首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This study was undertaken to elucidate whether duct cells in the pancreas contain acidic cytoplasmic compartments regulated by secretion. Microdissected pancreatic ducts from pigs were examined by acridibe orange (AO) and 2′, 7′-biscarboxyethyl-5(6)-carboxyfluorescein/tetraacetioxymethyl ester (BCECF/AM) epifluorescence microscopy. Estimated cytoplasmic pH using BCECF fluorescence was 7.43pL0.04 and was not changed by altering CO2 tension in the incubation mdium. The epithelium of acridine orange incbated peripheral interlobular pancreatic ducts exhibited green and fluorescence was sen in resting pancreatic ducts and was greatly accentuated by raising CO2 in the incubation medium with chloroqyuine or NH4Cl or the protonophores carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) or carbonyl cyanide M-chlorophenylhydrazone (CCCP), leaving uniform gren fluoresence. These findings suggest that pancreatic duct cells contain CO2-dependent acidic compartments which vanishduring seceatin stimulation and which may be cytoplasmic tubulovesicles.  相似文献   

2.
Summary Static relationships between arterial, transcutaneous[/p] and end-tidal PCO2 (P aCO2, P tc CO 2, P etCO2) as well as the dynamic relationship between P etCO2 and P tcCO2 were studied during moderate bicycle ergometer exercise with and without external C02 loading. The exercise pattern consisted of 5-min intervals of constant power at 40 W and 100 W and 900 s of randomised changes between these two power levels. The external CO2 loading was achieved by means of controlled variations of inspiratory gas compositions aimed at a constant P etCO2 of 6.5 kPa (49 mm Hg). The PetO2 was regulated at 17.3 kPa (130 mm Hg). Under steady-state conditions all PCO2 parameters showed close linear relationships. P aCO2/P tcCO2 was near to identity while the P etCO2 systematically overestimated changes in P aCO2. No relationship showed a significant influence of the exercise intensity. Transients of P tcCO2 are considerably slower than P etCO2 transients. The dynamic relationship between both parameters was found to be independent of whether internal or external C02 loadings were applied. It is concluded that the combination of P etCO2 and P tcCO2 measurements allows an improved non-invasive assessment of P aCO2. While P etC02 better reflects the transients, P tcCO2 can be employed to determine slow changes of the absolute P aCO2.  相似文献   

3.
We describe here the construction and properties of a double-barrelled microelectrode (tip diameter 4–10 m) which permits simultaneous measurements of PCO2 and pH, and which has a 90% response time of only one or a few seconds for a step change in PCO2. The fast response of the CO2-sensitive barrel is due to (i) the use of a PVC-gelled (tridodecylamine-containing) membrane solution which enables the construction of extremely short ( 4 m), yet mechanically stable, membrane columns, and (ii) the presence of carbonic anhydrase in the filling solution. Recordings made in the pyramidal layer of area CA1 in rat hippocampal slices showed that the deviation in the acid direction of the basal interstitial pH (pH0) from that of the perfusion solution was attributable to a higher PCO2 level within the tissue. Most of the late acid shift evoked by stimulation of the Schaffer collaterals (5- to 20-s trains at 10 Hz) could also be explained on the basis of an accumulation of interstitial CO2 at a constant HCO 3 concentration. This conclusion was supported by the finding that inhibition of extracellular carbonic anhydrase activity by 10 M benzolamide completely abolished the activity-induced fall in pH0, but not the increase in PCO2. The initial stimulus-induced alkalosis was accompanied by a slight decrease in PCO2 only, implying a parallel increase in the interstitial HCO 3 concentration. Benzolamide produced a dramatic enhancement of the early alkaline shift as well as of the simultaneous fall in PCO2. The latter effect of the drug unmasks a cellular CO2 sink that is induced by neuronal activity.  相似文献   

4.
Summary In anesthetized guinea pigs the action of acetylcholine, norepinephrine, epinephrine, isoproterenol, and reactive hyperaemia on arterial blood pressure, blood flow in the lower leg (measured by venous occlusion plethysmography), and distribution ofpO2-values a platinum-O2-microelectrode was used. By continuous recording of thepO2 the electrode was moved slowly through the muscle tissue by constant velocity (33 /sec).During the action of norepinephrine, epinephrine, isoproterenol, and following temporary arterial occlusion a linear proportion was found between meanpO2-values or meanpO2-gradients and mean blood flow values (between 1.3 and 7.8 ml/min ·100 ml tissue). During the action of acetylcholinepO2-values decreased in spite of increased blood flow.The reduced number of higherpO2-values and the decreasedpO2-gradients appear to indicate a relatively small number of open (perfused) capillaries during the action of acetylcholine. The reduced tissue oxygen delivery is due to enlarged diffusion distances and smaller capillary surface areas.  相似文献   

5.
Summary An electrode is presented which permits in vivoP CO 2 measurements using a micropuncture technique. The tip diameter of the electrode is only a few microns, the tip is specially designed for measuringP CO 2 in small tissue compartements.This work was supported by grants from the Swedish Medical Research Council, The Bergwall Foundation and the Medical Faculty of Uppsala, Sweden.  相似文献   

6.
The aim of the present study was to study the effect of secretin on the electrophysiological response of pancreatic ducts. Furthermore, we investigated the effects of lipid-soluble buffers and inhibitors of HCO3 /H+ transport. Ducts obtained from fresh rat pancreas were perfused in vitro. Secretin depolarized the basolateral membrane voltage, V bl, by up to 35 mV (n=37); a halfmaximal response was obtained at 3×10–11 mol/l. In unstimulated ducts a decrease in the luminal Cl concentration (120 to 37 mmol/l) had a marginal effect on V bl, but after maximal secretin stimulation it evoked a 14±2 mV depolarization (n=6), showing that a luminal Cl conductance G Cl- was activated. The depolarizing effect of secretin on V bl was often preceded by about a 6 mV hyperpolarization, most likely due to an increase in the basolateral G K+. Perfusion of ducts with DIDS (4,4 — diisothiocyanatostilbene — 2,2 — disulphonic acid, 0.01 mmol/l) or addition of ethoxzolamide (0.1 mmol/l) to the bath medium diminished the effect of secretin. Acetate or pre-treatment of ducts with NH4 +/NH3 (10 mmol/l in the bath) depolarized the resting V bl of –65±2 mV by 16±4 mV (n=7) and 19±3 mV (n=10), respectively. The fractional resistance of the basolateral membrane (FR bl) doubled, and the depolarizing responses to changes in bath K+ concentrations (5 to 20 mmol/l) decreased from 22±1 to 11±2 mV. The Na+/H+ antiporter blocker EIPA (5-[N-ethyl-N-isopropyl]-amiloride, 0.1 mmol/l) also depolarized V bl by 10±1 mV, FRbl increased and the response to K+ concentration changes decreased (n=7). Effects of EIPA and ethoxzolamide on V bl were greater in ducts deprived of exogenous HCO3 /CO2. Taken together, the present study shows that secretin increased the basolateral G K+ and the luminal G Cl-. The depolarizing effect of secretin was diminished following inhibition of HCO3 transport (DIDS), or HCO3 /H+ generation (ethoxzolamide). Manoeuvres that presumably led to lowered intracellular pH (NH4 +/NH3 removal, acetate, EIPA) decreased the basolateral G K+. The present data support our previously published model for pancreatic HCO3 secretion, and indicate that the basolateral membrane possesses a pH-sensitive G K+.  相似文献   

7.
Some membrane electrical properties of muscle cells from the middle cerebral artery of the rat were recorded with intracellular microelectrodes. The resting membrane potential (E m) of this preparation was –63 mV. Reduction of extracellular pH to 7.0 in the face of a constantP CO 2of 40 mm Hg had no significant effect onE m. Similarly the slope of the steady-state voltage/current curves was not different at pH 7.0 compared to control at pH 7.4. In marked contrast, whenP CO 2was elevated to around 60 to 70 mm Hg there was a rapid hyperpolarization and reduction in the slope of the voltage current curve suggesting an increased conductance for one or more ionic species. In addition elevation ofP CO 2increased the slope of theE m vs. log[K]0 curve from 46 mV/decade to 59 m V/decade which is in good agreement with a Nernstian potential for a K+ selective membrane. These data suggest that while the smooth muscle cells of rat cerebral arteries are relatively insensitive to a small reduction in extracellular pH; reduction of intracellular pH by elevatingP CO 2induces hyperpolarization by increasing K+ conductance (g k). However, it is not clear from these experiments if theP CO 2effects are mediated entirely by changes in pH or if there is a direct membrane action of CO2.This work is supported by Grant no. HL27862  相似文献   

8.
Summary In 11 adult cats, lightly anesthetized with chloralose-urethane, blood from both common carotid arteries was led into a plastic chamber of 15–20 ml and returned to the carotids at a point 1.5 cm more cranial. By doing so arterial blood was assumed to pool within the chamber and lose itsP CO 2 oscillations which are normally known to exist as a result of the respiratory cycle. In control periods blood bypassed the chamber, thus maintaining respiratoryP CO 2 oscillations. Spontaneous ventilation was measured spirometrically. The animals were breathing pure O2.Results. 1. When the sinus (carotid) nerves were intact or sectioned there was no significant difference in ventilation before or after switching from non-oscillating to oscillatingPa CO 2. 2. When the vertebral arteries were ligated a drop in ventilation occurred after turning to oscillatingPa CO 2 which was followed by a slight rise above control values after 30–50 sec. This phenomenon was independent of sinus nerve integrity. Thus in hyperoxie condition the smallPa CO 2 oscillations known to occur in phase with respiration do not seem to provide a respiratory stimulus to resting ventilation above that generated by the mean level ofPa CO 2. The ventilatory depression after vertebral artery ligation must at this time remain unexplained.  相似文献   

9.
The aim of the present study was to investigate by what transport mechanism does HCO 3 cross the luminal membrane of pancreatic duct cells, and how do the cells respond to stimulation with dibytyryl cyclic AMP (db-cAMP). For this purpose a newly developed preparation of isolated and perfused intra-and interlobular ducts of rat pancreas was used. Responses of the epithelium to inhibitors and agonists were monitored by electrophysiological techniques. Addition of HCO 3 /CO2 to the bath side of nonstimulated ducts depolarized the PD across the basolateral membrane (PDbl) by about 9mV, as also observed in a previous study [21]. This HCO 3 effect was abolished by Cl channel blockers or SITS infused into the lumen of the duct: i. e. 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB, 10–5 M) hyperpolarized PDbl by 8.2±1.6 mV (n=13); 3,5-dichlorodiphenylamine-2-carboxylic acid (DCl-DPC, 10–5 M) hyperpolarized PDbl by 10.3±1.7 mV (n=10); and SITS hyperpolarized PDbl by 7.8±0.9 mV (n=4). Stimulation of the ducts with dbcAMP in the presence of bath HCO 3 /CO2 resulted in depolarization of PDbl, the ductal lumen became more negative and the fractional resistance of the luminal membrane decreased. Together with forskolin (10–6 M), db-cAMP (10–4 M) caused a fast depolarization of PDbl by 33.8±2.5 mV (n=6). When db-cAMP (5×10–4 M) was given alone in the presence of bath HCO 3 /CO2, PDbl depolarized by 25.3±4.2 mV (n=10). In the absence of exogenous HCO 3 , db-cAMP also depolarized PDbl by 24.7±3.0 mV (n=10). The present data suggest that in the luminal membrane of pancreatic duct cells there is a Cl conductance in parallel with a Cl/HCO 3 antiport. Dibutyryl cyclic AMP increases the Cl conductance of the luminal membrane. Taking together our present results, and the recent data obtained for the basolateral membrane [21], a tentative model for pancreatic HCO 3 transport is proposed.Parts of this study have been presented at the Scandinavian Physiological Society Meeting in Copenhagen 1986 and 64th Meeting of the German Physiological Society in Homburg/Saar  相似文献   

10.
A 6–10-fold increase inpCO2 in the superfusing Ringer solution increased the volume of the extracellular space (ECS) and changed the spatial distribution and amplitude of the extracellular K+ accumulation which resulted from dorsal root stimulation. Using the increase in tetraethylammonium concentration ([TEA+]) resulting from iontophoretic injection of that ion in the extracellular fluid as an indication of the volume of the ECS, it was found that in highpCO2 the ECS volume in spinal dorsal horn increased by more than 60%. In addition, in the presence of raisedpCO2 we also observed the following: (1) The rate of diffusion of TEA+ into the dorsal horn increased. (2) The accumulation of K+ ovoked by single or tetanic stimulation of the dorsal root was less. (3) The clearance of K+ was slowed down. (4) The regions where K+ accumulated were more restricted. (5) The K+ evoked depolarization of the primary afferent fibres decreased. (6) In contrast to TEA+, the rate of diffusion of K+ into the dorsal horn decreased. The effects of an increase inpCO2 on K+ accumulation and clearance appear to result from an increase in ECS volume and a possible decrease in glial electrical coupling which interferes with glial spatial buffering of K+.  相似文献   

11.
Summary The purpose of this study was to determine the effect of fitness and work level on the O2 uptake and CO2 output kinetics when the increase in work rate step is adjusted to the subject's maximum work capacity. Nine normal male subjects performed progressive incremental cycle ergometer exercise tests in 3-min steps to their maximum tolerance. The work rate step size was selected so that the symptom-limited maximum work rate would be reached in four steps at 12 min in all subjects. Oxygen consumption (VCO2) and carbon dioxide production VCO2 were calculated breath by breath. For the group, the time (mean, SEM) to reach 75% of the 3-min response (T 0.75) for VO2 increased significantly (P<0.01) at progressively higher work rate steps, being 53.3 (5.5) s, 63.5 (4.6) s, 79.5 (5.0) s, and 94.5 (5.8) s, respectively. In contrast, T 0.75 for VCO2 did not change significantly [74.9 (7.4) s,. 75.6 (5.0) s, 85.1 (5.3) s, and 89.4 (6.3) s, respectively]. VCO2 kinetics were slower than VO2 kinetics at the low fractions of the subjects' work capacities but were the same of faster at the high fractions because of the slowing of VO2 kinetics. The first step showed the fastest rise in VO2. While VO2 kinetics slowed at each step, they were faster at each fraction of the work capacity in the fitter subjects. The step pattern in VO2 disappeared at high work rates for the less fit subjects. The heart rate response paralleled that of VO2. We conclude that VO2 and VCO2 kinetics are slower in the less fit subjects but only VO2 kinetics are significantly attenuated in response to proportional step increases in work rate.  相似文献   

12.
CO2 responsivity in the mouse measured by rebreathing   总被引:1,自引:0,他引:1  
We have modified the rebreathing method to study CO2 responsivity in very small mammals. Tidal volume (V T) and frequency (f) of pentobarbital-anesthetized mice were measured during rebreathing from a closed circuit, primed with 95% O2, 5% CO2, through which the gas was constantly circulated at 0.5 l·min–1. The circuit consisted of T-tube from a plethysmograph, Tygon tubing with compliant element, CO2 analyzer and pump, in series. CircuitPCO2 (PctCO2), which was recorded continuously during spontaneous breathing, rapidly equilibrated with end-tidalPCO2. CO2 response curves were constructed from extrapolated minute ventilation ( ),V T,f and parameters of breath-to-breath timing, respectively, onPctCO2. Analyses of slopes of the response curves, change from onset of rebreathing to peak response, andPctCO2 at which the response peaked revealed that CO2 stimulates by increasingf andV T and that this is effected by facilitation of central inspiratory-expiratory phase switching and inspiratory drive mechanisms. However, the stimulatory effect of CO2 on phase switching was not sustained, with maximal effect occurring before peak . The advantages and facility of the modified rebreathing method make it suitable for studies of other small mammals, including neonates.  相似文献   

13.
APCO2 electrode working on the principle of electrical conductivity is described. The calibration curve can be linearized according to the formula . This linearity has been tested in thePCO2 range of 0.93–9.33 kPa (7–70 Torr). For the experiments electrodes are used which have conductivity values of about 50 nS and drifts of maximally 5%/h at aPCO2 of 5.33 kPa (40 Torr). The response time (T 90) is about 20 s. The temperature sensitivity is 2.4 nS/1 K between 298K–310K. The standard error of the measurements is =0.33 nS. With these electrodes tissuePCO2 can be measured on the surface of various organs.  相似文献   

14.
On reaching the respiratory compensation point (RCP) during rapidly increasing incremental exercise, the ratio of minute ventilation (VE) to CO2 output (VCO2) rises, which coincides with changes of arterial partial pressure of carbon dioxide (P aCO2). Since P aCO2 changes can be monitored by transcutaneous partial pressure of carbon dioxide (PCO2,tc) RCP may be estimated by PCO2,tc measurement. Few available studies, however, have dealt with comparisons between PCO2,tc threshold (T AT) and lactic, ventilatory or gas exchange threshold (V AT), and the results have been conflicting. This study was designed to examine whether this threshold represents RCP rather than V AT. A group of 11 male athletes performed incremental excercise (25 W · min–1) on a cycle ergometer. The PCO2,tc at (44°C) was continuously measured. Gas exchange was computed breath-by-breath, and hyperaemized capillary blood for lactate concentration ([la]b) and P aCO2 measurements was sampled each 2 min. The T AT was determined at the deflection point of PCO2,tc curve where PCO2,tc began to decrease continuously. The V AT and RCP were evaluated with VCO2 compared with oxygen uptake (VO2) and VE compared with the VCO2 method, respectively. The PCO2,tc correlated with P aCO2 and end-tidal PCO2. At T AT, power output [P, 294 (SD 40) W], VO2 [4.18 (SD 0.57)l · min–1] and [la] [4.40 (SD 0.64) mmol · l–1] were significantly higher than those at V AT[P 242 (SD 26) W, VO2 3.56 (SD 0.53) l · min–1 and [la]b 3.52 (SD 0.75), mmol · l–1 respectively], but close to those at RCP [P 289 (SD 37) W; VO2 3.97 (SD 0.43) l · min and [la]b 4.19 (SD 0.62) mmol · l–1, respectively]. Accordingly, linear correlation and regression analyses showed that P, VO2 and [la]b at T AT were closer to those at RCP than at V AT. In conclusion, the T AT reflected the RCP rather than V AT during rapidly increasing incremental exercise.  相似文献   

15.
Summary In rabbits rebreathing oxygen one carotid sinus nerve was stimulated repeatedly by electrical stimuli of constant intensity, both before and after inactivation of vagi by cold blocking or sectioning. In animals with intact vagi the reflex hyperpnea elicited by the nerve stimulation decreased only slightly with increasing hypercapnia. After inactivation of the vagi the stimulatory effect was, at normalP A CO 2, mostly greater than in the intact condition. But with increasing hypercapnia the decrease of the reflex hyperpnea was generally steeper than in the intact preparation, sometimes reaching even lower values than before inactivation. The depressant effects of the stimulation on systemic blood pressure and heart rate were not distinctly changed by the increase ofP A CO 2, neither with intact nor with inactivated vagi. It is concluded that the ventilatory effect of chemoreceptor afferents is modified both by centralP CO 2 and by vagal afferents.
Mit Unterstützung der Deutschen Forschungsgemeinschaft (Wi 165).  相似文献   

16.
These studies were undertaken to determine the effect of reducing aPCO2 below physiological levels on cat middle cerebral artery. Upon reduction ofPCO2 from 37 to 14 torr (pH 7.4) we observed membrane depolarization and force development. ReducingPCO2 decreased the slope of theE m vs. log [K]o curve and increased the slope of the steady-state I/V relationship suggesting that the change inE m was due to reduction of outward K+ conductance (g k). Elevation of pH from 7.37 to 7.6 had a very similar effect on these cerebral arterial muscle cells, depolarizing the muscle membrane (reducing theE m vs. log [K]o curve) and increasing the slope of the I/V relationship to statistically equivalent values as reduction ofPCO2. ReturningPCO2 from 14 to 37 torr rapidly relaxed these preparations, but only transiently. This relaxation was followed by a rebound contraction within 3 min, demonstrating a transient nature for the action of elevatingPCO2 in cerebral arteries. The response to changing pHo followed a slower time course but did not change with time. These studies demonstrate that both elevated pHo and reducedPCO2 activate cerebral arterial muscle by a mechanism which includes reduction ing k. However, it can not be determined if these similar responses and reduction, ofg k are mediated by changing pHi or mediated through different mechanisms. It is possible that pHo andPCO2 can modify cerebral arterial tone by direct mechanisms and not necesarily by their effect on pHi. It is clear, however, that reduction ofPCO2 and elevation of pHo both activate cerebral arterial muscle by a mechanism which includes reduction ofg k.This study was supported by NIH grant no. HL-32871. Dr. Harder is an established investigator of the American Heart Association  相似文献   

17.
We attempted to analyze how is regulated during progesterone-induced hyperventilation in the luteal phase. A model for the CO2 control loop was constructed, in which the function of the CO2 exchange system was described as and that of the CO2 sensing system as . Using this model, we estimated (1) the primary increase in produced by progesterone stimulation and (2) the effectiveness (E) of the loop to regulateP A CO 2, defined as P A CO 2 (op)/P A CO 2 (cl) in which op signifies open-loop and cl, closed-loop. These respiratory variables were investigated throughout the menstrual cycle in 8 healthy women. During the luteal phase, on average, increased by 9.4% andP A CO 2,B andH decreased by 0.33 kPa (2.5 mm Hg), 0.47 kPa (3.5 mm Hg) and 13.6%, respectively, whileS and did not change significantly. (op) increased progressively on successive days of the luteal phase whileE remained unchanged at a value of 7.9, thus there was a progressive decrease inP A CO 2. The decrease inH was considered to lessen P A CO 2 (op) and so reduce the final deviation ofP A CO 2 (P A CO 2 (cl)) during the luteal phase. The decrease inB was found to be dependent on (op).  相似文献   

18.
It is shown that the rebreathing method can be used to study the cardiac output even when the ventilation does not correlate with the pulmonary blood flow. pCO2 was measured in mixed venous blood by equilibrating it with pCO2 in the alveolar air by the rebreathing method. A gas mixture with a CO2 concentration close to that in venous blood was produced by the subject himself during rebreathing into a bag with a capacity of 2–3 liters, filled with oxygen. Irregularity of distribution of ventilation relative to blood flow was judged from the shape of the CO2 concentration versus time curve. If signs of irregularity are present, it is impossible to make petCO2 equal to pACO2 and for that reason pCO2 of arterialized blood was determined. By means of this correction it is possible to determine the cardiac output of patients with cardiac and pulmonary diseases. The possibility of using standard nomograms for calculating the CO2 concentration in the arterial and venous blood in the presence of appreciable disturbances of the acid-base balance is discussed.Department of Experimental and Clinical Physiology, A. V. Vishnevskii Institute of Surgery, Academy of Medical Sciences of the USSR, Moscow. (Presented by Academician V. N. Chernigovskii). Translated from Byulleten' Éksperimental'noi Biologii i Meditsiny, Vol. 83, No. 2, pp. 245–247, February, 1977.  相似文献   

19.
The aim of this study was to investigate the role of the K+ conductance in unstimulated and stimulated pancreatic ducts and to see how it is affected by provision of exogenous HCO 3 /CO2. For this purpose we have applied electrophysiological techniques to perfused pancreatic ducts, which were dissected from rat pancreas. The basolateral membrane potential PDbl of unstimulated duct cells was between –60mV and –70mV, and the cells had a relatively large K+ conductance in the basolateral membrane as demonstrated by (a) 20–22 mV depolarization of PDbl in response to increase in bath K+ concentration from 5 mmol/l to 20mmol/l and (b) the effect of a K+ channel blocker, Ba2+ (5 mmol/l), which depolarized PDbl by 30–40mV. These effects on unstimulated ducts were relatively independent of bath HCO 3 /CO2. The luminal membrane seemed to have no significant K+ conductance. Upon stimulation with secretin or dibutyryl cyclic AMP, PDbl depolarized to about –35 mV in the presence of HCO 3 /CO2. Notably, the K+ conductance in the stimulated ducts was now only apparent in the presence of exogenous HCO 3 /CO2 in the bath solutions. Upon addition of Ba2+, PDbl depolarized by 13±1 mV (n=7), the fractional resistance of the basolateral membrane, FRbl increased from 0.66 to 0.78 (n=6), the specific transepithelial resistance, R te, increased from 52±13 cm2 to 59±15 cm2 (n=11), and the whole-cell input resistance, R c, measured with double-barrelled electrodes, increased from 20 M to 26 M (n=3). These results are consistent with Ba2+ inhibition of the K+ conductance. Following removal of exogenous HCO 3 /CO2 in the same ducts, stimulation led to a larger depolarization on PDbl to about –25 mV, and Ba2+ had a smaller effect on PDbl and no significant effect on the resistances. The individual resistances in the duct epithelium were estimated from equivalent circuit analysis. The luminal membrane resistance, R 1 decreased from about 2000 cm2 to 80 cm2 upon stimulation. The basolateral membrane resistance, R bl, remained at 90–120 cm2, and the paracellular shunt resistance, R s, at 50–80 cm2. Ba2+ increased R bl of stimulated ducts to about 200 cm2, an effect present only if the ducts were provided with exogenous HCO 3 /CO2. Taken together, the present results indicate that the basolateral K+ conductance of pancreatic ducts is sensitive to exogenous HCO 3 /CO2, i.e. without HCO 3 /CO2 the conductance becomes very low although the ducts are undergoing stimulation.A preliminary report of the present study has been presented at the XXXI International Congress of Physiological Sciences, Helsiniki, Finland, July 1989  相似文献   

20.
The hypothesis that sympathoexcitatory neurones within the rostroventrolateral medulla (RVLM) may be chemosensitive was tested in chloralose-anaesthetized cats by artificial perfusion of the RVLM via the left vertebral artery. The baroreceptors and peripheral chemoreceptors were denervated by bilaterally dissecting the carotid sinus and vagus nerves. Either white ramus T3 (WR-T3) or the renal nerve was recorded to monitor sympathetic activity. Perfusion with saline or Ringer solution bubbled with CO2 (10%–100%) produced a rapid and pronounced increase in sympathetic activity and blood pressure. Solutions adjusted to the same pH (pH 5.2 for 100% CO2) with HCl resulted in a much weaker excitation. A linear relationship between PCO2 and sympathetic activity was demonstrated. During prolonged perfusion (90 s) sympathetic activity returned to the control level after initial excitation and fell below control levels when perfusion ceased. The sympathetic activity response to CO2-bubbled solutions was unaffected by blockade of synaptic input by microinjection of CoCl2 into the RVLM, whereas spontaneous sympathetic activity and the supraspinal somato-sympathetic reflex from intercostal nerve T4 to WR-T3 were markedly reduced. It is therefore concluded that sympathoexcitatory bulbospinal neurones in the RVLM are directly chemosensitive to changes in arterial PCO2 and pH.This paper is dedicated to Prof. Dr. H. P. Koepchen on the occasion of his 65th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号