首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clostridium perfringens type A isolates causing food poisoning have a chromosomal enterotoxin gene (cpe), while C. perfringens type A isolates responsible for non-food-borne human gastrointestinal diseases carry a plasmid cpe gene. In the present study, the plasmid cpe locus of the type A non-food-borne-disease isolate F4969 was sequenced to design primers and probes for comparative PCR and Southern blot studies of the cpe locus in other type A isolates. Those analyses determined that the region upstream of the plasmid cpe gene is highly conserved among type A isolates carrying a cpe plasmid. The organization of the type A plasmid cpe locus was also found to be unique, as it contains IS1469 sequences located similarly to those in the chromosomal cpe locus but lacks the IS1470 sequences found upstream of IS1469 in the chromosomal cpe locus. Instead of those upstream IS1470 sequences, a partial open reading frame potentially encoding cytosine methylase (dcm) was identified upstream of IS1469 in the plasmid cpe locus of all type A isolates tested. Similar dcm sequences were also detected in several cpe-negative C. perfringens isolates carrying plasmids but not in type A isolates carrying a chromosomal cpe gene. Contrary to previous reports, sequences homologous to IS1470, rather than IS1151, were found downstream of the plasmid cpe gene in most type A isolates tested. Those IS1470-like sequences reside in about the same position but are oppositely oriented and defective relative to the IS1470 sequences found downstream of the chromosomal cpe gene. Collectively, these and previous results suggest that the cpe plasmid of many type A isolates originated from integration of a cpe-containing genetic element near the dcm sequences of a C. perfringens plasmid. The similarity of the plasmid cpe locus in many type A isolates is consistent with horizontal transfer of a common cpe plasmid among C. perfringens type A strains.  相似文献   

2.
Clostridium perfringens enterotoxin (CPE) is responsible for the diarrheal and cramping symptoms of human C. perfringens type A food poisoning. CPE-producing C. perfringens isolates have also recently been associated with several non-food-borne human gastrointestinal (GI) illnesses, including antibiotic-associated diarrhea and sporadic diarrhea. The current study has used restriction fragment length polymorphism (RFLP) and pulsed-field gel electrophoresis (PFGE) analyses to compare the genotypes of 43 cpe-positive C. perfringens isolates obtained from diverse sources. All North American and European food-poisoning isolates examined in this study were found to carry a chromosomal cpe, while all non-food-borne human GI disease isolates characterized in this study were determined to carry their cpe on an episome. Collectively, these results provide the first evidence that distinct subpopulations of cpe-positive C. perfringens isolates may be responsible for C. perfringens type A food poisoning versus CPE-associated non-food-borne human GI diseases. If these putative associations are confirmed in additional surveys, cpe RFLP and PFGE genotyping assays may facilitate the differential diagnosis of food-borne versus non-food-borne CPE-associated human GI illnesses and may also be useful epidemiologic tools for identifying reservoirs or transmission mechanisms for the subpopulations of cpe-positive isolates specifically responsible for CPE-associated food-borne versus non-food-borne human GI diseases.  相似文献   

3.
The ability of Clostridium perfringens type C to cause human enteritis necroticans (EN) is attributed to beta toxin (CPB). However, many EN strains also express C. perfringens enterotoxin (CPE), suggesting that CPE could be another contributor to EN. Supporting this possibility, lysate supernatants from modified Duncan-Strong sporulation (MDS) medium cultures of three CPE-positive type C EN strains caused enteropathogenic effects in rabbit small intestinal loops, which is significant since CPE is produced only during sporulation and since C. perfringens can sporulate in the intestines. Consequently, CPE and CPB contributions to the enteropathogenic effects of MDS lysate supernatants of CPE-positive type C EN strain CN3758 were evaluated using isogenic cpb and cpe null mutants. While supernatants of wild-type CN3758 MDS lysates induced significant hemorrhagic lesions and luminal fluid accumulation, MDS lysate supernatants of the cpb and cpe mutants caused neither significant damage nor fluid accumulation. This attenuation was attributable to inactivating these toxin genes since complementing the cpe mutant or reversing the cpb mutation restored the enteropathogenic effects of MDS lysate supernatants. Confirming that both CPB and CPE are needed for the enteropathogenic effects of CN3758 MDS lysate supernatants, purified CPB and CPE at the same concentrations found in CN3758 MDS lysates also acted together synergistically in rabbit small intestinal loops; however, only higher doses of either purified toxin independently caused enteropathogenic effects. These findings provide the first evidence for potential synergistic toxin interactions during C. perfringens intestinal infections and support a possible role for CPE, as well as CPB, in some EN cases.  相似文献   

4.
Clostridium perfringens type A isolates carrying the enterotoxin (cpe) gene are important causes of both food poisoning and non-food-borne diarrheas in humans. In North America and Europe, food poisoning isolates were previously shown to carry a chromosomal cpe gene, while non-food-borne gastrointestinal (GI) disease isolates from those two geographic locations were found to have a plasmid cpe gene. In this report, we describe the development of an economical multiplex PCR cpe genotyping assay that works with culture lysates to distinguish among type A isolates carrying a chromosomal cpe gene, a plasmid cpe gene with a downstream IS1470-like sequence, or a plasmid cpe gene with a downstream IS1151 sequence. When this multiplex PCR assay was applied in molecular epidemiologic studies, it was found that (i) all 57 examined type A isolates with a plasmid cpe gene have either IS1470-like or IS1151 sequences downstream of the plasmid cpe gene; (ii) an IS1470-like sequence, rather than an IS1151 sequence, is more commonly present downstream of the plasmid cpe gene (particularly in North American non-food-borne human GI disease isolates); and (iii) as previously shown in the United States and Europe, isolates carrying the chromosomal cpe gene also appear to be the major cause of C. perfringens food poisoning in Japan. The superiority of this new multiplex PCR assay over existing cpe genotyping approaches should facilitate further molecular epidemiologic investigations of C. perfringens enterotoxin-associated GI illnesses and their associated cpe-positive type A isolates.  相似文献   

5.
The important veterinary pathogen Clostridium perfringens type B is unique for producing the two most lethal C. perfringens toxins, i.e., epsilon-toxin and beta-toxin. Our recent study (K. Miyamoto, J. Li, S. Sayeed, S. Akimoto, and B. A. McClane, J. Bacteriol. 190:7178-7188, 2008) showed that most, if not all, type B isolates carry a 65-kb epsilon-toxin-encoding plasmid. However, this epsilon-toxin plasmid did not possess the cpb gene encoding beta-toxin, suggesting that type B isolates carry at least one additional virulence plasmid. Therefore, the current study used Southern blotting of pulsed-field gels to localize the cpb gene to ∼90-kb plasmids in most type B isolates, although a few isolates carried a ∼65-kb cpb plasmid distinct from their etx plasmid. Overlapping PCR analysis then showed that the gene encoding the recently discovered TpeL toxin is located ∼3 kb downstream of the plasmid-borne cpb gene. As shown earlier for their epsilon-toxin-encoding plasmids, the beta-toxin-encoding plasmids of type B isolates were found to carry a tcp locus, suggesting that they are conjugative. Additionally, IS1151-like sequences were identified upstream of the cpb gene in type B isolates. These IS1151-like sequences may mobilize the cpb gene based upon detection of possible cpb-containing circular transposition intermediates. Most type B isolates also possessed a third virulence plasmid that carries genes encoding urease and lambda-toxin. Collectively, these findings suggest that type B isolates are among the most plasmid dependent of all C. perfringens isolates for virulence, as they usually carry three potential virulence plasmids.Isolates of the Gram-positive, spore-forming anaerobe Clostridium perfringens are classified (31) into five different types (A to E), depending upon their production of four (alpha, beta, epsilon, and iota) lethal typing toxins. All C. perfringens types produce alpha-toxin; in addition, type B isolates produce both beta- and epsilon-toxins, type C isolates produce beta-toxin, type D isolates produce epsilon-toxin and type E isolates produce iota-toxin. Except for the chromosomal alpha-toxin gene (plc), all C. perfringens typing toxins are encoded by genes resident on large plasmids (11, 22, 23, 32, 33). Large plasmids can also encode other C. perfringens toxins, such as the enterotoxin (CPE) or beta2-toxin (8, 9, 14, 35), as well as other potential virulence factors such as urease (12, 23).The large virulence plasmids of C. perfringens are only now being characterized (23, 28, 29, 33). The first analyzed, and still most studied, C. perfringens toxin plasmids are the CPE-encoding plasmids of type A isolates (14, 28). In type A isolates, most plasmids carrying the enterotoxin gene (cpe) belong to one of two families: (i) a 75.3-kb plasmid with a cpe locus containing an IS1151 element and the cpb2 gene encoding beta2-toxin or (ii) a 70.5-kb plasmid that lacks the cpb2 gene and carries a cpe locus with an IS1470-like sequence instead of an IS1151 element. Sequence comparisons (28) revealed that these two cpe plasmid families of type A isolates share a conserved region of ∼35 kb that includes the transfer of clostridial plasmid (tcp) locus, which is related to the conjugative transposon Tn916. Confirming that cpe plasmids can be conjugative, mixed mating studies have directly demonstrated transfer of the cpe plasmid from type A isolate F4969 to other C. perfringens isolates (5). A similar tcp locus is also shared by the tetracycline resistance plasmid pCW3 and several other toxin plasmids (2, 23, 28, 29, 33), as discussed below. Mutagenesis analyses demonstrated the importance of several genes in the tcp locus for conjugative transfer of pCW3 (2) and, by extension, presumably the tcp-carrying, conjugative toxin plasmids, such as the cpe plasmid of isolate F4969 (5) and some etx plasmids of type D isolates (19).Although the sequence of an iota-toxin-encoding plasmid has not yet been published, pulsed-field gel electrophoresis (PFGE) and PCR analyses determined that these plasmids are typically larger than the cpe plasmids of type A isolates (23). Specifically, iota-toxin plasmids are often ≥100 kb in size, reaching up to a size of ∼135 kb. These plasmids of type E isolates often encode, in addition to the iota-toxin, other potential virulence factors such as lambda-toxin and urease. These plasmids also carry a tcp locus, suggesting that they may be capable of conjugative transfer. Interestingly, many iota-toxin plasmids appear to be related, sometimes extensively, to the cpe plasmids of type A isolates. Consequently, it has been suggested (3, 23) that many iota-toxin plasmids arose from insertion of an iota-toxin gene-carrying mobile genetic element near the cpe gene on a tcp-carrying type A plasmid. This insertional event apparently inactivated the cpe gene, so most or all type E isolates now carry silent cpe genes (3, 23).The epsilon-toxin-encoding plasmids of type D isolates show considerable size variations (33), ranging from ∼48 kb to ∼110 kb. These size variations in type D etx plasmids reflect, in part, differences among their toxin gene carriage. The small 48-kb etx plasmids present in some type D isolates typically lack either the cpe gene or the cpb2 gene (encoding beta2-toxin), while the larger (>75-kb) etx plasmids found in other type D isolates can also carry the cpe gene, the cpb2 gene, or both the cpe and cpb2 genes. Consequently, some type D isolates carry a toxin plasmid encoding only etx, other type D isolates carry a toxin plasmid with up to three different functional toxin genes (etx, cpb2, and cpe), and the remaining type D isolates carry their etx, cpe, and cpb2 genes on up to three distinct plasmids.C. perfringens type B isolates uniquely produce both beta- and epsilon-toxins, the two most lethal C. perfringens toxins (13). These bacteria are important pathogens of sheep but also cause disease in goats, calves, and foals (26). For unknown reasons, diseases caused by C. perfringens type B isolates apparently are restricted to certain geographic regions (24, 25, 26). C. perfringens type B enterotoxemias initiate when these bacteria proliferate in the gut, accompanied by toxin production. Those toxins initially affect the intestines but later are absorbed and act systemically. Studies from our group (13) showed that beta- and epsilon-toxins each contribute to lethality in a mouse model involving intravenous injection of type B culture supernatants.There has been characterization of only one type B virulence plasmid to date. Our recent study (29) showed that most, if not all, type B isolates carry a common etx plasmid of ∼65 kb that also possesses a tcp locus and a cpb2 gene, although not the cpb gene encoding beta-toxin. Interestingly, the type B etx plasmid is highly (80%) related to the ∼75-kb cpe- and cpb2-carrying plasmid found in some type A isolates (28). The ∼65-kb etx plasmid present in most, if not all, type B isolates is also carried by a minority of type D isolates (29).The absence of the cpb gene from their etx plasmids suggested that most type B isolates might carry additional virulence plasmids. Therefore, the current study was performed to better address virulence plasmid carriage and diversity among type B disease isolates.  相似文献   

6.
Clostridium perfringens type C isolates cause enteritis necroticans in humans or necrotizing enteritis and enterotoxemia in domestic animals. Type C isolates always produce alpha toxin and beta toxin but often produce additional toxins, e.g., beta2 toxin or enterotoxin. Since plasmid carriage of toxin-encoding genes has not been systematically investigated for type C isolates, the current study used Southern blot hybridization of pulsed-field gels to test whether several toxin genes are plasmid borne among a collection of type C isolates. Those analyses revealed that the surveyed type C isolates carry their beta toxin-encoding gene (cpb) on plasmids ranging in size from ∼65 to ∼110 kb. When present in these type C isolates, the beta2 toxin gene localized to plasmids distinct from the cpb plasmid. However, some enterotoxin-positive type C isolates appeared to carry their enterotoxin-encoding cpe gene on a cpb plasmid. The tpeL gene encoding the large clostridial cytotoxin was localized to the cpb plasmids of some cpe-negative type C isolates. The cpb plasmids in most surveyed isolates were found to carry both IS1151 sequences and the tcp genes, which can mediate conjugative C. perfringens plasmid transfer. A dcm gene, which is often present near C. perfringens plasmid-borne toxin genes, was identified upstream of the cpb gene in many type C isolates. Overlapping PCR analyses suggested that the toxin-encoding plasmids of the surveyed type C isolates differ from the cpe plasmids of type A isolates. These findings provide new insight into plasmids of proven or potential importance for type C virulence.Clostridium perfringens isolates are classified into five toxinotypes (A to E) based upon the production of four (α, β, ɛ, and ι) typing toxins (29). Each toxinotype is associated with different diseases affecting humans or animals (25). In livestock species, C. perfringens type C isolates cause fatal necrotizing enteritis and enterotoxemia, where toxins produced in the intestines absorb into the circulation to damage internal organs. Type C-mediated animal diseases result in serious economic losses for agriculture (25). In humans, type C isolates cause enteritis necroticans, which is also known as pigbel or Darmbrand (15, 17), an often fatal disease that involves vomiting, diarrhea, severe abdominal pain, intestinal necrosis, and bloody stools. Acute cases of pigbel, resulting in rapid death, may also involve enterotoxemia (15).By definition, type C isolates must produce alpha and beta toxins (24, 29). Alpha toxin, a 43-kDa protein encoded by the chromosomal plc gene, has phospholipase C, sphingomyelinase, and lethal properties (36). Beta toxin, a 35-kDa polypeptide, forms pores that lyse susceptible cells (28, 35). Recent studies demonstrated that beta toxin is necessary for both the necrotizing enteritis and lethal enterotoxemia caused by type C isolates (33, 37). Besides alpha and beta toxins, type C isolates also commonly express beta2 toxin, perfringolysin O, or enterotoxin (11).There is growing appreciation that naturally occurring plasmids contribute to both C. perfringens virulence and antibiotic resistance. For example, all typing toxins, except alpha toxin, can be encoded by genes carried on large plasmids (9, 19, 26, 30-32). Other C. perfringens toxins, such as the enterotoxin or beta2 toxin, can also be plasmid encoded (6, 8, 12, 34). Furthermore, conjugative transfer of several C. perfringens antibiotic resistance plasmids or toxin plasmids has been demonstrated, supporting a key role for plasmids in the dissemination of virulence or antibiotic resistance traits in this bacterium (2).Despite their pathogenic importance, the toxin-encoding plasmids of C. perfringens only recently came under intensive study (19, 26, 27, 31, 32). The first carefully analyzed C. perfringens toxin plasmids were two plasmid families carrying the enterotoxin gene (cpe) in type A isolates (6, 8, 12, 26). One of those cpe plasmid families, represented by the ∼75-kb prototype pCPF5603, has an IS1151 sequence present downstream of the cpe gene and also carries the cpb2 gene, encoding beta2 toxin. A second cpe plasmid family of type A isolates, represented by the ∼70-kb prototype pCPF4969, lacks the cpb2 gene and carries an IS1470-like sequence, rather than an IS1151 sequence, downstream of the cpe gene. The pCPF5603 and pCPF4969 plasmid families share an ∼35-kb region that includes transfer of a clostridial plasmid (tcp) locus (26). The presence of this tcp locus likely explains the demonstrated conjugative transfer of some cpe plasmids (5) since a similar tcp locus was shown to mediate conjugative transfer of the C. perfringens tetracycline resistance plasmid pCW3 (2).The iota toxin-encoding plasmids of type E isolates are typically larger (up to ∼135 kb) than cpe plasmids of type A isolates (19). Plasmids carrying iota toxin genes often encode other potential virulence factors, such as lambda toxin and urease, as well as a tcp locus (19). Many iota toxin plasmids of type E isolates share, sometimes extensively, sequences with cpe plasmids of type A isolates (19). It has been suggested that many iota toxin plasmids evolved from the insertion of a mobile genetic element carrying the iota toxin genes near the plasmid-borne cpe gene in a type A isolate, an effect that silenced the cpe gene in many type E isolates (3, 19).Plasmids carrying the epsilon toxin gene (etx) vary from ∼48 kb to ∼110 kb among type D isolates (32). In part, these etx plasmid size variations in type D isolates reflect differences in toxin gene carriage. For example, the small ∼48-kb etx plasmids present in some type D isolates lack both the cpe gene and the cpb2 gene. In contrast, larger etx plasmids present in other type D isolates often carry the cpe gene, the cpb2 gene, or both the cpe and cpb2 genes. Thus, the virulence plasmid diversity of type D isolates spans from carriage of a single toxin plasmid, possessing from one to three distinct toxin genes, to carriage of three different toxin plasmids.In contrast to the variety of etx plasmids found among type D isolates, type B isolates often or always share the same ∼65-kb etx plasmid, which is related to pCPF5603 but lacks the cpe gene (27). This common etx plasmid of type B isolates, which carries a cpb2 gene and the tcp locus, is also present in a few type D isolates. Most type B isolates surveyed to date carry their cpb gene, encoding beta toxin, on an ∼90-kb plasmid, although a few of those type B isolates possess an ∼65-kb cpb plasmid distinct from their ∼65-kb etx plasmid (31).To our knowledge, the cpb gene has been mapped to a plasmid (uncharacterized) in only a single type C strain (16). Furthermore, except for the recent localization of the cpe gene to plasmids in type C strains (20), plasmid carriage of other potential toxin genes in type C isolates has not been investigated. Considering the limited information available regarding the toxin plasmids of type C isolates, our study sought to systematically characterize the size, diversity, and toxin gene carriage of toxin plasmids in a collection of type C isolates. Also, to gain insight into possible mobilization of the cpb gene by insertion sequences or conjugative transfer, the presence of IS1151 sequences or the tcp locus on type C toxin plasmids was investigated.  相似文献   

7.
The prevalences of various genotypes of enterotoxin gene-carrying (cpe-positive) Clostridium perfringens type A in 24 different food poisoning outbreaks were 75% (chromosomal IS1470-cpe), 21% (plasmid-borne IS1470-like-cpe), and 4% (plasmid-borne IS1151-cpe). These results show that C. perfringens type A carrying the plasmid-borne cpe is a common cause of food poisoning.  相似文献   

8.
Several Clostridium perfringens genotype E isolates, all associated with hemorrhagic enteritis of neonatal calves, were identified by multiplex PCR. These genotype E isolates were demonstrated to express α and ι toxins, but, despite carrying sequences for the gene (cpe) encoding C. perfringens enterotoxin (CPE), were unable to express CPE. These silent cpe sequences were shown to be highly conserved among type E isolates. However, relative to the functional cpe gene of type A isolates, these silent type E cpe sequences were found to contain nine nonsense and two frameshift mutations and to lack the initiation codon, promoters, and ribosome binding site. The type E animal enteritis isolates carrying these silent cpe sequences do not appear to be clonally related, and their silent type E cpe sequences are always located, near the ι toxin genes, on episomal DNA. These findings suggest that the highly conserved, silent cpe sequences present in most or all type E isolates may have resulted from the recent horizontal transfer of an episome, which also carries ι toxin genes, to several different type A C. perfringens isolates.  相似文献   

9.
Previous studies showed that Clostridium perfringens type D animal disease strain CN3718 uses NanI sialidase for adhering to enterocyte-like Caco-2 cells. The current study analyzed whether NanI is similarly important when type A and C human intestinal disease strains attach to Caco-2 cells. A PCR survey determined that the nanI gene was absent from typical type A food poisoning (FP) strains carrying a chromosomal enterotoxin (CPE) gene or the genetically related type C Darmbrand (Db) strains. However, the nanI gene was present in type A strains from healthy humans, type A strains causing CPE-associated antibiotic-associated diarrhea (AAD) or sporadic diarrhea (SD), and type C Pig-Bel strains. Consistent with NanI sialidase being the major C. perfringens sialidase when produced, FP and Db strains had little supernatant sialidase activity compared to other type A or C human intestinal strains. All type A and C human intestinal strains bound to Caco-2 cells, but NanI-producing strains had higher attachment levels. When produced, NanI can contribute to host cell attachment of human intestinal disease strains, since a nanI null mutant constructed in type A SD strain F4969 had lower Caco-2 cell adhesion than wild-type F4969 or a complemented strain. Further supporting a role for NanI in host cell attachment, sialidase inhibitors reduced F4969 adhesion to Caco-2 cells. Collectively, these results suggest that NanI may contribute to the intestinal attachment and colonization needed for the chronic diarrhea of CPE-associated AAD and SD, but this sialidase appears to be dispensable for the acute pathogenesis of type A FP or type C enteritis necroticans.  相似文献   

10.
11.
The epidemiological and bacteriological investigations on four foodborne outbreaks caused by a new type of enterotoxin-producing Clostridium perfringens are described. C. perfringens isolated from patients of these outbreaks did not produce any known enterotoxin and did not carry the C. perfringens enterotoxin gene. However, the culture filtrates of these isolates induced the accumulation of fluid in rabbit ileal loop tests. The molecular weight of the new enterotoxin may be between 50,000 and 100,000, although the known C. perfringens enterotoxin is ca. 35,000. This new enterotoxin was heat labile, and its biological activities were inactivated by heating for 5 min at 60°C. The new enterotoxin was sensitive to pH values higher than 11.0 and protease treatment but was resistant to trypsin treatment. These results suggest that the new enterotoxin may be a protein. Although C. perfringens enterotoxin induced morphological changes in Vero cells, the changes induced by the new enterotoxin differed from those by the known C. perfringens enterotoxin. The new enterotoxin also induced morphological changes in L929 cells, whereas the known C. perfringens enterotoxin did not, because L929 cells lacked an appropriate enterotoxin receptor. Although C. perfringens enterotoxin is recognized as the only diarrheagenic toxin responsible for C. perfringens foodborne outbreaks, the results of the present study indicate that C. perfringens isolated from these four outbreaks produced a new type of enterotoxin.  相似文献   

12.
13.
Abstract

The bacterial pathogen Clostridium perfringens is the most prolific toxin-producing species within the clostridial group. The toxins are responsible for a wide variety of human and veterinary diseases, many of which are lethal. C. perfringens type A strains are also associated with one of the most common forms of food-borne illness (FBI). The toxicosis results from the production and gastrointestinal absorption of a protein-enterotoxin known as CPE. The regulation, expression, and mechanism of action of CPE has been of considerable interest as the protein is unique. CPE expression is sporulation associated, although the mechanism of cpe-gsne regulation is not fully elucidated. Cloning studies suggest the involvement of global regulators, but these have not been identified. Although very few type A strains are naturally enterotoxigenic, the cpe gene appears highly conserved. In FBI strains, cpe is chromosomally encoded; whereas in veterinary strains, cpe may be plasmid-encoded. Variation in cpe location suggests the involvement of transposable genetic element(s). CPE-like proteins are produced by some C. perfringens types C and D; and silent remnants of the cpe gene can be found in C. perfringens type E strains associated with the iota toxin gene. CPE has received attention for its biomedical importance. The toxin has been implicated in sudden infant death syndrome (SIDS) because of its superantigenic nature. CPE can destroy a wide variety of cell types both in vitro and in vivo, suggesting that it could have potential in the construction of immunotoxins to neoplastic cells. It is obvious that CPE is an interesting protein that deserves continued attention.  相似文献   

14.
Clostridium perfringens is a causative agent of food-borne gastroenteritis for which C. perfringens enterotoxin (CPE) has been considered an essential factor. Recently, we experienced two outbreaks of food-borne gastroenteritis in which non-CPE producers of C. perfringens were strongly suspected to be the cause. Here, we report a novel enterotoxin produced by C. perfringens isolates, BEC (binary enterotoxin of C. perfringens). Culture supernatants of the C. perfringens strains showed fluid-accumulating activity in rabbit ileal loop and suckling mouse assays. Purification of the enterotoxic substance in the supernatants and high-throughput sequencing of genomic DNA of the strains revealed BEC, composed of BECa and BECb. BECa and BECb displayed limited amino acid sequence similarity to other binary toxin family members, such as the C. perfringens iota toxin. The becAB genes were located on 54.5-kb pCP13-like plasmids. Recombinant BECb (rBECb) alone had fluid-accumulating activity in the suckling mouse assay. Although rBECa alone did not show enterotoxic activity, rBECa enhanced the enterotoxicity of rBECb when simultaneously administered in suckling mice. The entertoxicity of the mutant in which the becB gene was disrupted was dramatically decreased compared to that of the parental strain. rBECa showed an ADP-ribosylating activity on purified actin. Although we have not directly evaluated whether BECb delivers BECa into cells, rounding of Vero cells occurred only when cells were treated with both rBECa and rBECb. These results suggest that BEC is a novel enterotoxin of C. perfringens distinct from CPE, and that BEC-producing C. perfringens strains can be causative agents of acute gastroenteritis in humans. Additionally, the presence of becAB on nearly identical plasmids in distinct lineages of C. perfringens isolates suggests the involvement of horizontal gene transfer in the acquisition of the toxin genes.  相似文献   

15.
Clostridium perfringens type B and type C isolates, which produce beta-toxin (CPB), cause fatal diseases originating in the intestines of humans or livestock. Our previous studies demonstrated that CPB is necessary for type C isolate CN3685 to cause bloody necrotic enteritis in a rabbit ileal loop model and also showed that purified CPB, in the presence of trypsin inhibitor (TI), can reproduce type C pathology in rabbit ileal loops. We report here a more complete characterization of the effects of purified CPB in the rabbit small and large intestines. One microgram of purified CPB, in the presence of TI, was found to be sufficient to cause significant accumulation of hemorrhagic luminal fluid in duodenal, jejunal, or ileal loops treated for 6 h with purified CPB, while no damage was observed in corresponding loops receiving CPB (no TI) or TI alone. In contrast to the CPB sensitivity of the small intestine, the colon was not affected by 6 h of treatment with even 90 μg of purified CPB whether or not TI was present. Time course studies showed that purified CPB begins to induce small intestinal damage within 1 h, at which time the duodenum is less damaged than the jejunum or ileum. These observations help to explain why type B and C infections primarily involve the small intestine, establish CPB as a very potent and fast-acting toxin in the small intestines, and confirm a key role for intestinal trypsin as an innate intestinal defense mechanism against CPB-producing C. perfringens isolates.  相似文献   

16.
Clostridium perfringens type C isolates cause enterotoxemias and enteritis in humans and livestock. While the major disease signs and lesions of type C disease are usually attributed to beta toxin (CPB), these bacteria typically produce several different lethal toxins. Since understanding of disease pathogenesis and development of improved vaccines is hindered by the lack of small animal models mimicking the lethality caused by type C isolates, in this study we developed two mouse models of C. perfringens type C-induced lethality. When inoculated into BALB/c mice by intragastric gavage, 7 of 14 type C isolates were lethal, whereas when inoculated intraduodenally, these strains were all lethal in these mice. Clinical signs in intragastrically and intraduodenally challenged mice were similar and included respiratory distress, abdominal distension, and neurological alterations. At necropsy, the small, and occasionally the large, intestine was dilated and gas filled in most mice developing a clinical response. Histological changes in the gut were relatively mild, consisting of attenuation of the mucosa with villus blunting. Inactivation of the CPB-encoding gene rendered the highly virulent type C strain CN3685 avirulent in the intragastric model and nearly nonlethal in the intraduodenal model. In contrast, inactivation of the genes encoding alpha toxin and perfringolysin O only slightly decreased the lethality of CN3685. Mice could be protected against lethality by intravenous passive immunization with a CPB antibody prior to intragastric challenge. This study proves that CPB is a major contributor to the systemic effects of type C infections and provides new mouse models for investigating the pathogenesis of type C-induced lethality.Clostridium perfringens, an anaerobic, spore-forming, gram-positive rod, is a pathogen of humans and domestic or wild animals (9). The virulence of C. perfringens is mostly due to toxin secretion, which varies from strain to strain (9). This variability allows classification of C. perfringens isolates into five types (A to E), depending upon their production of four typing toxins (9, 11, 12). All five types produce alpha toxin (CPA), type B and C isolates produce beta toxin (CPB), type B and D isolates produce epsilon toxin (ETX), and type E isolates produce iota toxin (20).C. perfringens type C isolates cause highly lethal diseases, mostly in newborn animals of many mammalian species (20). These diseases originate when type C isolates proliferate and produce toxins in the intestine. Although often involving intestinal damage, death in affected animals is thought to result primarily from a toxemia following absorption of toxins from the intestine into the circulation (17, 18). C. perfringens bacteremia is not usually observed in cases of type C infection (17). In humans, C. perfringens type C isolates cause enteritis necroticans (also known as Darmbrand or Pigbel) (13). Enteritis necroticans is a highly lethal and endemic disease throughout much of Southeast Asia, but particularly in Papua New Guinea, where this disease was the leading cause of mortality in children during the 1960s (3, 5). Less frequently, this disease also occurs in diabetic patients elsewhere (8).Type C isolates produce CPB, which is a 35-kDa protein that forms pores in the membranes of susceptible cells, leading to swelling and lysis (10, 15, 19). CPB is lethal for mice, with a calculated 50% lethal dose of 310 ng per kg when administered intravenously (i.v.) (14). In addition, CPB has been shown to produce acute intestinal necrosis when inoculated into ligated intestinal loops of rabbits, the effects of which were inhibited when the toxin was mixed with a CPB monoclonal antibody (MAb) before inoculation (21). We recently constructed a series of C. perfringens type C toxin null mutants, which demonstrated that CPB, but not perfringolysin O (PFO) or CPA, is necessary and sufficient for the type C isolate CN3685 to cause intestinal damage in a rabbit ileal loop model (16). However, it was notable that none of the rabbits challenged with this potent type C isolate died during the 6-h course of those ileal loop studies (16).Despite these recent advances, the systemic lethal effects of CPB or C. perfringens type C isolates remain poorly characterized. In part, this is due to the lack of a laboratory animal model that reproduces the lethality of natural C. perfringens type C enterotoxemia (16, 21). Mice have been used to study the lethal effects of i.v. administered C. perfringens type C vegetative culture supernatants or pure CPB (2). The mouse i.v. injection model is useful for studying the systemic lethal effects of CPB and indicates the sensitivity of this species to type C toxins. However, this model differs significantly from natural type C enterotoxemias in human and animals, where toxins are produced in the gastrointestinal tract, act locally, and are then absorbed into the circulation (20). We now present the development and application of infectious intragastric (i.g.) and intraduodenal (i.d.) challenge mouse models to investigate the lethal enterotoxemias induced by C. perfringens type C infections, including a virulence evaluation of C. perfringens type C toxin mutants.  相似文献   

17.
Biological Characteristics of Clostridium perfringens Type A Enterotoxin   总被引:20,自引:18,他引:20       下载免费PDF全文
An enterotoxin with the ability to induce fluid accumulation in rabbit ileal loops, erythema in the skin of guinea pigs, and lethality in mice appears in cell extracts (CE) and culture filtrates (CF) of sporulating cells of some Clostridium perfringens type A strains. All activities in CE and CF were eluted simultaneously from a Sephadex G-200 column. Different elution patterns were obtained for these activities present in CE and CF. Rabbit immune serum against CF and the active CE fractions eliminated the three biological activities in CE and CF. These activities present in CF and CE were not eliminated by any of the known antitoxins present in diagnostic serum against C. perfringens types A, B, C, D, and E. Immunodiffusion studies with immune serum against active CE fractions and CF indicated a precipitin line of identity between CF and CE of NCTC 8798 and other enterotoxin-positive strains but not enterotoxin-negative strains. Disc electrophoresis of active G-200 fractions on 7.0% polyacrylamide gels revealed a single area containing erythemal activity and mouse lethality. Immunodiffusion with acrylamide gels, containing crude fractionated enterotoxin, and immune serum against partially purified enterotoxin revealed a single precipitin band in the same area as the biological activities. Immunoelectrophoresis of CE of enterotoxin-positive and enterotoxin-negative strains also showed one precipitin band which occurred only with enterotoxin-positive strains. These findings suggest that one component is responsible for the biological activities attributed to the enterotoxin.  相似文献   

18.
The incidence of a new, yet unassigned toxin type of Clostridium perfringens containing the genes for the α-toxin and the recently described β2-toxin in horses with intestinal disorders is reported. The study included 18 horses suffering from typical typhlocolitis, 7 horses with atypical typhlocolitis, 16 horses with other intestinal disorders, and 58 horses without intestinal disease. In total, 20 samples of ingesta of the small and large intestines, five biopsy specimens of the intestinal wall, and 74 fecal samples were analyzed bacteriologically. C. perfringens isolates were typed for the presence of the α-, β-, β2-, and -toxin and enterotoxin genes by PCR, including a newly developed PCR for the detection of the β2-toxin gene cpb2. β2-Toxigenic C. perfringens was detected in samples from 13 of 25 (52%) horses with typical or atypical typhlocolitis, with a particularly high incidence in specimens of ingesta and biopsy specimens (75%), whereas only 6 of 16 specimens from horses with other intestinal diseases yielded β2-toxigenic C. perfringens. No β2-toxigenic C. perfringens was found in the samples from the 58 control horses, of which only one fecal sample contained C. perfringens type A. Among the samples from the 15 horses with fatal cases of typical and atypical typhlocolitis 9 (60%) were positive for β2-toxigenic C. perfringens, whereas samples from only 4 of the 10 (40%) animals with nonfatal cases of infection were positive. We found an interesting correlation between the antibiotic-treated horses which were positive for β2-toxigenic C. perfringens and lethal progression of the disease. No C. perfringens strains isolated in this study contained genes for the β- and -toxins and enterotoxin. The high incidence of β2-toxigenic C. perfringens in samples of ingesta, biopsy specimens of the intestinal wall, and feces from horses suffering or dying from typhlocolitis together with the absence of this organism in healthy horses provides strong evidence that β2-toxigenic C. perfringens play an important role in the pathogenesis of typhlocolitis.  相似文献   

19.
Synthesis of Enterotoxin by L-Forms of Staphylococcus aureus   总被引:4,自引:1,他引:4       下载免费PDF全文
After prolonged treatment with methicillin and penicillin, L-forms were prepared from 12 of 22 strains of Staphylococcus aureus. These L-forms were obtained from five of nine strains which produced enterotoxin A, from three of six strains that produced enterotoxin B, and from three of six strains that produced enterotoxin C. An L-form was also prepared from S. aureus strain AH, which produces both enterotoxins A and C. The synthesis of enterotoxin A by parent strains was least affected by the conditions required for L-form growth. Detectable amounts of enterotoxin A were produced by all of the revertants tested and by five of the six L-forms which were derived from type A-producing cells. Detectable amounts of enterotoxin B were produced by four of the five revertants but by none of the L-forms derived from type B-producing cells. Revertants and L-forms from cells which produced enterotoxin C did not produce enough enterotoxin C to be detectable on microslides.  相似文献   

20.
Clostridium perfringens is an important pathogen of animals and humans and is the causative agent of necrotic enteritis (NE) in poultry. This study focuses on the typing of intestinal C. perfringens isolates (n = 61) from outbreaks of NE collected from several areas of Southern Ontario, using a recently developed multilocus sequence typing (MLST) technique. For comparison, C. perfringens isolates from healthy birds were also obtained and typed. An additional locus, the pfoS locus, was included in our analysis, in an attempt to increase the discriminatory ability of the method previously published. Birds were collected from two major poultry processors in Canada, and isolates from processor 2 formed a distinct MLST cluster. Isolates from healthy birds also collected from the outbreak flocks clustered together with isolates from the birds with NE. Although isolates from eight outbreaks clustered together, MLST types were also occasionally different between outbreaks. Strong linkage disequilibrium was observed between loci, suggesting a clonal C. perfringens population structure. Detection assays for toxin genes cpb2 (beta-2 toxin), tpeL, and the newly described netB (NetB toxin) were also performed. netB was almost always found in outbreak isolates, whereas cpb2 was found exclusively in healthy bird isolates. The toxin gene tpeL, which has not been previously identified in C. perfringens type A strains, was also found, but only in the presence of netB. Resistance to bacitracin was found in 34% of isolates from antimicrobial agent-free birds and in 100% of isolates from conventionally raised birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号