首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Cells within the acidic extracellular environment of solid tumours maintain their intracellular pH through the activity of the Na(+)/H(+) exchanger and the Na(+) dependent Cl(-)/HCO(3)(-) exchanger. The inhibition of these mechanisms could therefore inhibit cancer cell growth. AIM: We evaluated the effect of two selective inhibitors of these transporters (cariporide and S3705) on proliferation and apoptosis of human cholangiocarcinoma cells (HUH-28 and Mz-ChA-1 cells) as a function of external pH (7.4 and 6.8). METHODS/RESULTS: HUH-28 cells incubated for 24h at external pH 7.4 or 6.8 without inhibitors maintained intracellular pH at physiological level, whereas incubation with cariporide and/or S3705 caused the intracellular pH of cells to drop. Incubation of HUH-28 cells with cariporide and/or S3705 was able to reduce proliferation, evaluated by a colorimetric ELISA method, and to induce apoptosis, evaluated by measuring caspase-3 activity and Annexin-V staining, and these effects were more evident at external pH 6.8. S3705 but not cariporide was able to inhibit serum-induced phosphorylation of ERK1/2, AKT and BAD, intracellular molecules involved in cancer cell proliferation and survival. Similar results were obtained in Mz-ChA-1 cells. CONCLUSIONS: (1) Inhibition of intracellular pH regulatory mechanisms by cariporide and S3705 reduces proliferation and induces apoptosis in cholangiocarcinoma cells; and (2) these drugs might have potential therapeutic value against cholangiocarcinoma.  相似文献   

2.
Castration reduces mRNA levels for calcium regulatory proteins in rat heart   总被引:3,自引:0,他引:3  
Golden KL  Marsh JD  Jiang Y 《Endocrine》2002,19(3):339-344
Sex-related differences in the cardiac phenotype have been well established. This study was designed to determine whether androgens regulate myocardial gene expression and play a role in the sex-related differences in the myocardial phenotype. Gonadectomized male rats were treated with testosterone, and myocardial gene expression was examined in whole heart using quantitative real-time PCR. Gonadectomy produced a substantial decrease in mRNA levels for the androgen receptor, Na+/Ca2+ exchanger, L-type calcium channel, and β1-adrenergic receptor (β1AR). Supplementation of testosterone in castrates produced a fivefold increase in androgen receptor mRNA levels. Testosterone treatment of castrates produced almost a sixfold increase in Na+/Ca2+ exchanger mRNA, a tenfold increase in L-type calcium channel mRNA accumulation, and a fourfold increase in β1AR mRNA levels. Increased calcium channel expression, β1AR expression, and Na+/Ca2+ exchanger expression together may alter cytosolic calcium. These results provide the first evidence that testoster-one regulates expression of myocardial calcium regulating genes and thus may play a role in modulating the cardiac phenotype in males.  相似文献   

3.
BACKGROUND AND AIMS: Autoimmune gastritis is one of the most common autoimmune diseases and is caused by a CD4(+) T-cell response to the gastric H(+)/K(+) ATPase encoded by Atp4a and Atp4b (H(+)/K(+) ATPase). Here, we have elucidated events that result in immunological tolerance to the H(+)/K(+) ATPase and thus the prevention of autoimmune gastritis. METHODS: T cells from H(+)/K(+) ATPase-deficient mice and H(+)/K(+) ATPase-specific T-cell receptor transgenic mice were purified and transferred to wild-type (WT) or H(+)/K(+) ATPase-deficient recipients to assess the impact of exposure to antigen on pathogenicity. RESULTS: The CD4(+) T-cell population from H(+)/K(+) ATPase-deficient mice was highly effective at inducing gastritis when compared with T cells from WT mice and, as a population, was comparatively resistant to the suppressive activity of regulatory T cells. Exposing T cells from H(+)/K(+) ATPase-deficient mice to H(+)/K(+) ATPase in WT mice decreased their ability to induce gastritis and resulted in a population that could be more easily suppressed by T(reg) cells. Transfer of clonotypic antigen-inexperienced H(+)/K(+) ATPase-specific T cells into WT mice resulted in extra-thymic clonal deletion. CONCLUSIONS: Prevention of autoimmune gastritis requires the extra-thymic purging of highly autoaggressive H(+)/K(+) ATPase-specific T cells to produce a T-cell repertoire that is more susceptible to the suppressive activity of regulatory T cells. Taken together with recent published data describing the role of T-cell receptor signalling in the maintenance of regulatory T-cell populations, we propose that exposure of T cells to antigen in the periphery is able to both delete autoaggressive specificities and maintain regulatory T-cell activity, establishing a balance between pathogenicity and regulation.  相似文献   

4.
BACKGROUND AND AIMS: Unlike the intestine of normal subjects, small-intestinal epithelia of cystic fibrosis patients and cystic fibrosis transmembrane conductance regulator protein-null (CFTR(-)) mice do not respond to stimulation of intracellular cyclic adenosine monophosphate with inhibition of electroneutral NaCl absorption. Because CFTR-mediated anion secretion has been associated with changes in crypt cell volume, we hypothesized that CFTR-mediated cell volume reduction in villus epithelium is required for intracellular cyclic adenosine monophosphate inhibition of Na(+)/H(+) exchanger (primarily Na(+)/H(+) exchanger 3) activity in the proximal small intestine. METHODS: Transepithelial (22)Na flux across the jejuna of CFTR(+), CFTR(-), the basolateral membrane Na(+)/K(+)/2Cl(-) co-transporter protein NKCC1(+), and NKCC1(-) mice were correlated with changes in epithelial cell volume of the midvillus region. RESULTS: Stimulation of intracellular cyclic adenosine monophosphate resulted in cessation of Na(+)/H(+) exchanger-mediated Na(+) absorption (J(ms)(NHE)) in CFTR(+) jejunum but had no effect on J(ms)(NHE) across CFTR(-) jejunum. Cell volume indices indicated an approximately 30% volume reduction of villus epithelial cells in CFTR(+) jejunum but no changes in CFTR(-) epithelium after intracellular cyclic adenosine monophosphate stimulation. In contrast, cell shrinkage induced by hypertonic medium inhibited J(ms)(NHE) in both CFTR(+) and CFTR(-) mice. Bumetanide treatment to inhibit Cl(-) secretion by blockade of the Na(+)/K(+)/2Cl(-) co-transporter, NKCC1, of stimulated CFTR(+) jejunum prevented maximal volume reduction of villus epithelium and recovered approximately 40% of J(ms)(NHE). Likewise, J(ms)(NHE) and cell volume were unaffected by intracellular cyclic adenosine monophosphate stimulation in NKCC1(-) jejuna. CONCLUSIONS: These findings show a previously unrecognized role of functional CFTR expressed in villus epithelium: regulation of Na(+)/H(+) exchanger 3-mediated Na(+) absorption by alteration of epithelial cell volume.  相似文献   

5.
This research proposes a new hydrometallurgical method for Zn, In, and Ga extraction, along with Fe as a common impurity, from electric arc furnace dust (EAFD), using ionic liquids. EAFD is a metal-containing waste fraction generated in significant amounts during the process of steelmaking from scrap material in an electric arc furnace. With valuable metal recovery as the main goal, two ionic liquids, [Bmim+HSO4] and [Bmim+Cl], were studied in conjunction with three oxidants: Fe2(SO4)3, KMnO4, and H2O2. The results indicated that the best combination was [Bmim+HSO4] with [Fe2(SO4)3]. An experimental series subsequently demonstrated that the combination of 30% v/v [Bmim+HSO4], 1 g of [Fe2(SO4)3], S/L ratio = 1/20, a 240 min leaching time, and a temperature of 85 °C was optimal, resulting in maximum extractions of 92.7% Zn, 97.4% In, and 17.03% Ga. In addition, 80.2% of the impurity metal Fe was dissolved. The dissolution kinetics of these four elements over a temperature range of 55–85 °C was found to be diffusion controlled. The remaining phases present in the leached residue were low amounts of ZnO, Fe3O4, ZnFe2O4, and traces of Ca(OH)2 and MnO2, and additional sharp peaks indicative of PbSO4 and CaSO4 appeared within the XRD pattern. The intensity of the peaks related to ZnO and Fe3O4 were observed to have decreased considerably during leaching, whereas some of the refractory ZnFe2O4 phase remained. SEM-EDS analysis revealed that the initial EAFD morphology was composed of spherical-shaped fine-grained particle agglomerates, whereas the leached residue was dominated by calcium sulphate (Ca(SO4))-rich needle-shaped crystals. The results clearly demonstrate that [Bmim+HSO4] is able to extract the target metals due to its acidic properties.  相似文献   

6.
Recently, metal chalcogenides have received considerable attention as prospective anode materials for sodium-ion batteries (SIBs) because of their high theoretical capacities based on their alloying or conversion reactions. Herein, we demonstrate a gallium(III) telluride (Ga2Te3)-based ternary composite (Ga2Te3–TiO2–C) synthesized via a simple high-energy ball mill as a great candidate SIB anode material for the first time. The electrochemical performance, as well as the phase transition mechanism of Ga2Te3 during sodiation/desodiation, is investigated. Furthermore, the effect of C content on the performance of Ga2Te3–TiO2–C is studied using various electrochemical analyses. As a result, Ga2Te3–TiO2–C with an optimum carbon content of 10% (Ga2Te3–TiO2–C(10%)) exhibited a specific capacity of 437 mAh·g−1 after 300 cycles at 100 mA·g−1 and a high-rate capability (capacity retention of 96% at 10 A·g−1 relative to 0.1 A·g−1). The good electrochemical properties of Ga2Te3–TiO2–C(10%) benefited from the presence of the TiO2–C hybrid buffering matrix, which improved the mechanical integrity and electrical conductivity of the electrode. This research opens a new direction for the improvement of high-performance advanced SIB anodes with a simple synthesis process.  相似文献   

7.
An A‑ and B‑site substitutional study of SrFeO3−δ perovskites (A’xA1−xB’yB1−yO3−δ, where A = Sr and B = Fe) was performed for a two‑step solar thermochemical air separation cycle. The cycle steps encompass (1) the thermal reduction of A’xSr1−xB’yFe1−yO3−δ driven by concentrated solar irradiation and (2) the oxidation of A’xSr1−xB’yFe1−yO3−δ in air to remove O2, leaving N2. The oxidized A’xSr1−xB’yFe1−yO3−δ is recycled back to the first step to complete the cycle, resulting in the separation of N2 from air and concentrated solar irradiation. A-site substitution fractions between 0 ≤ x ≤ 0.2 were examined for A’ = Ba, Ca, and La. B-site substitution fractions between 0 ≤ y ≤ 0.2 were examined for B’ = Cr, Cu, Co, and Mn. Samples were prepared with a modified Pechini method and characterized with X-ray diffractometry. The mass changes and deviations from stoichiometry were evaluated with thermogravimetry in three screenings with temperature- and O2 pressure-swings between 573 and 1473 K and 20% O2/Ar and 100% Ar at 1 bar, respectively. A’ = Ba or La and B’ = Co resulted in the most improved redox capacities amongst temperature- and O2 pressure-swing experiments.  相似文献   

8.
Three different Ti addition routes were used to prepare an Al–5Ti–B Master Alloy: the halide salt route, the Ti-sponge route, and the partial Ti-sponge route. In the halide salt route, the raw materials were Al + KBF4 + K2TiF6; K2TiF6 was completely replaced by pure titanium for the Ti-sponge route versus the halide salt route; in the partial Ti-sponge route, K2TiF6 was partially replaced by pure titanium. Here, 30% Ti-sponge or 60% Ti-sponge route means that 30% or 60% K2TiF6 was replaced by pure titanium, respectively. The above Ti addition routes have a significant influence on the growth pattern and morphological evolution of TiAl3 and TiB2, which greatly affect the refining performance of Al–Ti–B Master Alloy. When using the halide salt route, a streamlined “rich Ti, B area” exists in the aluminum melt, which is a complex compound of (Tix, Al1−x) By. The “rich Ti, B area” is essential for the nucleation and growth of TiAl3 and TiB2. Blocky TiAl3 was obtained and its average size was 4.7 μm based on the halide salt route. In the Ti-sponge route, the nucleation of TiAl3 mainly depends on the mutual diffusion of Al and Ti, and TiAlx forms around pure Ti particles, i.e., the so-called Ti–TiAlx mechanism. The average size of the blocky TiAl3 was 9.8 μm based on the Ti–TiAlx mechanism. For the partial Ti-sponge route, the “rich Ti, B area” gradually decreases with the increase in Ti powder’s contents, and large TiAl3 coexists with the small TiAl3. Compared with the Ti-sponge route, the halide salt route can form smaller TiAl3. In the Ti-sponge route, there is a small amount of “rich Ti, B area” due to the influence of the Ti–TiAlx mechanism, which does not meet the requirements of TiB2 growth. In the halide salt route, there is sufficient “rich Ti, B area”, which is conducive to the formation of TiB2. Both the crystal defects and the crowded growth environment caused by the “rich Ti, B area” are fundamental reasons for the fragility and the irregular shape of the TiB2. The refining effect of the Al–Ti–B Master Alloy prepared by the halide salt route is better than the Ti-sponge route. The refining effect of 30% Ti-sponge route is better than that of Ti-sponge route and worse than that of halide salt route.  相似文献   

9.
IFN-γ orchestrates cell-autonomous host defense against various intracellular vacuolar pathogens. IFN-γ–inducible GTPases, such as p47 immunity-related GTPases (IRGs) and p65 guanylate-binding proteins (GBPs), are recruited to pathogen-containing vacuoles, which is important for disruption of the vacuoles, culminating in the cell-autonomous clearance. Although the positive regulation for the proper recruitment of IRGs and GBPs to the vacuoles has been elucidated, the suppressive mechanism is unclear. Here, we show that Rab GDP dissociation inhibitor α (RabGDIα), originally identified as a Rab small GTPase inhibitor, is a negative regulator of IFN-γ–inducible GTPases in cell-autonomous immunity to the intracellular pathogen Toxoplasma gondii. Overexpression of RabGDIα, but not of RabGDIβ, impaired IFN-γ–dependent reduction of T. gondii numbers. Conversely, RabGDIα deletion in macrophages and fibroblasts enhanced the IFN-γ–induced clearance of T. gondii. Furthermore, upon a high dose of infection by T. gondii, RabGDIα-deficient mice exhibited a decreased parasite burden in the brain and increased resistance in the chronic phase than did control mice. Among members of IRGs and GBPs important for the parasite clearance, Irga6 and Gbp2 alone were more frequently recruited to T. gondii-forming parasitophorous vacuoles in RabGDIα-deficient cells. Notably, Gbp2 positively controlled Irga6 recruitment that was inhibited by direct and specific interactions of RabGDIα with Gbp2 through the lipid-binding pocket. Taken together, our results suggest that RabGDIα inhibits host defense against T. gondii by negatively regulating the Gbp2–Irga6 axis of IFN-γ–dependent cell-autonomous immunity.IFN-γ is an important T-helper 1 (Th1) cytokine that inhibits the survival and growth of a wide range of intracellular pathogens, such as viruses, bacteria, and parasites (1). Stimulation of innate immune cells, such as macrophages, by IFN-γ up-regulates almost 2,000 effector genes encoding various IFN-γ–inducible proteins, including immunity-related GTPases such as the MX proteins, p47 immunity-related GTPases (IRGs), and p65 guanylate-binding proteins (GBPs) (2). MX proteins and GBPs have been shown to restrict replication of viruses (3). Moreover, IRGs and GBPs play roles in host defense against vacuole-forming bacteria, including Salmonella, Chlamydia, Mycobacteria, and Listeria, by induction of antibacterial responses involving autophagic effectors, inflammasomes, and phagocytic oxidases (46).Not only viruses and bacteria but also the vacuolar parasite Toxoplasma gondii is targeted by IFN-γ–inducible GTPases. T. gondii is an obligatory protozoan parasite that causes a life-threatening toxoplasmosis in humans and animals (7). After the active invasion of host cells, T. gondii forms a nonfusogenic cytoplasmic membranous structure called the parasitophorous vacuole (PV), in which the parasite efficiently proliferates (8, 9). In terms of cellular host defense against T. gondii, interleukin-12 (IL-12) is mainly produced from macrophages and dendritic cells, in which Toll-like receptors and the chemokine receptor CCR5 recognize T. gondii-derived ligands. Also, IL-12 promotes development of IFN-γ–producing Th1 cells (1015). IFN-γ is critically required for suppression of T. gondii replication inside PVs and cell-autonomous clearance. Nitric oxide that is produced by inducible nitric oxide synthase (iNOS) in the infected cells mainly inhibits the replication (16, 17). On the other hand, T. gondii survival within infected cells is suppressed by cooperative action between IRGs and GBPs (18). Indeed, various types of cells (such as macrophages, fibroblasts, and astrocytes) derived from mice lacking IRGs [such as Irgm1 (also known as LRG-47), Irgm3 (IGTP), and Irga6 (IIGP1)] or GBPs [such as Gbp1, Gbp2, and a cluster of GBPs on murine chromosome 3 (GBPchr3; Gbp1, Gbp2, Gbp3, Gbp5, and Gbp7)] were defective for IFN-γ–mediated intracellular killing of T. gondii (1925). After the formation of PVs, GBPs and a subfamily of IRG members called GKS-IRGs [such as Irga6, Irgb6 (TGTP), and Irgb10] are shown to accumulate on PV membrane (PVM) and oligomerize dependently on GTP binding to destroy PV membrane integrity and structure (26, 27), resulting in cell-autonomous clearance by intracellular digestive pathways (20, 21, 28). The IFN-γ–mediated clearance by these GTPases is T. gondii strain-specific. Most T. gondii in North America and Europe belong to type I, type II, and type III (29). Virulent type I strain inactivates IFN-γ–inducible GTPases by effectors, such as ROP18 and ROP5, during the parasite infection (30). On the other hand, avirulent type II and type III strains are susceptible to IFN-γ–dependent clearance due to polymorphisms or reduced expression of the effectors (3134).The regulatory mechanism of how IFN-γ–induced GTPases are recruited to PVs has gradually been elucidated. In the absence of essential autophagy-related proteins Atg3, Atg5, Atg7, and Atg16L1 and of another subfamily of IRGs called GMS-IRGs, such as Irgm1 and Irgm3, the recruitment of IFN-γ–inducible GTPases and the killing of T. gondii are severely impaired (3539). Thus, Atg3/Atg5/Atg7/Atg16L1 and Irgm1/Irgm3 are required for proper targeting of GKS-IRGs and GBPs to T. gondii PVM and play positive roles in the cell-autonomous resistance to the pathogen. On the other hand, the inhibitory mechanism for the IFN-γ–inducible GTPase-dependent immunity remains unclear.To explore the molecular mechanism to control the action of IFN-γ–inducible GTPases, we have attempted to identify binding partners of Gbp2 because a single deletion of Gbp2 in mice has been shown to result in impaired in vitro and in vivo resistance to type II T. gondii (22). In the present study, we identify Rab GDP dissociation inhibitor α (RabGDIα) as a Gbp2-interacting protein. We have an interest in this protein for two reasons: One is because RabGDIα has been shown to participate in the regulation of Rab proteins, which, like GBPs, belong to another family of GTPases (40, 41), and the other is because we demonstrate that overexpression of RabGDIα in cells impairs IFN-γ–induced reduction of T. gondii numbers. We have tested whether RabGDIα acts as a regulator of IFN-γ–inducible GTPases under physiological conditions. Macrophages and fibroblasts from RabGDIα-deficient mice exhibit enhanced IFN-γ–dependent clearance of T. gondii. Moreover, the enhanced clearance by RabGDIα deficiency is accompanied by increased recruitment of Irga6 and Gbp2 to the parasite. Notably, Gbp2 is required for Irga6 recruitment, which is suppressed by direct and specific interactions of RabGDIα with Gbp2 through a lipid-binding pocket. Furthermore, a high dose of type II T. gondii infection in RabGDIα-deficient mice results in increased resistance, which is characterized by a decreased parasite burden in the brain. Taken together, our data indicate that RabGDIα plays a negative role in the Gbp2–Irga6 axis of IFN-γ–inducible GTPase-dependent cell-autonomous resistance to T. gondii.  相似文献   

10.
11.
All-inorganic Sb-perovskite has become a promising material for solar cell applications owing to its air stability and nontoxic lead-free constitution. However, the poor morphology and unexpected (001) orientation of Sb-based perovskite films strongly hinder the improvement of efficiency. In this work, two-dimensional Cs3Sb2ClxI9−x with (201) preferred orientation has been successfully fabricated by introducing thiourea (TU) to the precursor solution. The presence of the C=S functional group in TU regulates the crystallization dynamics of Cs3Sb2I9−xClx films and generates the (201) preferred orientation of Cs3Sb2ClxI9−x films, which could effectively improve the carrier transport and film morphology. As a result, the Cs3Sb2I9−xClx perovskite solar cells (PSCs) delivered a power conversion efficiency (PCE) of 2.22%. Moreover, after being stored in nitrogen at room temperature for 60 days, the devices retained above 87.69% of their original efficiency. This work demonstrates a potential pathway to achieve high-efficiency Sb-based PSCs.  相似文献   

12.
13.
14.
The electronics related to the fifth generation mobile communication technology (5G) are projected to possess significant market potential. High dielectric constant microwave ceramics used as filters and resonators in 5G have thus attracted great attention. The Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x = 2/3) ceramic system has aroused people’s interest due to its underlying excellent microwave dielectric properties. In this paper, the relationships between the dielectric constant, Nd-doped content, sintering temperature and the density of Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x = 2/3) ceramics were studied. The linear regression equation was established by statistical product and service solution (SPSS) data analysis software, and the factors affecting the dielectric constant have been analyzed by using the enter and stepwise methods, respectively. It is found that the model established by the stepwise method is practically significant with Y = −71.168 + 6.946x1 + 25.799x3, where Y, x1 and x3 represent the dielectric constant, Nd content and the density, respectively. According to this model, the influence of density on the dielectric constant is greater than that of Nd doping concentration. We bring the linear regression analysis method into the research field of microwave dielectric ceramics, hoping to provide an instructive for the optimization of ceramic technology.  相似文献   

15.
16.
Al2O3-CaO-Cr2O3 castables are used in various furnaces due to excellent corrosion resistance and sufficient early strength, but toxic Cr(VI) generation during service remains a concern. Here, we investigated the relative reactivity of analogous Cr(III) phases such as Cr2O3, (Al1−xCrx)2O3 and in situ Cr(III) solid solution with the calcium aluminate cement under an oxidizing atmosphere at various temperatures. The aim is to comprehend the relative Cr(VI) generation in the low-cement castables (Al2O3-CaO-Cr2O3-O2 system) and achieve an environment-friendly application. The solid-state reactions and Cr(VI) formation were investigated using powder XRD, SEM, and leaching tests. Compared to Cr2O3, the stability of (Al1−xCrx)2O3 against CAC was much higher, which improved gradually with the concentration of Al2O3 in (Al1−xCrx)2O3. The substitution of Cr2O3 with (Al1−xCrx)2O3 in the Al2O3-CaO-Cr2O3 castables could completely inhibit the formation of Cr(VI) compound CaCrO4 at 500–1100 °C and could drastically suppress Ca4Al6CrO16 generation at 900 to 1300 °C. The Cr(VI) reduction amounting up to 98.1% could be achieved by replacing Cr2O3 with (Al1−xCrx)2O3 solid solution. However, in situ stabilized Cr(III) phases as a mixture of (Al1−xCrx)2O3 and Ca(Al12−xCrx)O19 solid solution hardly reveal any reoxidation. Moreover, the CA6 was much more stable than CA and CA2, and it did not participate in any chemical reaction with (Al1−xCrx)2O3 solid solution.  相似文献   

17.
Estrogen has been shown to protect the heart and attenuate myocardial hypertrophy and left ventricular remodelling through as yet to be defined mechanisms. In the present study we examined concentration-dependent effects of estrogen on hypertrophy of adult rat cardiomyocytes, potential underlying mechanisms related to intracellular pH (pHi) and possible sex-dependent responses. Cardiomyocytes were isolated from adult male and female Sprague-Dawley rats and used immediately for pHi determinations or cultured and subsequently treated for 24 h with 17β-estradiol to assess hypertrophic responses. Fluorometric measurements with the pHi-sensitive dye BCECF demonstrated that at 1 pM 17β-estradiol increased pHi (+ 0.05 pH units in females and + 0.12 pH units in males, P < 0.05) by a rapid non-genomic mechanism that was blocked by the sodium-hydrogen exchange isoform 1 (NHE-1) specific inhibitor AVE-4890 (AVE, 5 μM). Treatment with 1 pM 17β-estradiol for 24 h increased cell size (females: 20%, P < 0.05; males: 29%, P < 0.05) and ANP expression (females: 414%, P < 0.05; males: 497%, P < 0.05) in a NHE-1-, and ERK1/2 MAPK-dependent manner. At 1 nM, 17β-estradiol decreased pHi (females: − 0.24 pH units, P < 0.05; males: − 0.07 pH units, P < 0.05) which was also prevented by AVE, although at this concentration the hormone had no direct hypertrophic effect but instead prevented hypertrophy induced by phenylephrine. Our results show that low levels of estrogen produce cardiomyocyte hypertrophy through ERK/NHE-1 activation and intracellular alkalinization whereas an antihypertrophic effect is seen at high concentrations. These effects may further our understanding of the role of estrogen in heart disease particularly associated with hypertrophy.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号