首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive glia formation is one of the hallmarks of damage to the CNS, but little information exists on the signals that direct its activation. Microglial cells are the main regulators of both innate and adaptative immune responses in the CNS. The proinflammatory cytokine IL‐15 is involved in regulating the response of T and B cells, playing a key role in regulating nervous system inflammatory events. We have used a microglial culture model of inflammation induced by LPS and IFNγ to evaluate the role of IL‐15 in the proinflammatory response. Our results indicate that IL‐15 is necessary for the reactive response, its deficiency (IL‐15‐/‐) leading to the development of a defective proinflammatory response. Blockade of IL‐15, both with blocking antibodies or with the ganglioside Neurostatin, inhibited the activation of the NFκB pathway, decreasing iNOS expression and NO production. Inhibiting IL‐15 signaling also blocked the activation of the mitogen‐activated protein kinase (MAPK) pathways ERK1/2 and p38. The major consequence of these inhibitory effects, analyzed using cytokine antibody arrays, was a severe decrease in the production of chemokines, cytokines and growth factors, like CCL17, CCL19, IL‐12, or TIMP‐1, that are essential for the development of the phenotypic changes of glial activation. In conclusion, activation of the IL‐15 system seems a necessarystep for the development of glial reactivity and the regulation of the physiology of glial cells. Modulating IL‐15 activity opens the possibility of developing new strategies to control gliotic events upon inflammatory stimulation. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Interleukin-1 beta is a key mediator of inflammation and stress in the central nervous system (CNS). This cytokine induces CNS glial cells to produce numerous additional cytokines and growth factors under inflammatory conditions. We have investigated regulation of the signal transducing type 1 interleukin-1 receptor (IL-1R1) in the CNS. In vivo, IL-1R1 was not detected in glial cells under basal conditions but was strongly induced after a stab lesion. Cultured astrocytes were used to identify specific signals that regulate expression of the receptor. IL-1R1 mRNA and protein were induced by inflammatory stimuli including tumor necrosis factor (TNF alpha) and IL-1 beta itself. Although expression of the receptor was not detected in glia under basal conditions in vivo, pyramidal neurons in the hippocampus expressed the IL-1 receptor in the normal, unlesioned brain. Cultured embryonic hippocampal neurons were used to investigate specific stimuli that regulate IL-1R1 in neurons. As in astrocytes, IL-1 and TNF alpha induced expression of IL-1R1. The expression of IL-1R1 in hippocampal neurons suggests a possible role for IL-1 in regulating neuronal function, and indicates that these neurons may be directly influenced by cytokines.  相似文献   

3.
HIV-1-associated dementia (HAD) is an important complication of HIV-1 infection. Reactive astrogliosis is a key pathological feature in HAD brains and in other central nervous system (CNS) diseases. Activated astroglia may play a critical role in CNS inflammatory diseases such as HAD. In order to test the hypothesis that activated astrocytes cause neuronal injury, we stimulated primary human fetal astrocytes with HAD-relevant pro-inflammatory cytokine IL-1beta. IL-1beta-activated astrocytes induced apoptosis and significant changes in metabolic activity in primary human neurons. An FITC-conjugated pan-caspase inhibitor peptide FITC-VAD-FMK was used for confirming caspase activation in neurons. IL-1beta activation enhanced the expression of death protein FasL in astrocytes, suggesting that FasL is one of the potential factors responsible for neurotoxicity observed in HAD and other CNS diseases involving glial inflammation. Our data presented here add to the developing picture of role of activated glia in HAD pathogenesis.  相似文献   

4.
We have previously shown that ischaemic lesions are smaller in monocyte chemoattractant protein-1-deficient (MCP-1(-/-)) mice than in wild-type (wt) controls. In addition to its role as a monocyte chemoattractant, monocyte chemoattractant protein-1 (MCP-1) has been proposed to contribute to lesion progression after focal ischaemia by driving local cytokine synthesis by resident glia. To investigate this hypothesis we injected lipopolysaccharide (LPS) into the brain parenchyma of MCP-1(-/-) mice and compared the resulting inflammatory response and production of proinflammatory cytokines to those in wt mice. Microglial and astrocyte morphological activation was the same in the two strains, but MCP-1(-/-) mice showed significantly lower levels of proinflammatory cytokine synthesis; interleukin-1beta (IL-1beta) and tumour necrosis factor-alpha (TNF-alpha) levels were up to 50% lower than in wt controls after 6 h. This reduced synthesis of proinflammatory cytokines occurred well before leucocyte recruitment to the central nervous system (CNS) is observed in this model of acute inflammation and thus cannot be attributed to lower numbers of recruited monocytes at the site of injury. We propose that MCP-1 contributes to acute CNS inflammation by pleiotropic mechanisms. In addition to being a potent chemoattractant for monocytes, we provide evidence here that MCP-1 can modify the responsiveness of CNS glia to acute inflammatory stimuli prior to leucocyte recruitment, thereby acting as a priming stimulus for cytokine synthesis in cells such as microglia.  相似文献   

5.
Rasley A  Tranguch SL  Rati DM  Marriott I 《Glia》2006,53(6):583-592
There is growing appreciation that resident glial cells can initiate and/or regulate inflammation following trauma or infection in the central nervous system (CNS). We have previously demonstrated the ability of microglia and astrocytes, resident glial cells of the CNS, to respond to bacterial pathogens by rapid production of inflammatory mediators. However, inflammation within the brain parenchyma is notably absent during some chronic bacterial infections in humans and nonhuman primates. In the present study, we demonstrate the ability of the immunosuppressive cytokine, interleukin-10 (IL-10), to inhibit inflammatory immune responses of primary microglia and astrocytes to B. burgdorferi and N. meningitidis, two disparate gram negative bacterial species that can cross the blood-brain barrier in humans. Importantly, we demonstrate that these organisms induce the delayed production of significant quantities of IL-10 by both microglia and astrocytes. Furthermore, we demonstrate that such production occurs independent of the actions of bacterial lipopolysaccharide and is secondary to the autocrine or paracrine actions of other glia-derived soluble mediators. The late onset of IL-10 production by resident glia following activation, the previously documented expression of specific receptors for this cytokine on microglia and astrocytes, and the ability of IL-10 to inhibit bacterially induced immune responses by these cells, suggest a mechanism by which resident glial cells can limit potentially damaging inflammation within the CNS in response to invading pathogens, and could explain the suppression of inflammation seen within the brain parenchyma during chronic bacterial infections.  相似文献   

6.
Microglia: Intrinsic immuneffector cell of the brain   总被引:22,自引:0,他引:22  
Microglia form a regularly spaced network of resident glial cells throughout the central nervous system (CNS). They are morphologically, immunophenotypically and functionally related to cells of the monocyte/macrophage lineage. In the ultimate vicinity of the blood-brain barrier two specialized subsets of macrophages/microglia can be distinguished: firstly, perivascular cells which are enclosed within the basal lamina and secondly juxtavascular microglia which make direct contact with the parenchymal side of the CNS vascular basal lamina but represent true intraparenchymal resident microglia. Bone marrow chimera experiments indicate that a high percentage of the perivascular cells undergoes replacement with bone marrow-derived cells. In contrast, juxtavascular microglia like other resident microglia form a highly stable pool of CNS cells with extremely little turnover with the bone marrow compartment. Both the perivascular cells and the juxtavascular microglia play an important role in initiating and maintaining CNS autoimmune injury due to their strategic localization at a site close to the blood-brain barrier, their rapid inducibility for MHC class II antigens and their potential scavenger role as phagocytic cells. The constantly replaced pool of perivascular cells probably represents an entry route by which HIV gets access to the brain. Microglia are the first cell type to respond to several types of CNS injury. Microglial activation involves a stereotypic pattern of cellular responses, such as proliferation, increased or de-novo expression of immunomolecules, recruitment to the site of injury and functional changes, e.g., the release of cytotoxic and/or inflammatory mediators. In addition, microglia have a strong antigen presenting function and a pronounced cytotoxic function. Microglial activation is a graded response, i.e., microglia only transform into intrinsic brain phagocytes under conditions of neuronal and or synaptic/terminal degeneration. In T-cell-mediated autoimmune injury of the nervous system, microglial activation follows these lines and occurs at an early stage of disease development. In experimental autoimmune encephalomyelitis (EAE), microglia proliferate vigorously, show a strong expression of MHC class I and II antigens, cell adhesion molecules, release of reactive oxygen intermediates and inflammatory cytokines and transform into phagocytic cells. Due to their pronounced antigen presenting function in vitro, activated microglia rather than astrocytes or endothelial cells are the candidates as intrinsic antigen presenting cel of the brain. In contrast to microglia, astrocytes react with a delay, appear to encase morphologically the inflammatory lesion and may be instrumental in downregulating the T-cell-mediated immune injury by inducing T-cell apoptosis. In experimental autoimmune neuritis (EAN), microglial activation occurs also rapidly and operates at long distance, suggesting the involvement of remote and fast signaling mechanisms. During autoimmune inflammation of the nervous system microglia release as well as respond to several cytokines, including IL-1, IL-6, TNF-α, IFN-γ, TNF-α and TGFβ which are instrumental in astrocyte activation, induction of cell adhesion molecule expression, recruitment of T-cells into the lesion, but also in down-regulating disease progression at later stages. In addition to the synthesis of inflammatory cytokines, microglia act as cytotoxic effector cells by releasing other harmful substances such as proteases, reactive oxygen intermediates and nitric oxide. New therapeutic strategies to reduce the extent of tissue damage in autoimmune diseases of the nervous system will therefore aim at interfering with microglial cytotoxicity in the early, still potentially reversible stage of tissue damage. In summary, the CNS harbours a network of potential immunoeffector cells, i.e., the microglia, which show a graded response to CNS injury and function as a sensor to threats in the nervous system.  相似文献   

7.
S F Tzeng  M Kahn  S Liva  J De Vellis 《Glia》1999,26(2):139-152
The inhibitors of DNA binding (Id) gene family is highly expressed during embryogenesis and throughout adulthood in the rat central nervous system (CNS). In vitro studies suggest that the Id gene family is involved in the regulation of cell proliferation and differentiation. Recently, Id gene expression was shown to be expressed in immature and mature astrocytes during development and upregulated in reactive astrocytes after spinal cord injury. These results suggest that the Id gene family may play an important role in regulating astrocyte development and reactivity; however, the factors regulating Id expression in astrocytes remain undefined. Tumor necrosis factor-alpha (TNF alpha), a proinflammatory cytokine, is thought to play a crucial role in astrocyte/microglia activation after injury to the CNS. To determine if TNF alpha plays a role in Id gene expression, we exogenously administered TNF alpha into developing postnatal rats. We report that TNF alpha injections resulted in a rapid and transient increase in both cell number and mRNA expression for Id2 and Id3 when compared to levels observed in noninjected or control-injected animals. Id1 mRNA levels were also upregulated after TNF alpha treatment, but to a lesser degree. Significant increases in TNF alpha-induced Id2 and Id3 mRNA were observed in the ventricular/subventricular zone, cingulum and corpus callosum. TNF alpha also increased Id2 mRNA expression in the caudate putamen and hippocampus at the injection site. Id2 and Id3 mRNA+ cells were identified as GFAP+ and S100 alpha + astrocytes as well as ED1+ microglia. This is the first report to show TNF-alpha-induced modulation of the Id gene family and suggests that Id may be involved in the formation of reactive astrocytes and activated microglia in the rodent brain. These results suggest a putative role for the Id family in the molecular mechanisms regulating cellular responsiveness to TNF alpha and CNS inflammation.  相似文献   

8.
Reactive gliosis, the cellular manifestation of neuroinflammation, is a pathological hallmark of neurodegenerative diseases including Parkinson's disease. The persistent gliosis observed in the Parkinson's disease substantia nigra (SN) and in humans and animals exposed to the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) may represent a chronic inflammatory response that contributes to pathology. We have previously shown that in the absence of interleukin-6 (IL-6) dopaminergic neurons are more vulnerable to MPTP. Since IL-6 is both an autocrine and paracrine proliferation factor for CNS glia, we investigated reactive gliosis in MPTP-lesioned IL-6 (-/-) mice. While astrogliosis was similar in injured IL-6 (+/+) and IL-6 (-/-) SN pars compacta (pc), microgliosis was severely compromised in IL-6 (-/-) mice. In the absence of IL-6, an acute reactive microgliosis was transient with a complete absence of reactive microglia at day 7 post-lesion. Extensive reactive microgliosis was observed in the SNpc of MPTP-lesioned IL-6 (+/+) mice. Because glial derived inducible nitric oxide synthase (iNOS) has been implicated in dopaminergic cell death, we examined glial iNOS expression in the IL-6 genotypes to determine if it correlated with the greater vulnerability and reduced microgliosis observed in the MPTP-lesioned IL-6 (-/-) nigrostriatal system. Both reactive microglia and astrocytes expressed iNOS in the lesioned SNpc. In the IL-6 (-/-) mice, microglial iNOS expression diminished as reactive microgliosis declined. The data suggest IL-6 regulation of microglia activation, while iNOS expression appears to be secondary to cell activation.  相似文献   

9.
Opioids, such as morphine, induce potent analgesia and are the gold standard for the treatment of acute pain. However, opioids also activate glia, inducing pro-inflammatory cytokine and chemokine production, which counter-regulates the analgesic properties of classical opioid receptor activation. It is not known how long these adverse pro-inflammatory effects last or whether prior morphine could sensitize the central nervous system (CNS) such that responses to a subsequent injury/inflammation would be exacerbated. Here, multiple models of inflammation or injury were induced two days after morphine (5 mg/kg b.i.d., five days , s.c.) to test the generality of morphine sensitization of later pain. Prior repeated morphine potentiated the duration of allodynia from peripheral inflammatory challenges (complete Freund’s adjuvant (CFA) into either hind paw skin or masseter muscle) and from peripheral neuropathy (mild chronic constriction injury (CCI) of the sciatic nerve). Spinal cord and trigeminal nucleus caudalis mRNAs were analyzed to identify whether repeated morphine was sufficient to alter CNS expression of pro-inflammatory response genes, measured two days after cessation of treatment. Prior morphine elevated IL-1β mRNA at both sites, MHC-II and TLR4 in the trigeminal nucleus caudalis but not spinal cord, but not glial activation markers at either site. Finally, in order to identify whether morphine sensitized pro-inflammatory cytokine release, spinal cord was isolated two days after morphine dosing for five days , and slices stimulated ex vivo with lipopolysaccharide. The morphine significantly induced TNFα protein release. Therefore, repeated morphine is able to sensitize subsequent CNS responses to immune challenges.  相似文献   

10.
The inflammasome is an intracellular multiprotein complex involved in the activation of caspase-1 and the processing of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. The inflammasome in the central nervous system (CNS) is involved in the generation of an innate immune inflammatory response through IL-1 cytokine release and in cell death through the process of pyroptosis. In this review, we consider the different types of inflammasomes (NLRP1, NLRP2, NLRP3, and AIM2) that have been described in CNS cells, namely neurons, astrocytes, and microglia. Importantly, we focus on the role of the inflammasome after brain and spinal cord injury and cover the potential activators of the inflammasome after CNS injury such as adenosine triphosphate and DNA, and the therapeutic potential of targeting the inflammasome to improve outcomes after CNS trauma.  相似文献   

11.
IL-15 is a proinflammatory cytokine. It is produced by activated blood monocytes, macrophages, dendritic cells, and activated glial cells. It promotes T-cell proliferation, induction of cytolytic effector cells including natural killer and cytotoxic cells and stimulates B-cell to proliferate and secrete immunoglobulins. Little information is available on the exact role of IL-15 in the neurological diseases. Microglial cells are the main regulators of both innate and adaptive immune responses in the central nervous system (CNS). IL-15 may be involved in the inflammatory reactions and microglial activation of some common CNS disorders such as multiple sclerosis, Alzheimer's and Parkinson's disease, but its exact role in their pathogenesis is not clear.  相似文献   

12.
13.
Theiler’s virus (TMEV) infection of the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infection model for human multiple sclerosis (MS). The endocannabinoid system represents a novel therapeutic target for autoimmune and chronic inflammatory diseases due to its anti-inflammatory properties by regulating cytokine network. IL-12p70 and IL-23 are functionally related heterodimeric cytokines that play a crucial role in the pathogenesis of MS. In the present study we showed that the endocannabinoid anandamide (AEA) downregulated the gene expression of IL-12p70 and IL-23 forming subunits mRNAs in the spinal cord of TMEV-infected mice and ameliorated motor disturbances. This was accompanied by significant decreases on the serological levels of IL-12p70/IL-23 and more interestingly, of IL-17A. In contrast, serum levels of IL-10 resulted elevated. In addition, we studied the signalling pathways involved in the regulation of IL-12p70/IL-23 and IL-10 expression in TMEV-infected microglia and addressed the possible interactions of AEA with these pathways. AEA acted through the ERK1/2 and JNK pathways to downregulate IL-12p70 and IL-23 while upregulating IL-10. These effects were partially mediated by CB2 receptor activation. We also described an autocrine circuit of cross-talk between IL-12p70/IL-23 and IL-10, since endogenously produced IL-10 negatively regulates IL-12p70 and IL-23 cytokines in TMEV-infected microglia. This suggests that by altering the cytokine network, AEA could indirectly modify the type of immune responses within the CNS. Accordingly, pharmacological modulation of endocannabinoids might be a useful tool for treating neuroinflammatory diseases.  相似文献   

14.
Glial cell response to injury has been well documented in the pathogenesis after traumatic brain injury (TBI) and spinal cord injury (SCI). Although microglia, the resident macrophages in the central nervous system (CNS), are responsible for clearing debris and toxic substances, excessive activation of these cells will lead to exacerbated secondary damage by releasing a variety of inflammatory and cytotoxic mediators and ultimately influence the subsequent repair after CNS injury. In fact, inhibition of microgliosis represents a therapeutic strategy for CNS trauma. We here showed that nitidine, a benzophenanthridine alkaloid, restricted reactive microgliosis and promoted CNS repair after traumatic injury. Nitidine was shown to prevent cultured microglia from LPS-induced reactive activation by regulation of ERK and NF-κB signaling pathway. Furthermore, the nitidine-mediated inhibition of microgliosis was also shown in injured brain and spinal cord, which significantly increased neuronal survival and decreased neural tissue damage after injury. Importantly, behavioral analysis revealed that nitidine-treated mice with SCI had improved functional recovery as assessed by Basso Mouse Scale and swimming test. Together, these findings indicated that nitidine increased CNS tissue sparing and improved functional recovery by attenuating reactive microgliosis, suggestive of the potential therapeutic benefit for CNS injury.  相似文献   

15.
16.
17.
PTHrP, a peptide induced in parenchymal organs during endotoxemia and in the synovium in rheumatoid arthritis, has recently been shown to be expressed in immature or transformed human astrocytes, but not in normal cells. This finding has led us to postulate that PTHrP might also be induced in reactive astrocytes in inflamed brain and, thus, act as a mediator of CNS inflammation. To test this hypothesis, PTHrP expression was examined following cortical stab wound injury in rats, a classical model of reactive gliosis. To determine whether PTHrP was induced in glia by TNF-alpha, a known mediator of inflammation in brain and of PTHrP induction in peripheral tissues, and to determine whether PTHrP, in turn, mediated inflammatory changes in glia, in vitro studies with rat astrocytes and glial-enriched mixed brain cells were also undertaken. Consistent with previous reports of PTHrP expression in normal brain, neurons were the primary site of immunoreactive PTHrP expression in the injured cortex 1 day after stab wound injury. Over the subsequent 3 days, specific immunostaining for PTHrP and for GFAP, a marker of reactive astrocytes, appeared in reactive astrocytes at the wound edge and in perivascular astrocytes, reaching a maximum level of expression at the last time point examined (day 4). TNF-alpha induced PTHrP expression in astrocyte and glial-enriched brain cells in vitro, suggesting that this pro-inflammatory peptide was a possible mediator of PTHrP expression in CNS inflammation. PTHrP(1-34) acted in an additive fashion with TNF-alpha to induced astrocyte expression of IL-6, a cytokine with demonstrated neuroprotective effects. Astrocyte proliferation was inhibited by PTHrP(1-34) and PTHrP(1-141), acting via a PTH/PTHrP receptor cAMP signaling pathway. These studies suggest that PTHrP, analogous to its regulatory functions in other non-CNS models of inflammation, may be an important mediator of the inflammatory response in brain.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号