首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The therapeutic value of doxorubicin (DOX) as anticancer antibiotic is limited by its cardiotoxicity. The implication of natural phenolic acids in the prevention of many pathologic diseases has been reported. Herein, the ability of p-coumaric (PC) acid, a member of phenolic acids, to protect rat's heart against DOX-induced oxidative stress was investigated. Three main groups of albino rats were used; DOX, PC, and PC plus DOX-receiving animals. Corresponding control animals were also used. DOX was administered i.p. in a single dose of 15mgkg(-1). PC alone, in a dose of 100mgkg(-1), was orally administered for five consecutive days. In PC/DOX group, rats received PC 5 days prior to DOX. DOX-induced high serum levels of lactic dehydrogenase (LDH) and creatine phosphokinase (CPK), were reduced significantly by PC administration, compared to DOX-receiving rats. Pretreatment with PC ameliorated the cardiac content of glutathione (GSH), and superoxide dismutase (SOD) & catalase (CAT) activities, compared to DOX-receiving rats. On the other hand, accumulation of cardiac content of MDA significantly decreased following PC pretreatment, compared to DOX-treated rats. The data presented here indicate that PC protects rats hearts against DOX-induced oxidative stress in the heart. It may be worthy to consider the usefulness of PC as adjuvant therapy in cancer management.  相似文献   

2.
The roles of individual nitric oxide synthases (NOS) in anthracycline-related cardiotoxicity are not completely understood. We investigated the effects of a chronic treatment with doxorubicin (DOX) on knockouts of the individual NOS isozymes and on transgenic mice with myocardial overexpression of eNOS. Fractional shortening (FS) was reduced in untreated homozygous nNOS and iNOS knockouts as well as in eNOS transgenics. DOX-induced FS decrease in wild-type mice was attenuated only in eNOS knockouts, which were found to overexpress nNOS. No worsening of contractility was observed in DOX-treated eNOS transgenics and iNOS knockouts. Although the surviving DOX-treated nNOS knockouts exhibited no further impairment in contractility, most (70%) animals died within 7 weeks after treatment onset. In comparison to untreated wild-type hearts, the nitric oxide (NO) level was lower in hearts from DOX-treated wild-type mice and in all three untreated knockouts. DOX treatment had no effect on NO in the knockouts. These data indicate differential roles of the individual NOS in DOX-induced cardiotoxicity. Protection against DOX effects conferred by eNOS deletion may be mediated by a compensatory overexpression of nNOS. NOS inhibition-based prevention of anthracycline-induced cardiotoxicity should be eNOS-selective, simultaneously avoiding inhibiting nNOS.  相似文献   

3.
Xiao J  Sun GB  Sun B  Wu Y  He L  Wang X  Chen RC  Cao L  Ren XY  Sun XB 《Toxicology》2012,292(1):53-62
The long-term clinical usefulness of doxorubicin (DOX), an anthracycline with potent antitumor activity, is limited by DOX-induced cardiotoxicity. Kaempferol, one of the most common dietary flavonoids, is known to have anti-apoptotic, anti-oxidative, and anti-inflammatory properties. The current study aimed to investigate the possible protective effect of kaempferol against DOX-induced cardiotoxicity and the underlying mechanisms. Rats were intraperitoneally (i.p.) treated with DOX (3 mg/kg) every other day for a cumulative dose of 9 mg/kg. After 28 days, DOX caused retarded body and heart growth, oxidative stress, apoptotic damage, mitochondrial dysfunction, and Bcl-2 expression disturbance. In contrast, kaempferol pretreatment (10 mg/kg i.p. before DOX administration) attenuated the DOX-induced apoptotic damage in heart tissues. In vitro studies also indicated that kaempferol may have used the mitochondrion-dependent pathway to counteract the DOX-induced cardiotoxicity. This counteraction was achieved by inhibiting p53 expression and its binding to the promoter region of the Bax proapoptotic gene, but not to the Bcl-2 antiapoptotic gene. Kaempferol also effectively suppressed DOX-induced extracellular signal-regulated kinase (ERK) 1/2 activation, but had no effect on p38 and JNK. Therefore, kaempferol protected against DOX-induced cardiotoxicity, at least, partially, by inhibiting the activation of p53-mediated, mitochondrion-dependent apoptotic signaling, and by being involved in an ERK-dependent mitogen-activated protein kinase pathway. These findings elucidated the potential of kaempferol as a promising reagent for treating DOX-induced cardiotoxicity, and may have implications in the long-term clinical usefulness of DOX.  相似文献   

4.
5.
目的研究金属硫蛋白(metallothionein,MT)对阿霉素(Doxorubicin,DOX)心脏氧化损伤的影响。方法雄性野生型小鼠(MT / )及敲除MT基因的转基因小鼠(MT-/-)随机分成4组,即对照组、给药组(DOX)、锌预处理组(Zn)、预处理给药组(Zn DOX),每组6只动物。动物单次腹腔注射DOX(15 mg/kg)或生理盐水(NS),此前24及48 h分别给予ZnSO4(20 mg/kg,sc)或用生理盐水预处理。DOX给药4 d后处死动物,测定血浆中肌酸激酶(CK)及乳酸脱氢酶(LDH)活力,取心脏制备组织匀浆,测定脂质过氧化产物丙二醛(MDA)以及蛋白羰基产物含量。结果DOX能引起MT / 小鼠及MT-/-小鼠血浆CK、LDH活力升高(P<0.01),心脏组织MDA以及蛋白羰基产物含量增加(P<0.01),而且MT-/-小鼠变化更为明显(P<0.01)。Zn预处理能显著降低DOX引起的MT / 小鼠CK、LDH活力升高,同时抑制心脏组织的脂质过氧化以及蛋白的羰基化。然而,这种抑制效应在MT-/-小鼠中没有出现。结论Zn诱导MT表达增强可抑制DOX引起的心脏氧化损伤,MT缺失可导致DOX心脏氧化损伤加重,提示体内MT对DOX诱发的心脏氧化损伤具有保护作用。  相似文献   

6.
Serum levels of cardiac troponins serve as biomarkers of myocardial injury. However, troponins are released into the serum only after damage to cardiac tissue has occurred. Here, we report development of a mouse model of doxorubicin (DOX)-induced chronic cardiotoxicity to aid in the identification of predictive biomarkers of early events of cardiac tissue injury. Male B6C3F1 mice were administered intravenous DOX at 3 mg/kg body weight, or an equivalent volume of saline, once a week for 4, 6, 8, 10, 12, and 14 weeks, resulting in cumulative DOX doses of 12, 18, 24, 30, 36, and 42 mg/kg, respectively. Mice were sacrificed a week following the last dose. A significant reduction in body weight gain was observed in mice following exposure to a weekly DOX dose for 1 week and longer compared to saline-treated controls. DOX treatment also resulted in declines in red blood cell count, hemoglobin level, and hematocrit compared to saline-treated controls after the 2nd weekly dose until the 8th and 9th doses, followed by a modest recovery. All DOX-treated mice had significant elevations in cardiac troponin T concentrations in plasma compared to saline-treated controls, indicating cardiac tissue injury. Also, a dose-related increase in the severity of cardiac lesions was seen in mice exposed to 24 mg/kg DOX and higher cumulative doses. Mice treated with cumulative DOX doses of 30 mg/kg and higher showed a significant decline in heart rate, suggesting drug-induced cardiac dysfunction. Altogether, these findings demonstrate the development of DOX-induced chronic cardiotoxicity in B6C3F1 mice.  相似文献   

7.
Use of doxorubicin (DOX) is limited by its toxicity in multiple organs. However, the relationship between different organs in response to DOX-induced injury is not well understood. We found that partial hepatectomy correlated with increased DOX-induced heart injury in vivo while supernatant prepared from DOX-treated hepatocytes mitigated DOX-induced cytotoxicity of cardiomyocytes in vitro. Meanwhile, the supernatant of DOX-treated cardiomyocytes mitigated DOX-induced cytotoxicity of hepatocytes. Investigation of the molecular mechanisms underlying these effects found that interleukin 6 (IL-6) was significantly up-regulated in DOX-treated tissues and cells, and supernatant from IL-6 treated cells had a similar effect to that from DOX-treated cells. Although the concentration of secreted IL-6 in supernatant from DOX-treated cells did not significantly differ, blockade of IL-6 signaling, by overexpressing SOCS3, suppressed expression of the downstream molecules trefoil factor family 3 (TFF3) and hepatocyte growth factor (HGF), impaired the mutually beneficial relationship between hepatocytes and cardiomyocytes. In conclusion, our study shows that a mutually beneficial relationship exists between hepatocytes and cardiomyocytes during the acute injury induced by DOX. Moreover, it demonstrates that this phenomenon may be indirectly caused by increased IL-6 expression and the activation of the downstream molecular mediators TFF3 and HGF in hepatocytes and cardiomyocytes, respectively.  相似文献   

8.
The present study was designed to explore whether yam could protect the heart from doxorubicin (DOX)-induced oxidative stress leading to cardiotoxicity in vivo. In this study, the protective effects of water and ethanol extracts of three varieties of yam, including water extracts of Dioscorea japonica Thunb., ethanol extracts of D. japonica Thunb., water extracts of Dioscorea alata, ethanol extracts of D. alata, water extracts of Dioscorea purpurea, and ethanol extracts of D. purpurea, against DOX-induced cardiotoxicity in experimental mice were evaluated. DOX treatment led to significant decreases in the ratio of heart weight to body weight and heart rate, and increases in blood pressure and the serum level of lactate dehydrogenase, a marker of cardiotoxicity, were recovered by yam extracts, especially in water extracts of D. alata. Yam extracts also decreased the cardiac levels of thiobarbituric acid relative substances, reactive oxygen species, and inflammatory factors, as well as the expression of nuclear factor kappa B, while ethanol extracts of D. japonica Thunb. and D. purpurea were shown to be more potent. Moreover, yam extracts had a role in increasing the activities of glutathione peroxidase and superoxide dismutase, thus improving the DOX-induced alterations in oxidative status in the heart tissue of DOX-treated mice. All ethanol extracts of yam exhibited their antiapoptotic abilities on caspase-3 activation and mitochondrial dysfunction, and ethanol extracts of D. alata still exerted a superior effect. Based on these findings, it can be concluded that yam has significant cardioprotective properties against DOX-induced damage via its multiple effects on antioxidant, anti-inflammatory, or antiapoptotic activities.  相似文献   

9.
Background: Doxorubicin (DOX)-related cardiotoxicity may expose cancer survivors to increased risk of cardiovascular morbidity and mortality. Here, we characterized the time course of DOX-induced cardiomyopathy in rats.Methods: Sprague-Dawley male rats (12 wk old) received doxorubicin hydrochloride (1 mg/kg/d, ip) during 10 consecutive days and they were euthanized one (DOX1), two (DOX2) or four (DOX4) weeks after the last drug injection. Control group received NaCl 0.9% (ip). Hearts were mounted on a Langendorff perfusion system, left ventricle fragments were processed for microscopy and oxidative stress-related assays, and blood was collected for cardiac troponin I assay.Results: All DOX-treated groups showed swollen and vacuolated cardiomyocytes with myofilaments disarray and mitochondrial damage. These changes were already evident after one week and became more pronounced after four weeks. Cardiac troponin I plasma levels were significantly increased in DOX1 and further increased in DOX4 compared to control group. Increased oxidative damage to lipids was observed in DOX1, and to proteins in DOX4. Glutathione peroxidase activity increased in DOX4. The morphological changes resulted in cardiac remodeling, including interstitial fibrosis, apoptosis and significant impairment of both contractile and relaxation function in DOX 4 compared to control group. Hearts from all animals displayed an early reduction in the responsiveness to norepinephrine.Conclusions: These findings support the view that DOX cardiotoxicity occurs in a “continuum”, and as the hypothesis of an irreversible cardiac injury is being challenged, understanding the progression of morphological and functional changes caused by DOX may allow proper timing of initiation of prophylactic treatment.  相似文献   

10.
The purpose of the present study was to investigate the cardioprotective effects of Glycyrrhiza uralensis extract (GUE) against doxorubicin (DOX)-induced cardiotoxicity. Imprinting control region (ICR) mice were treated with saline, DOX (20 mg/kg intraperitoneal [ip] for once), GUE (100 mg/kg intragastric [ig] for 8 days), co-treatments with DOX and GUE (100 mg/kg ig for 8 days), and amifostine (100 mg/kg intravenous [iv] for once), respectively. Serum levels of lactate dehydrogenase (LDH) and creatine kinase isoenzyme (CK-MB), glutathione peroxidase (GSH-P(X)) activity, and glutathione (GSH) level in heart tissue were measured. Histopathologic analysis of heart tissue was also performed. Treatment with GUE significantly protected the mice from DOX-induced cardiotoxicity, indicated by decreased levels of serum LDH and CK-MB, improved heart morphology and increased GSH-P(X) activity and GSH level. Additionally, GUE did not compromise the tumor-inhibitory effect of DOX. In conclusion, our studies imply the potentially clinical application of GUE to overcome the cardiotoxicity of doxorubicin.  相似文献   

11.
Doxorubicin (DOX) is a potent antitumor agent, but the cardiotoxicity mediated by the formation of reactive oxygen species limit its clinical use. The present study aims to explore electrocardiographic and biochemical evidence for the cardioprotective effect of two antioxidants, Lycium barbarum polysaccharides (LBP, the main antioxidant in Lycium barbarum) and edaravone (a potent free radical scavenger, EDA) against DOX-induced acute cardiotoxicity in beagle dogs. In this study, male beagle dogs received daily treatment of either LBP (20 mg/kg, per os (p.o.)) or EDA (2 mg/kg, intravenously (i.v.)) for 7 d and then followed by an intravenous injection of DOX (1.5 mg/kg). DOX (15 mg/kg) significantly induced acute cardiotoxicity in dogs characterized by conduction abnormalities (including decreased heart rate, ST segment elevation, QT intervals prolongation, inverted T wave, arrhythmia, and myocardial ischemia) and increased serum creatine kinase (CK) and aspartate aminotransferase (AST). Pretreatment with LBP or EDA effectively alleviated both DOX-associated conduction abnormalities and increased serum CK and AST. Moreover, physiological and serum biochemical evidences demonstrated that EDA is more effective than LBP in alleviating these abnormalities produced by DOX in heart. All these results confirm and extend previous observations in rats concerning the effectiveness of LBP or EDA against DOX-induced cardiomyopathy.  相似文献   

12.
Doxorubicin (DOX) is a widely used cancer chemotherapeutic agent. However, it generates free oxygen radicals that result in serious dose-limiting cardiotoxicity. Supplementations with berries were proven effective in reducing oxidative stress associated with several ailments. The aim of the current study was to investigate the potential protective effect of cranberry extract (CRAN) against DOX-induced cardiotoxicity in rats. CRAN was given orally to rats (100 mg/kg/day for 10 consecutive days) and DOX (15 mg/kg; i.p.) was administered on the seventh day. CRAN protected against DOX-induced increased mortality and ECG changes. It significantly inhibited DOX-provoked glutathione (GSH) depletion and accumulation of oxidized glutathione (GSSG), malondialdehyde (MDA), and protein carbonyls in cardiac tissues. The reductions of cardiac activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were significantly mitigated. Elevation of cardiac myeloperoxidase (MPO) activity in response to DOX treatment was significantly hampered. Pretreatment of CRAN significantly guarded against DOX-induced rise of serum lactate dehydrogenase (LDH), creatine phosphokinase (CK), creatine kinase-MB (CK-MB) as well as troponin I level. CRAN alleviated histopathological changes in rats’ hearts treated with DOX. In conclusion, CRAN protects against DOX-induced cardiotoxicity in rats. This can be attributed, at least in part, to CRAN’s antioxidant activity.  相似文献   

13.
The present study aims to investigate whether Lycium barbarum polysaccharides (LBP) could protect against acute doxorubicin (DOX)-induced cardiotoxicity. Rats received daily treatment of either distilled water (4 ml/kg) or LBP (200 mg/kg) for 10 days and then followed by an intravenous injection at day 7 of either saline (10 ml/kg) or DOX (10 mg/kg). DOX induced significantly myocardial damage in rats, which were characterized as conduction abnormalities, decreased heart-to-body weight ratio, increased serum CK, and myofibrillar disarrangement. DOX treatment also increased MDA and decreased SOD and GSH-Px activity in cardiac tissues. Pretreatment with LBP significantly reduced DOX-induced oxidative injury in cardiac tissue, suggesting by the fact that LBP significantly attenuated DOX-induced cardiac myofibrillar disarrangement and LBP was effective in decreasing the levels of serum CK and thus improving conduction abnormalities caused by DOX. LBP treatment significantly increased SOD and GSH-Px activity and decreased the MDA level of heart tissues damaged by DOX exposure in rats. Furthermore, the cytotoxic study showed that LBP protect against cytotoxicity of DOX in cardiac myoblasts H9c2 but dose not attenuate the anti-tumor activity of DOX. In summary, our evidence indicates that LBP elicited a typical protective effect on DOX-induced acute cardiotoxicity via suppressing oxidative stress.  相似文献   

14.
Doxorubicin (DOX)-induced cardiotoxicity impedes its clinical application, but the mechanisms have not been thoroughly elucidated. Based on circRNA and mRNA expression profiles, we illustrated RNA expression signature changes during DOX-induced cardiotoxicity; mechanism exploration and biomarkers screening were also conducted. Twelve mice were randomly divided into two groups, induction group was treated with doxorubicin, and the control group was given an equal quantity of saline. After the confirmation of myocardial injury in induction group, the heart tissues from both groups were isolated for RNA high-throughput sequencing. The expression profiles were compared between the two groups; a total of 295 mRNAs and 11 circRNAs were shown as biased expression in DOX-induced cardiotoxicity mouse hearts. The dysregulation of three circRNAs were validated by quantitative real-time PCR: mmu_circ_0015773, mmu_circ_0002106, and mmu_circ_001606. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the differentially expressed RNAs were performed; the results implied that DOX might cause cardiotoxicity by interfering hemoglobin-based oxygen delivery and DNA-associated signal pathways. We integrated the differential expressed mRNA and validated circRNAs by constructing a competing endogenous RNA (ceRNA) network, which indicated that the alteration of the three circRNAs could activate apoptosis process of myocardial cells. This study provided novel insight into the mechanisms of DOX induced cardiotoxicity, and potential biomarkers or therapeutic targets were also proposed.  相似文献   

15.
Selective cardiotoxicity of doxorubicin (DOX) remains a significant and dose-limiting clinical problem. The mechanisms implicated are not yet fully defined but may involve the production of reactive oxygen species or expression of cytokines. Although patients with advanced congestive heart failure express elevated circulating levels of tumour necrosis factor-alpha (TNFalpha), little is known about the prognostic importance and regulation of TNF in the heart in cardiac disease states. Here we tested whether the expression of TNFalpha, along with oxidative stress, is associated with the development of DOX-induced cardiomyopathy (DOX-CM) and whether concurrent treatment with taurine (Taur), an antioxidant, or rolipram (Rolp), a TNFalpha inhibitor, offer a certain protection against DOX cardiotoxic properties. DOX (cumulative dose, 12 mg kg(-1)) was administered to rats in six equal (intraperitoneal) injections over a period of 6 weeks. Cardiomyopathy was evident by myocardial cell damage, which was characterized by a dense indented nucleus with peripheral heterochromatin condensation and distorted mitochondria, as well as significant increase in serum levels of creatine kinase and lactate dehydrogenase. DOX also induced an increment (P<0.001) in serum TNF and plasma nitric oxide levels. The extent of left ventricular (LV) superoxide anion, lipid peroxide measured as malondialdehyde, catalase and calcium content were markedly elevated, whereas superoxide dismutase, total and non-protein-bound thiol were dramatically decreased in DOX-treated rats. Exaggeration of DOX-CM was achieved by intraperitoneal injection of lipopolysaccharide (LPS) (1 mg kg(-1)) 18 h before sampling and evaluated by highly significant increase in heart enzymes (P<0.001), oxidative stress biomarkers and TNFalpha production. Pre- and co-treatment of DOX or DOX-LPS rats with Taur (1% daily supplemented in drinking water, 10 days before and concurrent with DOX) or Rolp (3 mg kg(-1), intraperitoneally, one dose before DOX administration then every 2 weeks throughout the experimental period) ameliorated the deleterious effect of both DOX and LPS on the aforementioned parameters. Meanwhile, it is noteworthy that Rolp exhibited a more preferable effect on serum TNFalpha level. Taur and rolipram also restored the myocardial apoptosis induced by DOX. In conclusion, a cumulative dose of DOX affected free radical and TNFalpha production in the heart of an experimental cardiomyopathy animal model. The current results suggest that down-regulation of these radicals and cytokines could be maintained by using the free radical scavenger Taur or, more favourably, the TNFalpha inhibitor Rolp.  相似文献   

16.
目的:研究Zn诱导金属硫蛋白(metallothionein,MT)表达对多柔比星(doxorubicin,DOX)心脏毒性的保护作用及其机制。方法:雄性C57/BL6J小鼠随机分成4组(n=6),即对照组(control)、给药组(DOX)、预处理组(Zn)、预处理给药组(Zn+DOX)。动物单次腹腔注射DOX(20 mg·kg-1)或等剂量的生理盐水(NS),此前24 h及48 h分别给予ZnSO4(300μmol·kg-1,sc)或等剂量的NS预处理。DOX给药后d 4,测定血浆肌酸激酶(CK)及乳酸脱氢酶(LDH)活性;光学显微镜检查心脏组织形态学改变;测定心脏组织匀浆中MT、丙二醛(MDA)和还原型谷胱甘肽(GSH)含量以及谷胱甘肽过氧化物酶(GSHpx)、超氧化物歧化酶(SOD)、过氧化氢酶((CAT)活性并测定组织过氧化氢(H2O2)浓度。结果:与对照组相比,Zn能显著诱导心脏MT的过表达,而对CK、LDH、MDA、GSHpx、SOD、CAT、GSH、H2O2以及组织形态学无明显影响;给药组病理学检查可见心肌纤维浊肿、肌浆溶解、胞核淡染或固缩,CK、LDH及MDA升高,组织GSHpx、SOD活性及GSH含量显著下降,CAT活性及H2O2浓度升高;Zn预处理能显著抑制DOX诱导的心脏毒性效应,心脏毒性损伤明显减轻。提示Zn预处理诱导心脏MT过表达后,MT可作为体内有效的抗氧化物拮抗DOX心脏毒性。结论:Zn诱导MT表达对DOX心脏毒性具有明显的保护作用,其机制可能与MT体内清除自由基功能有关。  相似文献   

17.
Results obtained in vitro suggested that fullerenol's antiproliferative properties and protective effects against doxorubicin (DOX) cytotoxicity are mediated by antioxidative and hydroxyl radical scavenger activity. The aim of this study was to examine the influence of fullerenol on acute cardiotoxicity after the administration of a single high dose of DOX in vivo. The experiment was performed on male Wistar rats randomly divided into five groups, each containing eight individuals, that were treated as follows: I) 0.9% NaCl, II) 10 mg/kg DOX, III) 50 mg/kg fullerenol 30 min before 10 mg/kg DOX, IV) 100 mg/kg fullerenol 30 min before 10 mg/kg DOX, and V) 100 mg/kg fullerenol. A functional, biochemical, hematological, and pathomorphological examination of the heart as well as an evaluation of oxidative stress parameters was conducted on days 2 and 14 after DOX administration. The function of the heart was investigated by monitoring heart contractility after the adrenaline infusion. Fullerenol, applied alone, did not alter basal values of investigated animals. Both doses of fullerenol, used as a pretreatment, did not alter the basal parameters of the animals. The 100 mg/kg dose of fullerenol showed better protection. Considering the mechanisms of DOX toxicity, fullerenol likely exerts its protective role as a free radical sponge and/or by removing free iron through the formation of a fullerenol-iron complex. Our results suggest that fullerenol might be a potential cardioprotective agent in DOX-treated individuals.  相似文献   

18.
Sinomenine (SN, 1) is a pure compound extracted from the Sinomenium acutum plant. We investigated the protective effects and mechanism of action of SN in a rat model of doxorubicin (DOX)-induced nephrosis. Nephrosis was induced by a single dose of 5?mg/kg DOX, and DOX-treated rats received a daily i.p. injection of 10 or 30?mg/kg SN, or saline (n?=?6). Urine and serum biochemical parameters, serum TNF-α and IL-1β levels, nephrin, podocin, α-actinin-4, and peroxisome proliferator-activated receptor-α (PPAR-α) protein expression, and renal ultrastructure were examined at day 28. Compound 1 significantly attenuated the effect of DOX on urine and serum biochemical parameters. Electron microscopy demonstrated that 1 suppressed DOX-induced increases in foot process width. Compared with those in control rats, nephrin, podocin, and PPAR-α protein expressions decreased in the glomeruli of DOX-treated rats, and this effect was significantly attenuated by 1. However, no appreciable alterations were observed in the expression level of α-actinin-4. DOX significantly increased serum TNF-α and IL-1β compared with those in control rats, and 1 significantly reduced the serum levels of TNF-α and IL-1β. SN ameliorates DOX-induced nephrotic syndrome in rats, resulting in a modulation of renal nephrin, podocin expression, and thereby protecting podocytes from injury.  相似文献   

19.
ContextAidi injection (ADI), a traditional Chinese medicine antitumor injection, is usually combined with doxorubicin (DOX) for the treatment of malignant tumours. The cardiotoxicity of DOX is ameliorated by ADI in the clinic. However, the relevant mechanism is unknown.ObjectiveTo investigate the effects of ADI on DOX-induced cardiotoxicity and its mechanism.Materials and methodsICR mice were randomly divided into six groups: control, ADI-L, ADI-H, DOX, DOX + ADI-L and DOX + ADI-H. DOX (i.p., 0.03 mg/10 g) was administered in the presence or absence of ADI (i.p., 0.1 or 0.2 mL/10 g) for two weeks. Heart pathology and levels of AST, LDH, CK, CK-MB and BNP were assessed. H9c2 cells were treated with DOX in the presence or absence of ADI (1, 4, 10%). Cell viability, caspase-3 activity, nuclear morphology, and CBR1 expression were then evaluated. DOX and doxorubicinol (DOXol) concentrations in heart, liver, kidneys, serum, and cells were analysed by UPLC-MS/MS.ResultsHigh-dose ADI significantly reduced DOX-induced pathological changes and the levels of AST, LDH, CK, CK-MB and BNP to normal. Combined treatment with ADI (1, 4, 10%) improved the cell viability, and IC50 increased from 68.51 μM (DOX alone) to 83.47, 176.9, and 310.8 μM, reduced caspase-3 activity by 39.17, 43.96, and 61.82%, respectively. High-dose ADI inhibited the expression of CBR1 protein by 32.3%, reduced DOXol levels in heart, serum and H9c2 cells by 59.8, 72.5 and 48.99%, respectively.Discussion and ConclusionsADI reduces DOX-induced cardiotoxicity by inhibiting CBR1 expression, which provides a scientific basis for the rational use of ADI.  相似文献   

20.
Cardiotoxicity is a serious adverse effect of an anticancer drug, doxorubicin (DOX), which can occur within a year or decades after completion of therapy. The present study was designed to address a knowledge gap concerning a lack of circulating biomarkers capable of predicting the risk of cardiotoxicity induced by DOX. Profiling of 2083 microRNAs (miRNAs) in mouse plasma revealed 81 differentially expressed miRNAs 1 week after 6, 9, 12, 18, or 24 mg/kg total cumulative DOX doses (early-onset model) or saline (SAL). Among these, the expression of seven miRNAs was altered prior to the onset of myocardial injury at 12 mg/kg and higher cumulative doses. The expression of only miR-34a-5p was significantly (false discovery rate [FDR] < 0.1) elevated at all total cumulative doses compared with concurrent SAL-treated controls and showed a statistically significant dose-related response. The trend in plasma miR-34a-5p expression levels during DOX exposures also correlated with a significant dose-related increase in cardiac expression of miR-34a-5p in these mice. Administration of a cardioprotective drug, dexrazoxane, to mice before DOX treatment, significantly mitigated miR-34a-5p expression in both plasma and heart in conjunction with attenuation of cardiac pathology. This association between plasma and heart may suggest miR-34a-5p as a potential early circulating marker of early-onset DOX cardiotoxicity. In addition, higher expression of miR-34a-5p (FDR < 0.1) in plasma and heart compared with SAL-treated controls 24 weeks after 24 mg/kg total cumulative DOX dose, when cardiac function was altered in our recently established delayed-onset cardiotoxicity model, indicated its potential as an early biomarker of delayed-onset cardiotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号