首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The techniques of iontophoresis and electroporation can be used to enhance topical and transdermal drug delivery. Iontophoresis applies a small low voltage (typically 10 V or less) continuous constant current (typically 0.5 mA/cm2 or less) to push a charged drug into skin or other tissue. In contrast, electroporation applies a high voltage (typically, ?100 V) pulse for a very short (micros-ms) duration to permeabilize the skin. This electric assistance of drug delivery across skin will expand the scope of transdermal delivery to hydrophilic macromolecules such as the drugs of biotechnology. These two techniques differ in several aspects such as the mode of application and pathways of transport but can be used together for effective drug delivery. Iontophoresis is already used clinically in physical therapy clinics and is close to commercialization for development of a systemic delivery patch with miniaturized circuits and similar in overall size to a passive patch. The use of electroporation for drug delivery is relatively new and is being actively researched.  相似文献   

2.
The objective of this work was to modulate transdermal drug delivery by iontophoresis though skin microchannels created by microneedles. Calcein and human growth hormone were used as a model small and large molecule, respectively. In vitro permeation studies were performed on porcine ear skin under three different settings: (a) modulated iontophoresis alone, (b) pretreatment with microneedles and (c) combination of microneedles pretreatment and modulated iontophoresis. For modulated iontophoresis, 0.5 mA/cm(2) current was applied for 1h each at 2nd and 6th hour of the study. Methylene blue staining, calcein imaging and pore permeability index suggested maltose microneedles created uniform microchannels in skin. Application of iontophoresis provided two peaks in flux of 1.04 μg/(cm(2)h) at 4th hour and 2.09 μg/(cm(2)h) at 8th hour of study for calcein. These peaks in flux were significant higher when skin was pretreated with microneedles (p<0.05). Similarly, for human growth hormone, modulation in transdermal flux was achieved with combination of microneedles and iontophoresis. This combination also provided significant increase in cumulative amount of calcein and human growth hormone delivered as compared to microneedles or iontophoresis alone (p<0.05). Therefore, iontophoresis can be used to modulate drug delivery across skin microchannels created by microneedles.  相似文献   

3.
Microneedles for transdermal drug delivery   总被引:35,自引:0,他引:35  
The success of transdermal drug delivery has been severely limited by the inability of most drugs to enter the skin at therapeutically useful rates. Recently, the use of micron-scale needles in increasing skin permeability has been proposed and shown to dramatically increase transdermal delivery, especially for macromolecules. Using the tools of the microelectronics industry, microneedles have been fabricated with a range of sizes, shapes and materials. Most drug delivery studies have emphasized solid microneedles, which have been shown to increase skin permeability to a broad range of molecules and nanoparticles in vitro. In vivo studies have demonstrated delivery of oligonucleotides, reduction of blood glucose level by insulin, and induction of immune responses from protein and DNA vaccines. For these studies, needle arrays have been used to pierce holes into skin to increase transport by diffusion or iontophoresis or as drug carriers that release drug into the skin from a microneedle surface coating. Hollow microneedles have also been developed and shown to microinject insulin to diabetic rats. To address practical applications of microneedles, the ratio of microneedle fracture force to skin insertion force (i.e. margin of safety) was found to be optimal for needles with small tip radius and large wall thickness. Microneedles inserted into the skin of human subjects were reported as painless. Together, these results suggest that microneedles represent a promising technology to deliver therapeutic compounds into the skin for a range of possible applications.  相似文献   

4.
Transdermal drug delivery using patches offers many advantages, but is limited primarily by the stratum corneum barrier. Amongst the various methods to overcome this barrier, physical methods are gaining in popularity and commercial devices development. Macroflux, MTS and Silex are based on microporation, involving use of microneedles that pierce thereby bypassing the stratum corneum. Intraject , Powderject and Helios are based on needleless jet injectors wherein very fine, solid particulate drug, is fired directly into the skin, using high-pressure gas. Med- Tats incorporate use of modified drug-containing tattoos, which bind to the skin, wherein the drug is absorbed. CHADD is based on use of heat, which increases skin - permeation of drugs. High-power, pulsed lasers transmit positive mechanical forces to the skin and create intercellular channels into the skin transiently. Sonophoresis involves use of ultrasound, which transiently disrupts the stratum corneum barrier. This technique offers a non-invasive transdermal extraction of interstitial fluids of sampling body fluids. Modified Liposomes include Ethosomes (containing alcohol) and Transferosomes (containing surfactants), which have enhanced skin permeability. Pulsed magnetic fields may create transient pores in cell membranes, including skin, resulting in increased permeation. Iontophoresis is based on application of electric potential for enhancing the movement of substances to and from the body. Dupel, Ionzyme, Liposite, ETrans, Phoresor and Drionic are based on iontophoresis. GlucoWatch offers non-invasive blood glucose monitoring, based on reverse iontophoresis. This review outlines recent commercial developments in physical transdermal drug delivery technology and the specific devices and applications being targeted by the pharmaceutical industry.  相似文献   

5.
微针经皮给药技术   总被引:1,自引:0,他引:1  
微针是介于皮下注射和透皮贴剂之间的一种给药方式,利用在皮肤角质层产生的微小孔道来显著增加药物的经皮吸收。综述微针经皮给药技术的研究进展,介绍制造微针的材料和方法、微针的给药方式及其在经皮给药系统中的应用。  相似文献   

6.
A large number of biopharmaceuticals and other macromolecules are being developed for therapeutic applications. Conventional oral delivery is not always possible due to first-pass metabolism and degradation in the GI tract. Parenteral delivery is invasive and has poor patient compliance. Transdermal delivery provides one attractive route of administration. Transdermal administration can achieve the continuous and non-invasive delivery of drugs. However, passive transdermal delivery is restricted to small lipophilic molecules. Active physical-enhancement technologies are being investigated to increase the scope of transdermal delivery to hydrophilic molecules and macromolecules. Recent developments in transdermal technologies, such as microporation, iontophoresis and sonophoresis can enable therapeutic delivery of many drug molecules, biopharmaceuticals, cosmeceuticals and vaccines. This review provides an update of recent developments in transdermal delivery focusing on physical-enhancement technologies.  相似文献   

7.
For several decades, there has been interest in using the skin as a port of entry into the body for the systemic delivery of therapeutic agents. However, the upper layer of the skin, the stratum corneum, poses a barrier to the entry of many therapeutic entities. Given a compound, passive delivery rate is often dependent on two major physicochemical properties: the partition coefficient and solubility. The use of chemical enhancers and modifications of the thermodynamic activity of the applied drug are two frequently employed strategies to improve transdermal permeation. Chemical enhancers are known to enhance drug permeation by several mechanisms which include disrupting the organized intercellular lipid structure of the stratum corneum , 'fluidizing' the stratum corneum lipids , altering cellular proteins, and in some cases, extracting intercellular lipids . However, the resulting increase in drug permeation using these techniques is rather modest especially for hydrophilic drugs. A number of other physical approaches such as iontophoresis, sonophoresis, ultrasound and the use of microneedles are now being studied to improve permeation of hydrophilic as well as lipophilic drugs. This article presents an overview of the use of iontophoresis alone and in conjunction with other approaches such as chemical enhancement, electroporation, sonophoresis, and use of microneedles and ion-exchange materials.  相似文献   

8.
Peptides and proteins have been investigated as promising therapeutic agents over the past decade. These macromolecules are conventionally administered by the parenteral route because oral delivery is associated with degradation in the gastrointestinal tract. Transdermal delivery presents a promising alternative route of drug delivery, avoiding pain associated with parenteral administration and degradation issues associated with oral delivery. However, the barrier properties of skin limit delivery to only small, moderately lipophilic molecules. Hence, hydrophilic macromolecules like peptides and proteins cannot passively permeate across skin. Active physical enhancement approaches such as iontophoresis electroporation, microneedles treatment, and sonophoresis have been developed to assist transdermal delivery of peptides and proteins. This review describes active physical transdermal enhancement approaches for transdermal delivery of peptides and proteins. The mechanisms associated with each technique and important parameters governing transdermal delivery of peptides and proteins are discussed in detail. Combinations of enhancement techniques for synergistic enhancement in protein and peptide delivery are also discussed.  相似文献   

9.
Objectives One of the thrust areas in drug delivery research is transdermal drug delivery systems (TDDS) due to their characteristic advantages over oral and parenteral drug delivery systems. Researchers have focused their attention on the use of microneedles to overcome the barrier of the stratum corneum. Microneedles deliver the drug into the epidermis without disruption of nerve endings. Recent advances in the development of microneedles are discussed in this review for the benefit of young scientists and to promote research in the area. Key findings Microneedles are fabricated using a microelectromechanical system employing silicon, metals, polymers or polysaccharides. Solid coated microneedles can be used to pierce the superficial skin layer followed by delivery of the drug. Advances in microneedle research led to development of dissolvable/degradable and hollow microneedles to deliver drugs at a higher dose and to engineer drug release. Iontophoresis, sonophoresis and electrophoresis can be used to modify drug delivery when used in concern with hollow microneedles. Microneedles can be used to deliver macromolecules such as insulin, growth hormones, immunobiologicals, proteins and peptides. Microneedles containing ‘cosmeceuticals’ are currently available to treat acne, pigmentation, scars and wrinkles, as well as for skin tone improvement. Summary Literature survey and patents filled revealed that microneedle‐based drug delivery system can be explored as a potential tool for the delivery of a variety of macromolecules that are not effectively delivered by conventional transdermal techniques.  相似文献   

10.
Insulin delivery relies on subcutaneous or intravascular injection, leading to reduced patient compliance. Transdermal delivery of insulin has been successfully demonstrated but dose accuracy and skin irritation are problematic in addition to the complex basal-bolus delivery profile required by insulin therapy. Here we present a novel intraepidermal delivery technology (delivered site at epidermis layer, <150 μm) by combining skin pretreatment with short microneedles (<150 μm in length) and iontophoresis transdermal patch (enhanced transport via electrical field) that can provide a continuous basal dose and on-demand bolus dosing for mealtime insulin needs. To our knowledge, this is the first demonstration of therapeutic equivalence between fast-acting human regular insulin and long-acting insulin with possibilities for on-demand dose adjustment. This new intraepidermal delivery technology is likely to change the therapy regimen of patients suffering from insulin-dependent diabetes mellitus and provide a way to lower cost in comparison with insulin pumps and improve patient compliance. FROM THE CLINICAL EDITOR: The authors present a novel intraepidermal insulin delivery technology by combining skin pretreatment with short microneedles and iontophoresis transdermal patch to provide a continuous basal dose and on-demand bolus dosing. This new method is has the potentials to replace insulin pumps by offering a cost effective alternative with less inconvenience and improved compliance.  相似文献   

11.
Microporation involves the creation of micron-sized micropores or microchannels in the skin which can then allow the transport of water soluble molecules and macromolecules. Technologies which can create these microchannels in the skin include mechanical microneedles, thermal or radiofrequency ablation and laser ablation. These technologies will open a new frontier for the delivery of biopharmaceuticals, as these hydrophilic macromolecules cannot be delivered via the skin passively. Companies which are developing these technologies are discussed, along with potential hurdles to commercialization related to the elasticity of skin, immunogenicity issues, pore closure kinetics, or microneedle material and geometries. In spite of the obstacles, these technologies look very promising and are likely to revolutionize transdermal drug delivery in the near future. Bioavailability considerations and the potential use of inexpensive coated microneedles for mass immunizations are also discussed.  相似文献   

12.
Abstract

The objective of this study was to investigate the effect of modulated current application using iontophoresis- and microneedle-mediated delivery on transdermal permeation of ropinirole hydrochloride. AdminPatch® microneedles and microchannels formed by them were characterized by scanning electron microscopy, dye staining and confocal microscopy. In vitro permeation studies were carried out using Franz diffusion cells, and skin extraction was used to quantify drug in underlying skin. Effect of microneedle pore density and ions in donor formulation was studied. Active enhancement techniques, continuous iontophoresis (74.13?±?2.20?µg/cm2) and microneedles (66.97?±?10.39?µg/cm2), significantly increased the permeation of drug with respect to passive delivery (8.25?±?2.41?µg/cm2). Modulated iontophoresis could control the amount of drug delivered at a given time point with the highest flux being 5.12?±?1.70?µg/cm2/h (5–7?h) and 5.99?±?0.81?µg/cm2/h (20–22?h). Combination of modulated iontophoresis and microneedles (46.50?±?6.46?µg/cm2) showed significantly higher delivery of ropinirole hydrochloride compared to modulated iontophoresis alone (84.91?±?9.21?µg/cm2). Modulated iontophoresis can help in maintaining precise control over ropinirole hydrochloride delivery for dose titration in Parkinson’s disease therapy and deliver therapeutic amounts over a suitable patch area and time.  相似文献   

13.
Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injection. However, the stratum corneum acts as a barrier that limits the penetration of substances through the skin. Recently, the use of micron-scale needles in increasing skin permeability has been proposed and shown to dramatically increase transdermal delivery. Microneedles have been fabricated with a range of sizes, shapes, and materials. Most in vitro drug delivery studies have shown these needles to increase skin permeability to a broad range of drugs that differ in molecular size and weight. In vivo studies have demonstrated satisfactory release of oligonucleotides and insulin and the induction of immune responses from protein and DNA vaccines. Microneedles inserted into the skin of human subjects were reported to be painless. For all these reasons, microneedles are a promising technology to deliver drugs into the skin. This review presents the main findings concerning the use of microneedles in transdermal drug delivery. It also covers types of microneedles, their advantages and disadvantages, enhancement mechanisms, and trends in transdermal drug delivery.  相似文献   

14.
Dermal and transdermal drug delivery systems: current and future prospects   总被引:1,自引:0,他引:1  
The protective function of human skin imposes physicochemical limitations to the type of permeant that can traverse the barrier. For a drug to be delivered passively via the skin it needs to have adequate lipophilicity and also a molecular weight <500 Da. These requirements have limited the number of commercially available products based on transdermal or dermal delivery. Various strategies have emerged over recent years to optimize delivery and these can be categorized into passive and active methods. The passive approach entails the optimization of formulation or drug carrying vehicle to increase skin permeability. Passive methods, however do not greatly improve the permeation of drugs with molecular weights >500 Da. In contrast active methods that normally involve physical or mechanical methods of enhancing delivery have been shown to be generally superior. Improved delivery has been shown for drugs of differing lipophilicity and molecular weight including proteins, peptides, and oligonucletides using electrical methods (iontophoresis, electroporation), mechanical (abrasion, ablation, perforation), and other energy-related techniques such as ultrasound and needless injection. However, for these novel delivery methods to succeed and compete with those already on the market, the prime issues that require consideration include device design and safety, efficacy, ease of handling, and cost-effectiveness. This article provides a detailed review of the next generation of active delivery technologies.  相似文献   

15.
The protective function of human skin imposes physicochemical limitations to the type of permeant that can traverse the barrier. For a drug to be delivered passively via the skin it needs to have adequate lipophilicity and also a molecular weight <500 Da. These requirements have limited the number of commercially available products based on transdermal or dermal delivery. Various strategies have emerged over recent years to optimize delivery and these can be categorized into passive and active methods. The passive approach entails the optimization of formulation or drug carrying vehicle to increase skin permeability. Passive methods, however do not greatly improve the permeation of drugs with molecular weights >500 Da. In contrast active methods that normally involve physical or mechanical methods of enhancing delivery have been shown to be generally superior. Improved delivery has been shown for drugs of differing lipophilicity and molecular weight including proteins, peptides, and oligonucletides using electrical methods (iontophoresis, electroporation), mechanical (abrasion, ablation, perforation), and other energy-related techniques such as ultrasound and needless injection. However, for these novel delivery methods to succeed and compete with those already on the market, the prime issues that require consideration include device design and safety, efficacy, ease of handling, and cost-effectiveness. This article provides a detailed review of the next generation of active delivery technologies.  相似文献   

16.
Novel mechanisms and devices to enable successful transdermal drug delivery.   总被引:36,自引:0,他引:36  
Optimisation of drug delivery through human skin is important in modern therapy. This review considers drug-vehicle interactions (drug or prodrug selection, chemical potential control, ion pairs, coacervates and eutectic systems) and the role of vesicles and particles (liposomes, transfersomes, ethosomes, niosomes). We can modify the stratum corneum by hydration and chemical enhancers, or bypass or remove this tissue via microneedles, ablation and follicular delivery. Electrically assisted methods (ultrasound, iontophoresis, electroporation, magnetophoresis, photomechanical waves) show considerable promise. Of particular interest is the synergy between chemical enhancers, ultrasound, iontophoresis and electroporation.  相似文献   

17.
Despite the increased availability of therapeutic proteins and peptides, delivery remains almost entirely via hypodermic needle. Transdermal delivery offers an attractive noninvasive route of administration but is limited by the skin's barrier to penetration. Extensive research has been directed at developing effective methods to enhance delivery of peptides and proteins to and across the skin. Strategies include formulation optimisation, conjugation to increase peptide lipophilicity and incorporation of chemical or biological modifiers to transiently reduce stratum corneum barrier function. A number of physical technologies, including iontophoresis, electroporation and sonophoresis, have been developed that apply different forms of energy to disrupt the barrier. In addition, minimally invasive techniques, such as microneedles and jet propulsion, bypass the stratum corneum barrier to permit direct access to the viable epidermis. This article reviews the current state of the art in the delivery of proteins and peptides to and across the skin.  相似文献   

18.
There are a number of advantages associated with transdermal drug delivery. With this route of administration, it is possible to avoid pain and presystemic metabolism. In addition, pharmacokinetic profile of the drug is more uniform with fewer peaks and troughs. However, the outermost layer of the skin. the stratum corneum. constitutes a strong barrier making it difficult for permeants to cross the skin at clinically relevant rates. This review examines progress made over the last 4 decades and challenges ahead. Over this period, about 35 transdermal products have been approved by regulatory authorities. About 19 drugs have been formulated into transdermal patches and approved by the Food and Drug Administration. The main challenge lies with the formulation of macromolecules- proteins, small interfering RNA and other products of biotechnology into transdermal delivery systems. This challenge is being met with approaches such as microneedles, iontophoresis, sonophoresis and electroporation.  相似文献   

19.
Introduction: Transdermal delivery has potential advantages over other routes of administration. It could reduce first-pass metabolism associated with oral delivery and is less painful than injections. However, the outermost layer of the skin, the stratum corneum (SC), limits passive diffusion to small lipophilic molecules. Therefore, methods are needed to safely permeabilize the SC so that ionic and larger molecules may be delivered transdermally.

Areas covered: This review focuses on low-frequency sonophoresis, microneedles, electroporation and iontophoresis, and combinations of these methods to permeabilize the SC. The mechanisms of enhancements and developments in the last 5 years are discussed. Potentially high-impact applications, including protein delivery, vaccination and sensing are presented. Finally, commercial interest and clinical trials are discussed.

Expert opinion: Not all permeabilization methods are appropriate for all applications. Focused studies into applications utilizing the advantages of each method are needed. The total dose and kinetics of delivery must be considered. Vaccination is one application where permeabilization methods could make an impact. Protein delivery and analyte sensing are also areas of potential impact, although the amount of material that can be delivered (or extracted) is of critical importance. Additional work on the miniaturization of these technologies will help to increase commercial interest.  相似文献   

20.
The birth of microneedles, an array of needles sufficiently long to penetrate epidermis but small enough to do not cause skin injury and pain feeling, has offered a highly promising solution for non-invasive delivery of protein and peptide drugs, a long-cherished desire over eighty years. However, the attempts to develop clinically feasible microneedle transdermal delivery methods encountered series of difficulties, for which a decade research efforts have yet to result in a single product. Microneedles may be incorporated into devices as skin pre-treatment tools, skin microinjectors as well as transdermal patches by their functions in drug delivery. They may also be categorized to insoluble solid microneedles, hollow microneedles, soluble/degradable solid microneedles and phase-transition microneedles by their structure and forming materials. This review article is aimed to update the progress and discuss the technical challenges raised in developing protein/peptide loaded microneedle patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号