首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While the biomechanical properties of pedicle screws have proven to be superior in the lumbar spine, little is known concerning pullout strength of pedicle screws in comparison to hooks in the thoracic spine. In vitro biomechanical pullout testing was performed to evaluate the axial pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine with regard to surgical correction techniques in scoliosis. Nine human cadaveric thoracic spines were harvested and disarticulated. To simulate a typical posterior segmental scoliosis instrumentation, standard pedicle hooks were used between T4 and T8 and supralaminar hooks between T9 and T12 and tested against pedicle screws. The pedicle screws were loaded strictly longitudinal to their axis; the hooks were loaded perpendicular to the intended rod direction. In total, 90 pullout tests were performed. Average pullout strength of the pedicle screws was significantly higher than in the hook group (T4-T8: 531 N versus 321 N, T9-T12: 807 N versus 600 N, p < 0.05). Both screw diameter and the bone mineral density (BMD) had significant influence on the pullout strength in the screw group. For scoliosis correction, pedicle screws might be beneficial, especially for rigid thoracic curves, since they are significantly more resistant to axial pullout than both pedicle and laminar hooks.  相似文献   

2.
BACKGROUND CONTEXT: Screw pullout at the proximal or distal end of multilevel anterior instrumentation can occur clinically. Previous laboratory studies have shown that angulation of vertebral body screws increases screw pullout strength and stability in toggling. PURPOSE: To determine the effect of end screw angulation on instrumentation construct stability after cyclic, lateral bending. STUDY DESIGN: A biomechanical study in calf spines comparing two anterior spinal instrumentation constructs, one with parallel polyaxial screws and the other with angled polyaxial end screws. METHODS: Sixteen instrumented constructs were made from eight thoracic (T8-T12) and eight lumbar calf spines (L1-L5). Eight (four lumbar specimens and four thoracic specimens) had five bicortical screws inserted mid-body and parallel to the end plates. The other eight specimens had two screws angled toward the superior end plates of the top two vertebrae; the middle vertebra had a mid-body screw parallel to the end plate, and the bottom two vertebrae had screws angled towards their inferior end plates. The constructs were then cycled in lateral bending, and the displacements of the two instrumentations with a 10 N-m bending load were compared. RESULTS: After 10,000 cycles, constructs with parallel end screws exhibited twice the average displacement than those with angled screws: 5.4 mm versus 2.9 mm (p=.031). CONCLUSION: The use of angled screws at the ends of anterior constructs demonstrated increased construct stability after cycling compared with traditional transverse screws. Although angled screw insertion is technically more difficult and is possible only with specific screw designs, its use might increase instrumentation longevity.  相似文献   

3.
Wood KB  Wentorf FA  Ogilvie JW  Kim KT 《Spine》2000,25(15):1893-1898
STUDY DESIGN: A biomechanical study of the rigidity of various scoliosis constructs instrumented with and without caudal pedicle screw anchors and with none, one, or two cross-link devices. OBJECTIVES: To determine whether the increased torsional rigidity provided by distal pedicle screw fixation might make cross-linking unnecessary. SUMMARY OF BACKGROUND DATA: Pedicle screws and cross-linking devices have been shown to increase the structural rigidity of spinal constructs. Their relative contributions to scoliosis construct rigidity has not been determined. METHODS: "Short" (T2-T11) and "long" (T2-L3) scoliosis constructs were mounted on an industrially fabricated spine model and tested in a hydraulic testing machine. Four different short and four different long constructs were tested: hooks only, hooks with concave side thoracic sublaminar wires, hooks with distal pedicle screw anchors, and hooks, distal pedicle screw anchors, and concave thoracic sublaminar wires. There were four iterations for each construct tested: no cross-links, one superior cross-link at T4-T5, one inferior cross-link at T9-T10, and two cross-links. Torsional rigidity was tested by applying a rotational torque at T2. Vertebral body motion was recorded with a three-dimensional video analysis system. RESULTS: Constructs with distal pedicle screws were statistically more rigid in torsion than those with hooks as distal anchors. The additional torsional rigidity from one or more cross-links was negligible compared with that provided by pedicle screws. CONCLUSIONS: With pedicle screws as distal anchors in scoliosis constructs, cross-linking with one or two devices adds very little additional rotational stiffness and may be unnecessary in many cases.  相似文献   

4.
BACKGROUND CONTEXT: Pedicle screws have been shown to be superior to hooks in the lumbar spine, but few studies have addressed their use in the thoracic spine. PURPOSE: The objective of this study was to biomechanically evaluate the pullout strength of pedicle screws in the thoracic spine and compare them to laminar hooks. STUDY DESING/SETTING: Twelve vertebrae (T1-T12) were harvested from each of five embalmed human cadavers (n=60). The age of the donors averaged 83+8.5 years. After bone mineral density had been measured in the vertebrae (mean=0.47 g/cm(3)), spines were disarticulated. Some pedicles were damaged during disarticulation or preparation for testing, so that 100 out of a possible 120 pullout tests were performed. METHODS: Each vertebra was secured using a custom-made jig, and a posteriorly directed force was applied to either the screw or the claw. Constructs were ramped to failure at 3 mm/min using a Mini Bionix II materials testing machine (MTS, Eden Prairie, MN). RESULTS: Pedicle claws had an average pullout strength of 577 N, whereas the pullout strength of pedicle screws averaged 309 N. Hooks installed using the claw method in the thoracic spine had an overwhelming advantage in pullout strength versus pedicle screws. Even in extremely osteoporotic bone, the claw withstood 88% greater pullout load. CONCLUSION: The results of this study indicate that hooks should be considered when supplemental instrumentation is required in thoracic vertebrae, especially in osteoporotic bone.  相似文献   

5.

Background:

The objective of this cadaveric study was to analyze the effects of iatrogenic pedicle perforations from screw misplacement on the mean pullout strength of lower thoracic and lumbar pedicle screws. We also investigated the effect of bone mineral density (BMD), diameter of pedicle screws, and the region of spine on the pullout strength of pedicle screws.

Materials and Methods:

Sixty fresh human cadaveric vertebrae (D10–L2) were harvested. Dual-energy X-ray absorptiometry (DEXA) scan of vertebrae was done for BMD. Titanium pedicle screws of different diameters (5.2 and 6.2 mm) were inserted in the thoracic and lumbar segments after dividing the specimens into three groups: a) standard pedicle screw (no cortical perforation); b) screw with medial cortical perforation; and c) screw with lateral cortical perforation. Finally, pullout load of pedicle screws was recorded using INSTRON Universal Testing Machine.

Results:

Compared with standard placement, medially misplaced screws had 9.4% greater mean pullout strength and laterally misplaced screws had 47.3% lesser mean pullout strength. The pullout strength of the 6.2 mm pedicle screws was 33% greater than that of the 5.2 mm pedicle screws. The pullout load of pedicle screws in lumbar vertebra was 13.9% greater than that in the thoracic vertebra (P = 0.105), but it was not statistically significant. There was no significant difference between pullout loads of vertebra with different BMD (P = 0.901).

Conclusion:

The mean pullout strength was less with lateral misplaced pedicle screws while medial misplaced pedicle screw had more pullout strength. The pullout load of 6.2 mm screws was greater than that of 5.2 mm pedicle screws. No significant correlation was found between bone mineral densities and the pullout strength of vertebra. Similarly, the pullout load of screw placed in thoracic and lumbar vertebrae was not significantly different.  相似文献   

6.
Background contextBiomechanical studies have demonstrated increased motion in motion segments adjacent to instrumentation or arthrodesis. The effects of different configurations of hook and pedicle screw instrumentation on the biomechanical behaviors of adjacent segments have not been well documented.PurposeTo compare the effect of three different fusion constructs on adjacent segment motion proximal to lumbar arthrodesis.MethodsSeven human cadaver lumbar spines were tested in the following conditions: 1) intact; 2) L4–L5-simulated circumferential fusion (CF); 3) L4–L5-simulated fusion extended to L3 with pedicle screws; and 4) L4–L5-simulated fusion extended to L3 with sublaminar hooks. Rotation data at L2–L3, L3–L4, and L4–L5 were analyzed using both load limit control (±7.5 N·m) and displacement limit control (truncated to the greatest common angular motion of the segments for each specimen).ResultsBoth the L3–L4 and L2–L3 motion segments above the L4–L5-simulated CF had significantly increased motion in all loading planes compared with the intact spine, but no significant differences were found between L3–L4 and L2–L3 motion. When the L3–L4 segment was stabilized with pedicle screws, its motion was significantly smaller in flexion, lateral bending, and axial rotation than when stabilized with sublaminar hooks. At the same time, L2–L3 motion was significantly larger in flexion, lateral bending, and axial rotation in the pedicle screw model compared with the sublaminar hook construct.ConclusionsThe use of sublaminar hooks to stabilize the motion segment above a circumferential lumbar fusion reduced motion at the next cephalad segment compared with a similar construct using pedicle screws. The semiconstrained hook enhancement may be considered if a patient is at a risk of adjacent segment disorders.  相似文献   

7.

Purpose  

Among posterior surgical techniques for treating adolescent idiopathic scoliosis (AIS), hybrid constructs with pedicle-screw fixation in the lumbar spine and other anchors in the thoracic spine have been reported to provide to be of more physiological value in postoperative thoracic kyphosis than all-screw constructs. The Universial Clamp (UC) equipped with a soft sublaminar band is a relatively new thoracic anchor that can be used in hybrid constructs. A dedicated reduction tool that applies traction to the sublaminar band permits gentle translation of the thoracic curve to the precontoured fusion rods, which have been previously anchored distally by pedicle screws and proximally by hooks in a claw configuration. The aim of this study was to evaluate radiographic results of AIS treatment using UC hybrid constructs.  相似文献   

8.
Background contextAchieving solid implant fixation to osteoporotic bone presents a clinical challenge. New techniques and devices are being designed to increase screw–bone purchase of pedicle screws in the lumbar spine via a novel cortical bone trajectory that may improve holding screw strength and minimize loosening. Preliminary clinical evidence suggests that this new trajectory provides screw interference that is equivalent to the more traditionally directed trajectory for lumbar pedicle screws. However, a biomechanical study has not been performed to substantiate the early clinical results.PurposeEvaluate the mechanical competence of lumbar pedicle screws using a more medial-to-lateral path (ie, “cortical bone trajectory”) than the traditionally used path.Study designHuman cadaveric biomechanical study.MethodsEach vertebral level (L1–L5) was dual-energy X-ray absorptiometry (DXA) scanned and had two pedicle screws inserted. On one side, the traditional medially directed trajectory was drilled and tapped. On the contralateral side, the newly proposed cortical bone trajectory was drilled and tapped. After qCT scanning, screws were inserted into their respective trajectories and pullout and toggle testing ensued. In uniaxial pullout, the pedicle screw was withdrawn vertically from the constrained bone until failure occurred. The contralateral side was tested in the same manner. In screw toggle testing, the vertebral body was rigidly constrained and a longitudinal rod was attached to each screw head. The rod was grasped using a hydraulic grip and a quasi-static, upward displacement was implemented until construct failure. The contralateral pedicle screw was tested in the same manner. Yield pullout (N) and stiffness (N/mm) as well as failure moment (N-m) were compared and bone mineral content and bone density data were correlated with the yield pullout force.ResultsNew cortical trajectory screws demonstrated a 30% increase in uniaxial yield pullout load relative to the traditional pedicle screws (p=0.080), although mixed loading demonstrated equivalency between the two trajectories. No significant difference in construct stiffness was noted between the two screw trajectories in either biomechanical test or were differences in failure moments (p=0.354). Pedicle screw fixation did not appear to depend on bone quality (DXA) yet positive correlations were demonstrated between trajectory and bone density scans (qCT) and pullout force for both pedicle screws.ConclusionsThe current study demonstrated that the new cortical trajectory and screw design have equivalent pullout and toggle characteristics compared with the traditional trajectory pedicle screw, thus confirming preliminary clinical evidence. The 30% increase in failure load of the cortical trajectory screw in uniaxial pullout and its juxtaposition to higher quality bone justify its use in patients with poor trabecular bone quality.  相似文献   

9.
BACKGROUND CONTEXT: Locking posterior instrumentation in the cervical spine can be attached using 1) pedicle screws, 2) lateral mass screws, or 3) laminar hooks. This order of options is in order of decreasing technical difficulty and decreasing depth of fixation, and is thought to be in order of decreasing stability. PURPOSE: We sought to determine whether substantially different biomechanical stability can be achieved in a two-level construct using pedicle screws, lateral mass screws, or laminar hooks. Secondarily, we sought to quantify the differential and additional stability provided by an anterior plate. STUDY DESIGN: In vitro biomechanical flexibility experiment comparing three different posterior constructs for stabilizing the cervical spine after three-column injury. METHODS: Twenty-one human cadaveric cervical spines were divided into three groups. Group 1 received lateral mass screws at C5 and C6 and pedicle screws at C7; Group 2 received lateral mass screws at C5 and C6 and laminar hooks at C7; Group 3 received pedicle screws at C5, C6, and C7. Specimens were nondestructively tested intact, after a three-column two-level injury, after posterior C5-C7 rod fixation, after two-level discectomy and anterior plating, and after removing posterior fixation. Angular motion was recorded during flexion, extension, lateral bending, and axial rotation. Posterior hardware was subsequently failed by dorsal loading. RESULTS: Laminar hooks performed well in resisting flexion and extension but were less effective in resisting lateral bending and axial rotation, allowing greater range of motion (ROM) than screw constructs and allowing a significantly greater percentage of the two-level ROM to occur across the hook level than the screw level (p<.03). Adding an anterior plate significantly improved stability in all three groups. With combined hardware, Group 3 resisted axial rotation significantly worse than the other groups. Posterior instrumentation resisted lateral bending significantly better than anterior plating in all groups (p<.04) and resisted flexion and axial rotation significantly better than anterior plating in most cases. Standard deviation of the ROM was greater with anterior than with posterior fixation. There was no significant difference among groups in resistance to failure (p=.74). CONCLUSIONS: Individual pedicle screws are known to outperform lateral mass screws in terms of pullout resistance, but they offered no apparent advantage in terms of construct stability or failure of whole constructs. Larger standard deviations in anterior fixation imply more variability in the quality of fixation. In most loading modes, laminar hooks provided similar stability to lateral mass screws or pedicle screws; caudal laminar hooks are therefore an acceptable alternative posteriorly. Posterior two-level fixation is less variable and slightly more stable than anterior fixation. Combined instrumentation is significantly more stable than either anterior or posterior alone.  相似文献   

10.
Progressive and/or painful adult spinal deformity in the thoracolumbar and lumbar spine is sometimes treated surgically by long posterior fusions from the thoracic spine down to the pelvis, especially where there is a major thoracic curve component. Recent advances in anterior spinal instrumentation and spinal surgery technique have demonstrated the improved corrective ability offered by anterior stabilization systems, and the added benefit of limiting the number of vertebral fusion levels required for control of the deformity. The "hybrid technique" is a novel use of anterior instrumentation that applies limited anterior instrumentation down to the low lumbar spine (rods and screws), and partially overlapping short-segment posterior instrumentation to the sacrum (pedicle screws and rods). These constructs avoid posterior thoracic instrumentation and fusions, and avoid extension of posterior instrumentation to the pelvis. In the first 10 patients treated using this technique, thoracolumbar and lumbar major curve correction has averaged 71 and 82% in the immediate postoperative period (n = 7), respectively, and 59 and 68% at 2-year follow-up, respectively. The technique is an appealing and attractive alternative for treatment of thoracolumbar and lumbar scoliosis in the adult population, and avoids the requirement for applying spinal fixation to the thoracic spine and the pelvis.  相似文献   

11.
《The spine journal》2021,21(9):1580-1586
OBJECTIVESTo evaluate the differences in the pullout strength and displacement of pedicle screws in cadaveric thoracolumbar vertebrae with or without artificial demineralization.METHODSFive human lumbar and five thoracic vertebrae from one cadaver were divided into two hemivertebrae. The left-side specimens were included in the simulated osteopenic model group and the right-side bones in a control group. In the model group, we immersed each specimen in HCl (1 N) solution for 40 minutes. We measured bone mineral density (BMD) using dual-energy X-ray absorptiometry and quantitative computerized tomography. We inserted polyaxial pedicle screws into the 20 pedicles of the cadaveric lumbar and thoracic spine after measuring the BMD of the 2 hemivertebrae of each specimen. We measured the pullout strength and displacement of the screws before failure in each specimen using an Instron system.RESULTSThe average pullout strength of the simulated osteopenic model group was 76% that of the control group. In the control and model groups, the pullout strength was 1678.87±358.96 N and 1283.83±341.97 N, respectively, and the displacement was 2.07±0.34 mm and 2.65±0.50 mm, respectively (p<.05). We detected positive correlations between pullout strength and BMD in the control group and observed a negative correlation between displacement and BMD in the model group.CONCLUSIONSBy providing an anatomically symmetric counterpart, the human cadaveric model with or without demineralization can be used as a test bed for pullout tests of the spine. In the simulated osteopenic model group, pullout strength was significantly decreased compared with the untreated control group.CLINICAL SIGNIFICANCEDecreased bone mineral density may significantly reduce the pullout strength of a pedicle screw, even though the range is osteopenic rather than osoteoporotic.  相似文献   

12.
Regular hooks lack initial fixation to the spine during spinal deformity surgery. This runs the risk of posterior hook dislodgement during manipulation and correction of the spinal deformity, that may lead to loss of correction, hook migration, and post-operative junctional kyphosis. To prevent hook dislodgement during surgery, a self-retaining pedicle hook device (SPHD) is available that is made up of two counter-positioned hooks forming a monoblock posterior claw device. The initial segmental posterior fixation strength of a SPHD, however, is unknown. A biomechanical pull-out study of posterior segmental spinal fixation in a cadaver vertebral model was designed to investigate the axial pull-out strength for a SPHD, and compared to the pull-out strength of a pedicle screw. Ten porcine lumbar vertebral bodies were instrumented in pairs with two different instrumentation constructs after measuring the bone mineral density of each individual vertebra. The instrumentation constructs were extracted employing a material testing system using axial forces. The maximum pull-out forces were recorded at the time of the construct failure. Failure of the SPHD appeared in rotation and lateral displacement, without fracturing of the posterior structures. The average pull-out strength of the SPHD was 236 N versus 1,047 N in the pedicle screws (P < 0.001). The pull-out strength of the pedicle screws showed greater correlation with the BMC compared to the SPHD (P < 0.005). The SPHD showed to provide a significant inferior segmental fixation to the posterior spine in comparison to pedicle screw fixation. Despite the beneficial characteristics of the monoblock claw construct in a SPHD, that decreases the risk of posterior hook dislodgement during surgery compared to regular hooks, the SPHD does not improve the pull-out strength in such a way that it may provide a biomechanically solid alternative to pedicle screw fixation in the posterior spine.  相似文献   

13.
Biomechanical evaluation of a new fixation device for the thoracic spine   总被引:1,自引:0,他引:1  
The technology used in surgery for spinal deformity has progressed rapidly in recent years. Commonly used fixation techniques may include monofilament wires, sublaminar wires and cables, and pedicle screws. Unfortunately, neurological complications can occur with all of these, compromising the patients’ health and quality of life. Recently, an alternative fixation technique using a metal clamp and polyester belt was developed to replace hooks and sublaminar wiring in scoliosis surgery. The goal of this study was to compare the pull-out strength of this new construct with sublaminar wiring, laminar hooks and pedicle screws. Forty thoracic vertebrae from five fresh frozen human thoracic spines (T5–12) were divided into five groups (8 per group), such that BMD values, pedicle diameter, and vertebral levels were equally distributed. They were then potted in polymethylmethacrylate and anchored with metal screws and polyethylene bands. One of five fixation methods was applied to the right side of the vertebra in each group: Pedicle screw, sublaminar belt with clamp, figure-8 belt with clamp, sublaminar wire, or laminar hook. Pull-out strength was then assessed using a custom jig in a servohydraulic tester. The mean failure load of the pedicle screw group was significantly larger than that of the figure-8 clamp (P = 0.001), sublaminar belt (0.0172), and sublaminar wire groups (P = 0.04) with no significant difference in pull-out strength between the latter three constructs. The most common mode of failure was the fracture of the pedicle. BMD was significantly correlated with failure load only in the figure-8 clamp and pedicle screw constructs. Only the pedicle screw had a statistically significant higher failure load than the sublaminar clamp. The sublaminar method of applying the belt and clamp device was superior to the figure-8 method. The sublaminar belt and clamp construct compared favorably to the traditional methods of sublaminar wires and laminar hooks, and should be considered as an alternative fixation device in the thoracic spine.  相似文献   

14.
Background contextRod contouring is frequently required to allow for appropriate alignment of pedicle screw-rod constructs. When residual mismatch is still present, a rod persuasion device is often used to achieve further rod reduction. Despite its popularity and widespread use, the biomechanical consequences of this technique have not been evaluated.PurposeTo evaluate the biomechanical fixation strength of pedicle screws after attempted reduction of a rod-pedicle screw mismatch using a rod persuasion device.MethodsFifteen 3-level, human cadaveric thoracic specimens were prepared and scanned for bone mineral density. Osteoporotic (n=6) and normal (n=9) specimens were instrumented with 5.0-mm–diameter pedicle screws; for each pair of comparison level tested, the bilateral screws were equal in length, and the screw length was determined by the thoracic level and size of the vertebra (35 to 45 mm). Titanium 5.5-mm rods were contoured and secured to the pedicle screws at the proximal and distal levels. For the middle segment, the rod on the right side was intentionally contoured to create a 5-mm residual gap between the inner bushing of the pedicle screw and the rod. A rod persuasion device was then used to engage the setscrew. The left side served as a control with perfect screw/rod alignment. After 30 minutes, constructs were disassembled and vertebrae individually potted. The implants were pulled in-line with the screw axis with peak pullout strength (POS) measured in Newton (N). For the proximal and distal segments, pedicle screws on the right side were taken out and reinserted through the same trajectory to simulate screw depth adjustment as an alternative to rod reduction.ResultsPedicle screws reduced to the rod generated a 48% lower mean POS (495±379 N) relative to the controls (954±237 N) (p<.05) and significantly decreased work energy to failure (p<.05). Nearly half (n=7) of the pedicle screws had failed during the reduction attempt with visible pullout of the screw. After reduction, decreased POS was observed in both normal (p<.05) and osteoporotic (p<.05) bone. Back out and reinsertion of the screw resulted in no significant difference in mean POS, stiffness, and work energy to failure (p>.05).ConclusionsIn circumstances where a rod is not fully seated within the pedicle screw, the use of a rod persuasion device decreases the overall POS and work energy to failure of the screw or results in outright failure. Further rod contouring or correction of pedicle screw depth of insertion may be warranted to allow for appropriate alignment of the longitudinal rods.  相似文献   

15.
Wang  Tianyi  Fan  Ning  Zang  Lei  Yuan  Shuo  Du  Peng  Si  Fangda  Wang  Aobo  Li  Jian  Kong  Xiaochuan  Zhu  Wenyi 《European spine journal》2023,32(1):167-180
Purpose

This updated meta-analysis aimed to compare single and dual growing rods, including both traditional growing rod and magnetically controlled growing rod (MCGR) used in the treatment of early-onset scoliosis (EOS) with regard to deformity correction, spinal growth, and complications.

Methods

This meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines using articles extracted from PubMed, EMBASE databases, and Cochrane Library databases. Only articles reporting the complications and the imaging parameters before and after growing rods in the patients diagnosed with EOS were included. We extracted and statistically analyzed the data deemed relevant for this study, and used the Newcastle–Ottawa Scale to assess the risk of bias in each study. Data synthesis and statistical analyses were performed using R software.

Results

Fifteen eligible articles containing 409 participants (n = 185, single growing rods; n = 224, dual growing rods) were identified. The meta-analysis found no significant differences in the preoperative and postoperative major Cobb angle, T1–S1 distance, thoracic kyphosis, and coronal balance between single and dual rods groups. The final follow-up major Cobb angle (P = 0.01; standardized mean difference, − 0.42 [95% confidence interval (CI), − 0.74 to − 0.10]; I2 = 23%) was significantly smaller in dual rods group than single-rod group. However, no significant differences in the correction rate of angle (major Cobb angle and kyphosis angle) and changes in the T1–S1 distance between the two groups were observed. Moreover, there were no significant differences in the metalwork failure, infection, or proximal junctional kyphosis between single and dual rods groups. However, total complications (P = 0.03; risk ratio (RR), 0.79 [95% CI, 0.63–0.98]; I2 = 29%) and distraction failure in MCGR (P = 0.04; RR, 0.38 [95% CI, 0.14–0.98]; I2 = 11%) were significantly lower in dual rods group than single-rod group.

Conclusion

This updated meta-analysis found that patients with dual growing rods had fewer complications, especially distraction failure in MCGR, than those with single growing rod. However, none of deformity correction, spinal growth, or other complications differed between single and dual growing rods. Therefore, we believe that dual growing rods do not provide strong advantages over single growing rod in the treatment of EOS.

  相似文献   

16.
17.
Posterior correction and fusion of scoliosis with multisegmental instrumentation systems was developed by Cotrel-Dubousset in the 1980s. Initially correction and instrumentation was performed using hooks only. Later pedicle screws were implemented first for the lumbar and then for the thoracic spine. Nowadays instrumentation based on pedicle screws only is well established for posterior scoliosis surgery. Biomechanical studies demonstrated higher pull-out forces for pedicle than for hook constructs. In clinical studies several authors reported better Cobb angle correction of the primary and the secondary curves and less loss of correction in pedicle screw versus hook instrumentations. Furthermore, pedicle screw instrumentation allows fewer segments to be fused, especially caudally, and thus saving mobile segments. In most of these publications there were no differences in operation time, blood loss and complication rates. In summary, there is better curve correction without an increased risk using multisegmental pedicle screw instrumentation in modern posterior scoliosis surgery.  相似文献   

18.

Background context

Spinal fusion is a commonly performed surgical procedure. It is used to treat a variety of spinal pathologies, including degenerative disease, trauma, spondylolisthesis, and deformities. A mechanically stable spine provides an ideal environment for the formation of a fusion mass. Instrumented spinal fusion allows early ambulation with minimal need for a postoperative external immobilizer. Several biomechanical and clinical studies have evaluated the stability offered by different posterior instrumentation techniques and the effects of reduced instrumentation.

Purpose

The aim of the study was to compare the biomechanics of a novel pedicle and translaminar facet screw (TLFS) construct. Also, in this study, comparisons were made with the more common pedicle screw/TLFS constructs for posterior fixation.

Study design

Human cadaveric lumbar spines were tested in an in vitro flexibility experiment to investigate the biomechanical stability provided by a novel pedicle and TLFS construct after transforaminal lumbar interbody fusion (TLIF).

Methods

Seven fresh human lumbar spines (L2–L5) were tested by applying pure moments of ±8 Nm. After intact specimen testing, a left-sided TLIF with a radiolucent interbody spacer was performed at L3–L4. Each specimen was then tested for the following constructs: bilateral pedicle screws (BPS) and rods at L3–L4; unilateral pedicle screws (UPS) and rods at L3–L4; UPS and rods and TLFS at L3–L4 (UPS+TLFS); and unilateral single pedicle screw and TLFS and rod at L3–L4 (V construct). The L3–L4 range of motion (ROM) and stiffness for each construct were obtained by applying pure moments in flexion, extension, lateral bending, and axial rotation.

Results

All instrumented constructs significantly reduced ROM in flexion-extension and lateral bending compared with the intact specimen. In axial rotation, only BPS constructs significantly reduced ROM compared with intact specimen. The V construct was able to achieve more reduction in ROM compared with UPS construct and was comparable to UPS+TLFS construct. Unilateral pedicle screws construct was the least stable in all loading modes and was significantly different than BPS construct in lateral bending.

Conclusions

The V construct exhibited enhanced stability compared with UPS construct in all loading modes. It provides bilateral fixation and preserves the anatomic integrity of the superior facet joint. The novel construct may offer advantages of less invasiveness, significant reduction in operation time, duration of hospitalization, and costs of implants, which would require further clinical evaluation.  相似文献   

19.
Background contextSurgeons continue to debate the need for a cross-link (CL) in posterior spinal instrumentation constructs with segmental pedicle screws in adolescent idiopathic scoliosis (AIS). Advantage of CLs is increased stiffness of the construct, and disadvantages include added expense and risk of late operative-site pain and pseudarthrosis.PurposeTo compare the effectiveness of using CLs versus using no cross-links (NCLs) in posterior segmental instrumentation in AIS.Study designRetrospective comparative study, level of evidence 3.Patient sampleSeventy-five AIS patients less than 21 years of age, who underwent posterior spinal instrumentation with segmental pedicle screws (25 with CLs and 50 with NCLs) at a single institution with 2-year follow-up, are described.Outcome measuresPhysiologic measures include imaging: thoracic and lumbar Cobb angles, correction rate, apical vertebral translation (AVT), and apical vertebral rotation (AVR); self-report measures include Scoliosis Research Society (SRS) domain outcome scores.MethodsPreoperative (pre-op) and postoperative first erect, 1-year, and 2-year follow-up radiographs were measured. Instrumentation-related complications and normalized SRS scores were recorded. Independent sample t test, χ2 test, and repeated-measures analysis of variance were used for analyses.ResultsThe average age at surgery was 14 years, the mean pre-op Cobb angle was 57°, and the mean number of levels fused was 10.9. The groups were similar preoperatively with respect to age, sex, Lenke curve, Cobb angle, AVT, and Risser grade and were similar intraoperatively for levels fused and anchor density. There was no difference in AVR, Cobb angle, correction rate, or AVT between the groups (p>.05). Complications included one wound infection in the CL group and one painful scar in the NCL group. There were no differences in SRS domain scores.ConclusionWe observed no differences in maintenance of correction, SRS scores, and complications with or without cross-linking posterior segmental instrumentation in AIS patients over 2-year follow-up. Further follow-up is necessary.  相似文献   

20.
Background contextConditions of the atlantoaxial complex requiring internal stabilization can result from trauma, malignancy, inflammatory diseases, and congenital malformation. Several techniques have been used for stabilization and fusion. Posterior wiring is biomechanically inferior to screw fixation. C1 lateral mass screws and C1 posterior arch screws are used for instrumentation of the atlas. Previous studies have shown that unicortical C1 lateral mass screws are biomechanically stable for fixation. No study has evaluated the biomechanical stability of C1 posterior arch screws or compared the two techniques.PurposeThe purpose of the study was to assess the differences in the pullout strength between C1 lateral mass screws and C1 posterior arch screws.Study designBiomechanical testing of pullout strengths of the two atlantal screw fixation techniques.MethodsThirteen fresh human cadaveric C1 vertebrae were harvested, stripped of soft tissues, evaluated with computed tomography for anomalies, and instrumented with unicortical C1 lateral mass screws on one side and unicortical C1 posterior arch screws on the other. Screw placement was confirmed with postinstrumentation fluoroscopy. Specimens were divided in the sagittal plane and potted in polymethylmethacrylate. Axial load to failure was applied with a material testing device. Load displacement curves were obtained, and the results were compared with Student t test. DePuy Spine, Inc. (Raynham, MA, USA) provided the hardware used in this study.ResultsMean pullout strength of the C1 lateral mass screws was 821 N (range 387?1,645 N±standard deviation [SD] 364). Mean pullout strength of the posterior arch screws was 1,403 N (range 483?2,200 N±SD 609 N). The difference was significant (p=.009). Five samples (38%) in the posterior arch group experienced bone failure before screw pullout.ConclusionsBoth unicortical lateral mass screws and unicortical posterior arch screws are viable options for fixation in the atlas. Unicortical posterior arch screws have superior resistance to pullout via axial load compared with unicortical lateral mass screws in the atlas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号