首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Activated microglia have been proposed to play a major role in the pathogenesis of Huntington's Disease (HD). PK11195 is a ligand which binds selectively to peripheral benzodiazepine binding sites, a type of receptor selectively expressed by activated microglia in the central nervous system. Using (11)C-(R)-PK11195 positron emission tomography (PET), we have recently shown in vivo evidence of increased microglial activation in both symptomatic and presymptomatic HD gene carriers and that the degree of microglial activation in the striatum correlates with the severity of striatal dopamine D2 receptor dysfunction measured with (11)C-raclopride PET. Our findings indicate that microglial activation is an early process in the HD pathology, occurring before the onset of symptoms. The close spatial and temporal relationship between microglial activation and neuronal dysfunction lends further support to the pathogenic link between the two processes in HD. Further longitudinal studies are needed to fully elucidate this link.  相似文献   

3.
Positron emission tomography (PET) using [(11)C]PK 11195, a ligand for peripheral benzodiazepine receptor binding sites, offers the opportunity to image activated microglia in vivo. This tool may therefore be used to display the occurrence of microglial activation in the course of neurodegeneration. A patient with the clinical diagnosis of corticobasal degeneration (CBD) and left-sided symptoms was studied using fluorodeoxyglucose (FDG) and [(11)C]PK 11195 PET. We found a marked right hemispheric hypometabolism and asymmetric microglial activation in corresponding areas of the basal ganglia and right temporal and parietal cortex. [(11)C]PK 11195 PET suggests involvement of microglial activation in the pathogenesis of CBD.  相似文献   

4.
Corticobasal degeneration (CBD) is a neurodegenerative parkinsonian disorder of unknown cause that shows considerable clinical heterogeneity. In CBD, activated microglia have been shown to be associated closely with the extensive tau pathology found in the affected basal ganglia, brainstem nuclei, and cortical regions. We report on the use of [(11)C](R)-(1-[2-chlorophenyl]-N-methyl-N-[1-methylpropyl]-3-isoquinoline carboxamide) (PK11195) positron emission tomography (PET), a marker of peripheral benzodiazepine binding sites (PBBS) that are expressed by activated microglia, to demonstrate in vivo the degree and distribution of glial response to the degenerative process in 4 patients with CBD. Compared with normal age-matched controls, the CBD patient group showed significantly increased mean [(11)C](R)-PK11195 binding in the caudate nucleus, putamen, substantia nigra, pons, pre- and postcentral gyrus, and the frontal lobe. [11C](R)-PK11195 PET reveals a pattern of increased microglial activation in CBD patients involving cortical regions and the basal ganglia that corresponds well with the known distribution of neuropathological changes, which may therefore help to characterize in vivo the underlying disease activity in CBD.  相似文献   

5.
Peripheral benzodiazepine receptor (PBR) is expressed in most organs and its expression is reported to be increased in activated microglia in the brain. [(11)C]PK11195 has been widely used for the in vivo imaging of PBRs, but its signal in the brain was not high enough for stable quantitative analysis. We synthesized a novel positron emission tomography (PET) ligand, [(11)C]DAA1106, for PBR and investigated its in vivo properties in rat and monkey brain. High uptake of [(11)C]DAA1106 was observed in the olfactory bulb and choroid plexus area, followed by the pons/medulla and cerebellum by in vivo autoradiography of rat brain, correlating with the binding in vitro. [(11)C]DAA1106 binding was increased in the dorsal hippocampus with neural destruction, suggesting glial reaction. [(11)C]DAA1106 binding was both inhibited and displaced by 1.0 mg/kg of DAA1106 and 5 mg/kg of PK11195 by 80% and 70%, respectively. Specific binding was estimated as 80% of total binding. [(11)C]DAA1106 binding was four times higher compared to the binding of [(11)C]PK11195 in the monkey occipital cortex. These results indicated that [(11)C]DAA1106 might be a good ligand for in vivo imaging of PBR.  相似文献   

6.
Progressive supranuclear palsy (PSP) is a neurodegenerative disease presenting with voluntary gaze difficulties, early falls, and Parkinsonism. Neuronal loss, associated with intracellular neurofibrillary tangles and activated microglia, is found targeting the basal ganglia, brainstem nuclei, and frontal cortex. [11C](R)-PK11195 PET is a marker of peripheral benzodiazepine binding sites (PBBS) expressed by activated microglia. We have used [11C](R)-PK11195 PET to demonstrate in vivo the degree and distribution of the glial response to the degenerative process in four patients with PSP. Compared to normal age-matched controls, the PSP patient group showed significantly increased mean [11C](R)-PK11195 binding in the basal ganglia, midbrain, the frontal lobe, and the cerebellum. Two of the patients were rescanned after 6 to 10 months and during that time the level of microglial activation remained stable. [11C](R)-PK11195 PET reveals a pattern of increased microglial activation in PSP patients involving cortical and subcortical regions that corresponds well with the known distribution of neuropathological changes. [11C](R)-PK11195 PET, therefore, may help in characterizing in vivo the underlying disease activity in PSP.  相似文献   

7.
The peripheral benzodiazepine receptor (PBR) is expressed by microglial cells in many neuropathologies involving neuroinflammation. PK11195, the reference compound for PBR, is used for positron emission tomography (PET) imaging but has a limited capacity to quantify PBR expression. Here we describe the new PBR ligand CLINME as an alternative to PK11195. In vitro and in vivo imaging properties of [(11)C]CLINME were studied in a rat model of local acute neuroinflammation, and compared with the reference compound [(11)C]PK11195, using autoradiography and PET imaging. Immunohistochemistry study was performed to validate the imaging data. [(11)C]CLINME exhibited a higher contrast between the PBR-expressing lesion site and the intact side of the same rat brain than [(11)C]PK11195 (2.14 +/- 0.09 vs. 1.62 +/- 0.05 fold increase, respectively). The difference was due to a lower uptake for [(11)C]CLINME than for [(11)C]PK11195 in the non-inflammatory part of the brain in which PBR was not expressed, while uptake levels in the lesion were similar for both tracers. Tracer localization correlated well with that of activated microglial cells, demonstrated by immunohistochemistry and PBR expression detected by autoradiography. Modeling using the simplified tissue reference model showed that R(1) was similar for both ligands (R(1) approximately 1), with [(11)C]CLINME exhibiting a higher binding potential than [(11)C]PK11195 (1.07 +/- 0.30 vs. 0.66 +/- 0.15). The results show that [(11)C]CLINME performs better than [(11)C]PK11195 in this model. Further studies of this new compound should be carried out to better define its capacity to overcome the limitations of [(11)C]PK11195 for PBR PET imaging.  相似文献   

8.
Microglial activation is implicated in the pathogenesis of ALS and can be detected in animal models of the disease that demonstrate increased survival when treated with anti-inflammatory drugs. PK11195 is a ligand for the "peripheral benzodiazepine binding site" expressed by activated microglia. Ten ALS patients and 14 healthy controls underwent [(11)C](R)-PK11195 PET of the brain. Volumes of interest were defined to obtain [(11)C](R)-PK11195 regional binding potential values for motor and "extra-motor" regions. Significantly increased binding was found in motor cortex (P = 0.003), pons (P = 0.004), dorsolateral prefrontal cortex (P = 0.010) and thalamus (P = 0.005) in the ALS patients, with significant correlation between binding in the motor cortex and the burden of upper motor neuron signs clinically (r = 0.73, P = 0.009). These findings indicate that cerebral microglial activation can be detected in vivo during the evolution of ALS, and support the previous observations that cerebral pathology is widespread. They also argue for the development of therapeutic strategies aimed at inflammatory pathways.  相似文献   

9.
Activated microglia are involved in the immune response of multiple sclerosis (MS). The peripheral benzodiazepine receptor (PBR) is expressed on microglia and up-regulated after neuronal injury. [11C]PK11195 is a positron emission tomography (PET) radioligand for the PBR. The objective of the present study was to investigate [11C]PK11195 imaging in MS patients and its additional value over magnetic resonance imaging (MRI) concerning the immuno-pathophysiological process. Seven healthy and 22 MS subjects were included. Semiquantitative [11C]PK11195 uptake values were assessed with normalization on cortical grey matter. Uptake in Gadolinium-lesions was significantly increased compared with normal white matter. Uptake in T2-lesions was generally decreased, suggesting a PBR down-regulation. However, uptake values increased whenever a clinical or MR-relapse was present, suggestive for a dynamic process with a transient PBR up-regulation. During disease progression, an increase of normal-appearing white matter (NAWM) uptake was found, propagating NAWM as the possible real burden of disease. In conclusion, [11C]PK11195 and PET are able to demonstrate inflammatory processes with microglial involvement in MS.  相似文献   

10.
Increasing evidence suggests that neuroinflammation is an active process in Parkinson's disease (PD) that contributes to ongoing neurodegeneration. PD brains and experimental PD models show elevated cytokine levels and up-regulation of inflammatory-associated factors as cyclo-oxygenase-2 and inducible nitric oxide oxidase. Antiinflammatory treatment reduced neuronal degeneration in experimental models. In this review, we summarize the place of neuroinflammation in the pathophysiology of PD. In vivo PET studies are discussed. These methods provide a means to monitor in vivo potential clinical relevance of antiinflammatory treatment strategies in PD.  相似文献   

11.
Excessive alcohol consumption is associated with neuroinflammation, which likely contributes to alcohol‐related pathology. However, positron emission tomography (PET) studies using radioligands for the 18‐kDa translocator protein (TSPO), which is considered a biomarker of neuroinflammation, reported decreased binding in alcohol use disorder (AUD) participants compared to controls. In contrast, autoradiographic findings in alcohol exposed rats reported increases in TSPO radioligand binding. To assess if these discrepancies reflected differences between in vitro and in vivo methodologies, we compared in vitro autoradiography (using [3H]PBR28 and [3H]PK11195) with in vivo PET (using [11C]PBR28) in male, Wistar rats exposed to chronic alcohol‐vapor (dependent n = 10) and in rats exposed to air‐vapor (nondependent n = 10). PET scans were obtained with [11C]PBR28, after which rats were euthanized and the brains were harvested for autoradiography with [3H]PBR28 and [3H]PK11195 (n = 7 dependent and n = 7 nondependent), and binding quantified in hippocampus, thalamus, and parietal cortex. Autoradiography revealed significantly higher binding in alcohol‐dependent rats for both radioligands in thalamus and hippocampus (trend level for [3H]PBR28) compared to nondependent rats, and these group differences were stronger for [3H]PK11195 than [3H]PBR28. In contrast, PET measures obtained in the same rats showed no group difference in [11C]PBR28 binding. Our in vitro data are consistent with neuroinflammation associated with chronic alcohol exposure. Failure to observe similar increases in [11C]PBR28 binding in vivo suggests the possibility that a mechanism mediated by chronic alcohol exposure interferes with [11C]PBR28 binding to TSPO in vivo. These data question the sensitivity of PBR28 PET as a methodology to assess neuroinflammation in AUD.  相似文献   

12.

BACKGROUND AND PURPOSE

Neuroinflammation has been implicated in the pathophysiology of Parkinson's disease (PD), which might be influenced by successful neuroprotective drugs. The uptake of [11C](R)‐PK11195 (PK) is often considered to be a proxy for neuroinflammation, and can be quantified using the Logan graphical method with an image‐derived blood input function, or the Logan reference tissue model using automated reference region extraction. The purposes of this study were (1) to assess whether these noninvasive image analysis methods can discriminate between patients with PD and healthy volunteers (HVs), and (2) to establish the effect size that would be required to distinguish true drug‐induced changes from system variance in longitudinal trials.

METHODS

The sample consisted of 20 participants with PD and 19 HVs. Two independent teams analyzed the data to compare the volume of distribution calculated using image‐derived input functions (IDIFs), and binding potentials calculated using the Logan reference region model.

RESULTS

With all methods, the higher signal‐to‐background in patients resulted in lower variability and better repeatability than in controls. We were able to use noninvasive techniques showing significantly increased uptake of PK in multiple brain regions of participants with PD compared to HVs.

CONCLUSION

Although not necessarily reflecting absolute values, these noninvasive image analysis methods can discriminate between PD patients and HVs. We see a difference of 24% in the substantia nigra between PD and HV with a repeatability coefficient of 13%, showing that it will be possible to estimate responses in longitudinal, within subject trials of novel neuroprotective drugs.  相似文献   

13.
14.
Using positron emission tomography and [(11)C](R)-PK11195, a marker of "peripheral benzodiazepine sites" that is upregulated on activated microglia during progressive tissue pathology, we show increased binding of [(11)C](R)-PK11195 in frontotemporal lobar degeneration in the typically affected frontotemporal brain regions. This implies the presence of an active glial response reflecting progressive neuronal degeneration. It also suggests that increased [(11)C](R)-PK11195 binding, previously demonstrated for Alzheimer's disease, may occur independently from increased amyloid plaque formation, given that it is not a characteristic feature of frontotemporal lobar degeneration.  相似文献   

15.
The over-activated microglial cells induce neuroinflammation which has the main role in neurological disorders.The over-activated microglia can disturb neuronal function by releasing inflammatory mediators leading to neuronal dysfunctions and death.Thus,inhibition of over-activated microglia may be an effective therapeutic approach for modulating neuroinflammation.Experimental studies have indicated anti-neuroinflammatory effects of flavonoids such as green tea catechins.The current research was aimed to review the effect of green tea catechins in inhibiting microglial cells,inflammatory cascades,and subsequent neurological diseases.  相似文献   

16.
Activation of microglial NADPH oxidase (NOX2) plays a critical role in mediating neuroinflammation, which is closely linked with the pathogenesis of a variety of neurodegenerative diseases, including Parkinson's disease (PD). The inhibition of NOX2‐generated superoxide has become an effective strategy for developing disease‐modifying therapies for PD. However, the lack of specific and potent NOX2 inhibitors has hampered the progress of this approach. Diphenyleneiodonium (DPI) is a widely used, long‐acting NOX2 inhibitor. However, due to its non‐specificity for NOX2 and high cytotoxicity at standard doses (µM), DPI has been precluded from human studies. In this study, using ultra‐low doses of DPI, we aimed to: (1) investigate whether these problems could be circumvented and (2) determine whether ultra‐low doses of DPI were able to preserve its utility as a potent NOX2 inhibitor. We found that DPI at subpicomolar concentrations (10?14 and 10?13 M) displays no toxicity in primary midbrain neuron‐glia cultures. More importantly, we observed that subpicomolar DPI inhibited phorbol myristate acetate (PMA)‐induced activation of NOX2. The same concentrations of DPI did not inhibit the activities of a series of flavoprotein‐containing enzymes. Furthermore, potent neuroprotective efficacy was demonstrated in a post‐treatment study. When subpicomolar DPI was added to neuron‐glia cultures pretreated with lipopolysaccharide, 1‐methyl‐4‐phenylpyridinium or rotenone, it potently protected the dopaminergic neurons. In summary, DPI's unique combination of high specificity toward NOX2, low cytotoxicity and potent neuroprotective efficacy in post‐treatment regimens suggests that subpicomolar DPI may be an ideal candidate for further animal studies and potential clinical trials. GLIA 2014;62:2034–2043  相似文献   

17.
In vitro nomifensine demonstrates high affinity and specificity for dopamine reuptake sites in the brain. In the present study 11C-nomifensine was administered i.v. in trace amounts (10-50 micrograms) to ketamine anaesthetized Rhesus monkeys (6-10 kg b.w.) and the time-course of radioactivity within different brain regions was measured by positron emission tomography (PET). Six base-line experiments lasting for 60-80 min were performed. The procedure was repeated after pretreatment with nomifensine (2-6 mg/kg i.v.), another reuptake inhibitor, mazindol (0.3 mg/kg i.v.), desipramine (0.5 mg/kg i.v) or spiperone (0.3 mg/kg i.v.) before the administration of a second 11C-nomifensine dose. The highest radioactivity uptake was found in the dopamine innervated striatum and the lowest in a region containing the cerebellum, known to be almost devoid of dopaminergic neurons. The difference between striatal and cerebellar uptake of 11C-nomifensine derived radioactivity was markedly reduced after nomifensine and mazindol but not after desipramine and spiperone. These results indicate that in vivo the striatal uptake of 11C-nomifensine, as measured with PET, involves specific binding with the dopamine reuptake sites. In the first human applications of 11C-nomifensine and PET in a healthy volunteer, the regional uptake of radioactivity was similar to that in base-line experiments with Rhesus monkeys. In the healthy subject the striatal/cerebellar ratio was 1.6, 50 min after the injection of 11C-nomifensine. In a hemi-parkinsonian patient this ratio was 1.1 contralaterally and 1.3 ipsilaterally to the affected side. 11C-nomifensine and PET seems to be an auspicious method to measure the striatal dopaminergic nerve terminals of man in vivo.  相似文献   

18.
BACKGROUND:Inflammatory injury induced by microglial activation plays an important role in the occurrence and development of Parkinson’s disease (PD). However, few studies have examined the relationship between microglia and substantia nigra damage or dopaminergic neuron loss in animals with rotenone-induced PD. OBJECTIVE: To explore the relationship between activated microglia and loss of the substantia nigra, and the changes in concentration and dose of rotenone in the brain of rats with rotenone-induced ...  相似文献   

19.
BACKGROUND: Studies have demonstrated iron deposition in Alzheimer's disease (AD) patients. Therefore, quantitative measurements and tracing of iron deposition are important for early detection and treatment.OBJECTIVE: To quantitatively measure iron deposition in the brain and evaluate the relationship between iron deposition and AD using magnetic susceptibility-weighted imaging. DESIGN, TIME AND SETTING: A case-control study was performed at the Department of Radiology, Huashan Hospital of Fudan University from February to July 2008. PARTICIPANTS: A total of 20 AD patients, comprising 11 males and 9 females, with a mean age of 72.5 years (range, 51-80 years), and 20 healthy volunteers, comprising 10 males and 10 females, with a mean age of 69.9 years (range, 55-78 years), were selected. AD was diagnosed according to the National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer Disease and Related Disorders Association criteria.METHODS: Sagittal T2-weighted images were acquired to locate precise positions of the anterior and posterior commissures. The susceptibility-weighted magnetic resonance images were parallel to the anterior-posterior commissural line through the use of a three-dimensional gradient-echo sequence. All participants underwent measurement of corrected phase (CP) value and Mini-Mental State Examination. Pearson correlation coefficients were used to assess the association between CP values and Mini-Mental State Examination results.MAIN OUTCOME MEASURES: CP values of regions of interest in the hippocampal regions were measured on CP images.RESULTS: CP values were significantly reduced in bilateral hippocampal regions of AD patients compared with normal controls (P<0.01), but there were no significant differences between left and right CP values (P>0.05). The hippocampal mean CP value positively correlated with the Mini-Mental State Examination score in AD patients and normal controls (r= 0.57, P<0.01). CONCLUSION: Susceptibility-weighted imaging can be used to measure CP values to determine iron deposition in the brains of AD patients and could serve as a useful diagnostic tool for AD.  相似文献   

20.
Microglia, the resident immune cells of the central nervous system, exist in either a “resting” state associated with physiological tissue surveillance or an “activated” state in neuroinflammation. We recently showed that ATP is the primary chemoattractor to tissue damage in vivo and elicits opposite effects on the motility of activated microglia in vitro through activation of adenosine A2A receptors. However, whether systemic inflammation affects microglial responses to tissue damage in vivo remains largely unknown. Using in vivo two‐photon imaging of mice, we show that injection of lipopolysaccharide (LPS) at levels that can produce both clear neuroinflammation and some features of sepsis significantly reduced the rate of microglial response to laser‐induced ablation injury in vivo. Under proinflammatory conditions, microglial processes initially retracted from the ablation site, but subsequently moved toward and engulfed the damaged area. Analyzing the process dynamics in 3D cultures of primary microglia indicated that only A2A, but not A1 or A3 receptors, mediate process retraction in LPS‐activated microglia. The A2A receptor antagonists caffeine and preladenant reduced adenosine‐mediated process retraction in activated microglia in vitro. Finally, administration of preladenant before induction of laser ablation in vivo accelerated the microglial response to injury following systemic inflammation. The regulation of rapid microglial responses to sites of injury by A2A receptors could have implications for their ability to respond to the neuronal death occurring under conditions of neuroinflammation in neurodegenerative disorders. GLIA 2014;62:1345–1360  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号