication in initiated cells, induce differentiation in some cells, or inhibit differentiation in other cells, depending on which molecules are being regulated in the TPA-treated cells.  相似文献   

2.
Normal myeloid and MGI(+)D(+) clones of myeloid leukemic cells can be induced for Fc and complement component 3 rosettes, lysozme, and mature macrophages and granulocytes by a protein with macrophage- and granulocyte-inducing (MGI) activity, whereas MGI(+)D(-) clones can be induced by this protein for rosettes and lysozme but not mature cells. Lipopolysaccharides (LPS) from different bacteria induced the appearance of rosettes, lysozyme, and macrophages in some MGI(+)D(+) clones but did not induce any of these changes in MGI(+)D(-) clones. Lipid A gave the same results as LPS. Incubation of MGI(+)D(+) cells with LPS also induced an MGI activity detectable in the culture medium. This activity behaved like MGI in inducing (i) rosettes, lysozyme, and mature cells in MGI(+)D(+) leukemic cells including a clone resistant to LPS, (ii) rosettes and lysozyme in MGI(+)D(-) leukemic cells, and (iii) differentiation of normal myeloid cells to mature macrophages and granulocytes. This activity was induced in MGI(+)D(+) cells by LPS before the induction of rosettes or lysozyme. The results indicate that the lipid A portion of LPS indirectly induces differentiation of MGI(+)D(+) myeloid leukemic cells by inducing MGI protein. It is suggested that induction of specific regulatory proteins may be a more general mechanism for the induction of differentiation by surface-acting compounds.  相似文献   

3.
Malignant myeloid leukemic cells and normal macrophages and granulocytes have functional beta-adrenergic receptors, which have been quantitated by radioreceptor binding with the beta-adrenergic antagonist [(3)H]dihydroalprenolol and by induction of cyclic AMP by adrenergic hormones. Both the normal and leukemic cells have beta(2)-adrenergic receptors, and the [(3)H]dihydroalprenolol binding was saturable, reversible, and stereospecific. The leukemic cells consisted of clones that could be induced to differentiate (MGI(+)D(+)) and clones that could not be induced to differentiate to mature macrophages and granulocytes by the protein inducer MGI. The different types of leukemic clones all had 1100-2300 receptor sites per cell, whereas normal macrophages had 7000 receptors per cell. The differentiation of MGI(+)D(+) leukemic cells was associated with an increase in receptors to a number similar to that found with normal macrophages. MGI(+)D(+) leukemic cells and normal macrophages were able to densensitize to the beta-adrenergic agonist (-)isoproterenol, shown by termination of cyclic AMP induction within 10-15 min and the lack of a second induction. The leukemic cells that could not be induced to differentiate lacked this capacity for desensitization, possibly due to an alteration in the uncoupling system between the receptor and adenylate cyclase. The lack of desensitization in these leukemic cells was associated with a higher sensitivity to the receptor-mediated cytotoxic effects of adrenergic hormones. It is suggested that cells, like some leukemic cells, that are unable to desensitize to adrenergic and possibly other hormones may be appropriate targets for differential destruction by hormones under conditions that do not affect normally desensitizing cells.  相似文献   

4.
Prostaglandin E1 and the beta-adrenergic hormone l-isoproterenol stimulated cyclic AMP formation in both nucleated and enucleated myeloid leukemic cells that could be induced to differentiate normally to mature cells by the macrophage- and granulocyte-inducing protein MGI (MGI+D+ cells). Enucleated as well as nucleated MGI+D+ cells also desensitized to these hormones, indicating that this desensitization is an extranuclear process. Nucleated or enucleated mutant myeloid leukemic cells that are not induced to differentiate (MGI-D- cells) were not desensitized to these hormones. The antitubulin alkaloids colchicine and vinblastine, but not the antimicrofilament compound cytochalasin B, increased the maximal hormone-induced formation of cyclic AMP in nucleated MGI+D+ cells but not in the MGI-D- cells. These alkaloids also inhibited the development of desensitization to l-isoproterenol and prostaglandin E1 in enucleated MGI+D+ cells. The results indicate that in MGI+D+ cells the cytoskeletal system puts constraints on the cells' ability to respond to these hormones and that these constraints are absent in the mutant MGI-D- cells. Because MGI+D+ but not MGI-D- cells can be induced to differentiate by the macrophage- and granulocyte-inducing protein, cytoskeletal constraints, which are also found in normal myeloid cells, may be necessary for cell competence to differentiate. The results support the suggestion that membrane cytoskeletal constraints generate may control the normal response and desensitization to membrane-mediated cell inducers.  相似文献   

5.
MGI(+)D(+), MGI(+)D(-), and MGI(-)D(-) mouse myeloid leukemic cells, which genetically differ in their competence to be induced to undergo normal cell differentiation in vitro by the normal macrophage- and granulocyte-inducing protein MGI, were analyzed for their ability to undergo cell differentiation in diffusion chambers in vivo. As after induction by MGI in vitro, MGI(+)D(+) clones were induced for Fc and C3 rosettes, lysozyme, and mature macrophages and granulocytes in normal syngeneic or allogeneic mice. MGI(+)D(-) clones were also induced in these mice for all these properties, although in vitro they were not induced by MGI for mature cells. The MGI(-)D(-) clones were induced in vivo for C3 and Fc rosettes, lysozyme, and intermediate stages but not for mature cells, whereas none of these properties were induced in these clones by MGI in vitro. Thus, certain types of myeloid leukemic cells differentiate better in vivo, possibly due to the presence of higher effective concentrations of MGI and/or other inducing factors, and MGI(+)D(+) and MGI(+)D(-) cells can completely differentiate in vivo to mature cells. In vivo differentiation was inhibited in mice treated with cyclophosphamide. It was also inhibited in various strains of nude mice, except for one MGI(+)D(+) clone, where it was inhibited in C57BL/6 but not in ICR nude mice. This MGI(+)D(+) clone was also the only clone that was induced to differentiate normally in vitro by a 23,000 molecular weight form of purified MGI. The results suggest that different clones respond to different molecular forms of MGI, which may be present in different proportions in some animals, that in vivo differentiation by MGI possibly with other factors may be regulated by cells involved in the immune response, and that this differentiation can be genetically controlled. Differentiation in vivo was enhanced by injection of conditioned medium containing MGI and by inoculation of MGI-producing cells, including normal granulocytes. This indicates that the induction of normal differentiation of myeloid leukemic cells in vivo can be enhanced by these treatments.  相似文献   

6.
Normal myeloid precursors and MGI(+)D(+) myeloid leukemic cells can be induced to differentiate to mature cells by the normal protein inducer MGI. The sequence of differentiation is the induction of C3 and Fc rosettes, C3 and Fc immune phagocytosis (IP), synthesis and secretion of lysozyme, and formation of mature macrophages and granulocytes. Mutant clones of myeloid leukemic cells have been isolated with differences in the time of induction of C3 and Fc rosettes and C3 and Fc IP, in which lysozyme was induced without going through the stage of Fc or C3 IP, and with differences in inducibility by MGI to mature macrophages or granulocytes. Only one out of five MGI(-)D(-) clones gave rise to MGI(+)D(+) mutants. The ability to obtain mutants from this clone was associated with its special chromosome constitution, and these mutants showed a change in their ability for cap formation by concanavalin A. The steroid inducer dexamethasone can induce in MGI(+)D(+) clones differentiation to macrophages but not to granulocytes. Differentiation by steroid inducer in different clones occurred either with or without induction of Fc rosettes and Fc IP, and induction of C3 rosettes was not always associated with induction of C3 IP. The use of mutants that differ in their competence to be induced by MGI or steroid inducer has shown that there are separate controls for the induction of C3 and Fc rosettes, C3 and Fc IP, lysozyme, macrophages, and granulocytes.  相似文献   

7.
Cells from a myeloid leukemic line in culture can be induced by the differentiation-inducing protein MGI to form colonies with normal differentiation to mature macrophages and granulocytes. This line consisted of clones that can be induced to undergo normal cell differentiation (D(+) clones) and clones (D(-) clones) that were not inducible. D(+) clones were able to undergo differentiation to both macrophages and granulocytes. Normal differentiation was induced even in clones that were no longer diploid. D(+) clones can segregate some D(-) progeny, and D(-) clones can segregate some D(+) progeny. This, therefore, provides a system for studies on the genetic and chemical control of cell differentiation in leukemic cells.  相似文献   

8.
J Lotem  L Sachs 《Blood》1990,76(7):1315-1322
The viability of normal bone marrow myeloid precursor cells induced by interleukin-6 (IL-6) or IL-1 alpha and the ability of IL-6 and IL-1 alpha to induce the formation of colonies of granulocytes, macrophages, or megakaryocytes in densely seeded bone marrow cultures was suppressed by transforming growth factor-beta 1 (TGF-beta 1). Induction of normal bone marrow colony formation by IL-3 was much less sensitive to TGF-beta 1, and there was little or no effect of TGF-beta 1 on colony formation induced by macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage CSF (GM-CSF). In different clones of myeloid leukemic cells, TGF-beta 1 suppressed differentiation induced with IL-6, IL-1 alpha, or lipopolysaccharide (LPS), but did not suppress differentiation induced with IL-3 or GM-CSF. The effect of TGF-beta 1 on differentiation of the leukemic cells can be dissociated from its effect on cell growth. TGF-beta 1 suppressed the production of IL-6 in normal bone marrow cells cultured with IL-1 alpha and the production of IL-6 and GM-CSF in leukemic cells cultured with IL-1 alpha or LPS. The suppression of IL-6 production can explain the suppression by TGF-beta 1 of the effects of IL-1 alpha and LPS that are mediated by IL-6. TGF-beta 1 also suppressed differentiation in clones of myeloid leukemic cells induced with differentiation factor/leukemia inhibitory factor and tumor necrosis factor. In different leukemic clones TGF-beta 1 suppressed or enhanced induction of differentiation with dexamethasone. The results show that TGF-beta 1 can selectively control the activity of different molecular regulators of normal and leukemic hematopoiesis.  相似文献   

9.
Different Blocks in the Differentiation of Myeloid Leukemic Cells   总被引:20,自引:11,他引:9       下载免费PDF全文
Some clones of mouse myeloid leukemic cells (D(+)) can be induced to undergo cell differentiation to mature macrophages and granulocytes, and other clones (D(-)) could not be induced to differentiate to mature cells. Normal mature macrophages and granulocytes have surface receptors that form rosettes with erythrocytes coated with specific immunoglobulin or immunoglobulin-complement. The D(+) clones were induced to form receptors by prednisolone, cytosine-arabinoside, 5-iododeoxyuridine, actinomycin D, or serum from mice injected with endotoxin. All these compounds thus induced a common change in the cell surface membrane. The induction of receptors required protein synthesis, and receptors were formed before the appearance of mature cells. There were two types of D(-) clones. One type was induced by these compounds to form receptors, although with a lower inducibility than D(+) clones; in the other type there was no induction of receptors. The results indicate that there are different blocks in the differentiation of myeloid leukemic cells. Some leukemic cells (IR(+)D(+)) can be induced to form receptors and to differentiate to mature cells; others (IR(+)D(-)) can form receptors but not mature cells; and a third type (IR(-)D(-)) could not be induced to form receptors or mature cells.  相似文献   

10.
The chromosome banding pattern has been analyzed in clones of mouse myeloid leukemic cells that differ in their ability to be induced to differentiate by the protein inducer MGI (macrophage and granulocyte inducer). None of the clones had a completely normal diploid banding pattern. The clones studied were either MGI+ (that can be induced to form Fc and C3 rosettes), a stage in the differentiation of myeloid cells, or MGI- (that cannot be induced to form these rosettes). All six cultured clones of MGI- cells from myeloid leukemias independently produced in six separate animals showed a loss of a piece of one chromosome 2 and this abnormal chromosome was maintained in leukemias derived from the cultured cells. This loss was not found in MGI+ clones or lymphoid leukemias. Five MGI+ mutants, derived from an MGI- clone with a loss of a piece of one chromosome 2, one normal chromosome 12, and two translocated chromosomes 12, maintained the abnormal chromosome 2 but lost either the one normal or one of these translocated chromosome 12. These results indicate that chromosomes 2 and 12 carry genes that control the differentiation of myeloid leukemic cells and that inducibility by MGI is controlled by the balance between these genes. We suggest that these chromosomes also carry genes that control the malignancy of these cells.  相似文献   

11.
Human spleen-conditioned medium can induce the formation in vitro of large granulocyte colonies from normal human bone marrow cells. The granulocyte colonies contained cells in various stages of differentiation, from myeloblasts to mature neutrophile granulocytes. Human spleen-conditioned medium also induced colony formation with rodent bone-marrow cells, whereas rodent spleen-conditioned medium induced colony formation with rodent bone marrow but not with human cells.This in vitro system has been used to determine the potentialities for cell differentiation in bone-marrow and peripheral blood cells from patients with a block in granulocyte differentiation in vivo. The cloning efficiency, colony size, and number of mature granulocytes in bone-marrow colonies from patients with congential neutropenia, whose bone marrow contained only 1% mature granulocytes, were not less than in people whose bone marrow had the normal level of about 40% mature granulocytes. The cloning efficiency of peripheral blood cells from patients with acute myeloid leukemia was 350 times higher, with 10 times larger colonies, than the cloning efficiency of peripheral blood cells from normal people. The cytochemical properties and number of mature granulocytes in colonies from the leukemic patients were the same as in colonies from non-leukemic people.The results indicate that a block in cell differentiation in vivo, in these cases with neutropenia and acute myeloid leukemia, was overcome in vitro, in the presence of an inducer in the conditioned medium. In patients with chronic myeloid leukemia, colony formation was induced only in some of the cases. This indicates that there are blast cells with different potentialities for the development of colonies in different patients.  相似文献   

12.
Lotem  J; Sachs  L 《Blood》1989,74(2):579-585
There are different types of myeloid leukemic cells that can be induced to differentiate to mature granulocytes or macrophages by different hematopoietic regulatory proteins. One type of leukemic clone can be induced to differentiate by recombinant macrophage and granulocyte differentiation-inducing protein-type 2 (MGI-2), which we have shown is Interleukin-6 (IL-6), and another type of leukemic clone can be differentiated by recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) or IL-3. There was no subpopulation of growth factor- responsive or differentiation-defective cells before induction of differentiation in either type of clone. In both clones, induction of differentiation-induced requirement for a hematopoietic protein for cell viability. Viability of the cells was maintained by IL-6, IL-3, or macrophage colony-stimulating factor (M-CSF) but not by GM-CSF in the cells differentiated by IL-6, and by GM-CSF or IL-3 but not by IL-6 or M-CSF in the cells differentiated by GM-CSF or IL-3. The viable cells with a differentiated phenotype continued to multiply. In undifferentiated leukemic cells with no or few surface receptors for some of these proteins, there was an upregulation of the number of receptors during differentiation for the proteins to which the cells responded. But there were also differentiating leukemic cells with an upregulation of GM-CSF receptors although GM-CSF could not maintain the viability of the differentiating cells. The results indicate that induction of hormone responsiveness and upregulation of the hormone receptors can both occur in differentiating leukemic cells, and that the regulation of these two events can be separated.  相似文献   

13.
Bone marrow cells from a patient with acute myeloblastic leukemia were simultaneously cultured in vitro under conditions that favored the survival of either (1) leukemic progenitors (leukemic suspension culture), or (2) normal progenitors (long-term bone marrow culture). Whereas cells that were morphologically primitive and cytochemically leukemic persisted in leukemic suspension culture, they were progressively and completely replaced in long-term bone marrow culture by neutrophilic granulocytes and subsequently by macrophages. However, Auer rods were present in the maturing myeloid cells, including polymorphonuclear neutrophils, between the 7th and 30th days of long-term bone marrow culture, indicating that they were derived directly from the original leukemic population. This observation suggests that, at least in some patients, selection of cells with the potential for terminal differentiation may be the underlying mechanism responsible for the purging properties that have been attributed to long-term bone marrow culture.  相似文献   

14.
Clones (D(+)) of a cultured line of myeloid leukemic cells can be induced to undergo normal differentiation to mature macrophages and granulocytes. There are also clones derived from the same cell line (D(-)) that could not be induced to differentiate. The carbohydrate-binding protein concanavalin A was used as a probe to study the mobility of carbohydrate-containing sites on the surface membrane of these cells. Changes in the distribution of concanavalin A binding sites on the surface membrane can be induced by concanavalin A. With the appropriate site mobility, this induction of a new distribution resulted in a concentration of concanavalin A-membrane site complexes on one pole of the cell to form a cap. D(+) and D(-) clones showed 50 and 5% of cells with caps, respectively, although both types of cells bound a similar number of concanavalin A molecules. Treatment of cells with trypsin increased cap formation from 5 to 40% in D(-) cells, but did not change the percentage of cells with caps in D(+) cells. The results show a difference in the mobility of concanavalin A binding sites in these two types of cells and suggest a difference in the fluid state of these carbohydrate-containing structures on the surface membrane. It is suggested that a gain of the ability of myeloid leukemic cells to undergo normal differentiation is associated with an increase in the fluidity of structures on the surface membrane where the concanavalin A sites are located. Differences in fluidity of specific membrane sites may also explain differences in the response of cells to other differentiation-inducing stimuli.  相似文献   

15.
J Lotem  L Sachs 《Blood》1988,71(2):375-382
The normal myeloid hematopoietic regulatory proteins include one class of proteins that induces viability and multiplication of normal myeloid precursor cells to form colonies (colony-stimulating factors [CSF] and interleukin 3 [IL-3], macrophage and granulocyte inducing proteins, type 7 [MGI-1]) and another class (called MGI-2) that induces differentiation of normal myeloid precursors without inducing cell multiplication. Different clones of myeloid leukemic cells can differ in their response to these regulatory proteins. One type of leukemic clone can be differentiated in vitro to mature cells by incubating with the growth-inducing proteins granulocyte-macrophage (GM) CSF or IL-3, and another type of clone can be differentiated in vitro to mature cells by the differentiation-inducing protein MGI-2. We have now studied the ability of different myeloid regulatory proteins to induce the in vivo differentiation of these different types of mouse myeloid leukemic clones in normal and cyclophosphamide-treated mice. The results show that in both types of mice (a) the in vitro GM-CSF- and IL-3-sensitive leukemic cells were induced to differentiate to mature cells in vivo in mice injected with pure recombinant GM-CSF and IL-3 but not with G-CSF, M-CSF, or MGI-2; (b) the in vitro MGI-2-sensitive leukemic cells differentiated in vivo by injection of MGI-2 and also, presumably indirectly, by GM-CSF and IL-3 but not by M-CSF or G-CSF; (c) in vivo induced differentiation of the leukemic cells was associated with a 20- to 60-fold decrease in the number of blast cells; and (d) all the injected myeloid regulatory proteins stimulated the normal myelopoietic system. Different normal myeloid regulatory proteins can thus induce in vivo terminal differentiation of leukemic cells, and it is suggested that these proteins can have a therapeutic potential for myeloid leukemia in addition to their therapeutic potential in stimulating normal hematopoiesis.  相似文献   

16.
17.
Release of mature cells from the bone marrow (BM) into the peripheral blood (PB) compartment is supposed to be triggered by changes in cell surface constituents, most probably in glycoproteins. The supposed importance of glycoproteins in marrow exit prompted us to investigate glycopeptides, i.e., the carbohydrate part of the cell-surface-located glycoproteins of isolated human bone marrow cells of the myeloid series at different stages of maturation. Fractionation of cells was performed by a four-step procedure, comprised of density gradient centrifugation and velocity sedimentation at unit gravity in specially designed separation chambers. With this method, promyelocytes/myeloblasts, granulocytes from bone marrow, and granulocytes from peripheral blood were isolated in high quantity with purities up to 90%, 90%, and 100%, respectively. Surface glycopeptides of the various myeloid cells were investigated by gel filtration analysis after metabolic labeling with radioactive fucose or after external labeling with periodate- borotritide under mild conditions. Within the normal myeloid maturation sequence, mature granulocytes within the bone marrow were found to transiently express altered surface glycopeptides, which disappeared after release into the peripheral blood. These oligosaccharide structures appeared similar to those encountered on leukemic blast cells, known as "cancer-related glycopeptides." In contrast to normal granulocytes from BM, leukemic blast cells retained these aberrant carbohydrate structures on their surface after marrow release. A possible role for cancer-related glycopeptides in the process of marrow cell exit might be hypothesized.  相似文献   

18.
Yamamoto-Yamaguchi  Y; Tomida  M; Hozumi  M 《Blood》1983,62(3):597-601
The effects of mouse L-cell interferon (IFN) on growth of mouse bone marrow cells and their differentiation into macrophages and granulocytes were investigated in a liquid suspension culture system with two different types of colony-stimulating factor (CSF). Within 7 days, most bone marrow cells differentiated into macrophages in the presence of macrophage colony-stimulating factor (M-CSF) derived from mouse fibroblast L929 cells, but into both granulocytes (40%) and macrophages (23%) in the presence of a granulocyte-macrophage colony- stimulating factor (GM-CSF) from mouse lung tissue. IFN inhibited growth of bone marrow cells with both M-CSF and GM-CSF, but had 20 times more effect on bone marrow cells stimulated with M-CSF than on those stimulated with GM-CSF. A low concentration of IFN (50 IU/ml) stimulated production of macrophages by GM-CSF in liquid culture medium, whereas it selectively inhibited colony formation of macrophages in semisolid agar culture. IFN caused no detectable block of late stages of differentiation; mature macrophages and granulocytes were produced even when cell proliferation was inhibited by IFN. These results indicate that IFN preferentially affects growth and differentiation of the cell lineage of macrophages among mouse bone marrow cells.  相似文献   

19.
Normal granulocyte-monocyte progenitor cells have an absolute requirement for colony-stimulating factor (CSF) for proliferation and differentiation in vitro. In contrast, cells derived from acute myeloblastic leukemia patients are often defective in their response to CSF, but can be induced to undergo terminal differentiation by exposure to 12-o-tetradecanoyl phorbol-13-acetate (TPA) by a process that does not require cell proliferation. To investigate the relationship between TPA-induced leukemic cell differentiation and CSF-induced myeloid cell differentiation we investigated the effects of TPA on myeloblasts highly enriched from normal bone marrow and stable-phase chronic myeloid leukemia peripheral blood. TPA (10(-6)-10(-9) M) induced the rapid appearance of macrophage characteristics in the majority of myeloblasts in the absence of proliferation. The mechanisms of TPA- and CSF-induced myeloblast differentiation were compared by examining the requirement for DNA synthesis. Exposure of myeloblasts to CSF induced increased triatiated thymidine (3H-TdR) incorporation within a few hours, while TPA did not induce 3H-TdR incorporation by itself and was inhibitory to CSF-induced 3H-TdR uptake. This requirement for DNA synthesis was further investigated by reversibly inhibiting DNA synthesis by depleting intracellular polyamines with difluoromethylorinithine (DFMO). DFMO inhibited both CSF-induced proliferation and differentiation of myeloblasts, but had no effect on TPA-induced differentiation. These results demonstrate that the process of differentiation of myeloblasts induced by TPA is distinct from CSF-induced differentiation.  相似文献   

20.
Schlick  E; Ruscetti  FW 《Blood》1986,67(4):980-987
We have investigated the mechanisms by which colony-stimulating factor (CSF)-inducing biological response modifiers (BRM) may have beneficial effects on tumor-bearing hosts undergoing anti-tumor therapy. First, we have documented that treatment of mice with the chemically defined BRM maleic anhydride divinyl ether copolymer (MVE-2), which induces CSF secretion by macrophages (M phi) and bone marrow cells (BMC), significantly increased growth and differentiation of normal myelopoietic cells and counteracted the myelosuppressive effects of cyclophosphamide (CY). Second, we established that MVE-2 may exert CSF- mediated antitumor effects on certain leukemic tumor cells. Serum from mice pretreated in vivo with MVE-2, which contained CSF, induced terminal differentiation of cloned tumor cells from the CSF responsive WEHI-3B D+ subline in vitro, but not from the WEHI-3B D- subline, which is unresponsive to CSF. In vivo experiments showed that treatment of mice bearing the WEHI-3B D+ tumor first with CY and three days later with the CSF inducer MVE-2, significantly increased their survival time and rendered 20% to 50% of the tumor-bearing mice disease free. No such effects were obtained in mice bearing the WEHI-3B D- tumor. Thus, the induction of CSF or other differentiation factors by some BRMs may result in therapeutic effects against certain leukemias based on at least two distinct mechanisms: In addition to their restorative effects on normal bone marrow functions, CSF-inducing BRMs may also prevent further leukemogenesis by induction of terminal differentiation of leukemic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号