共查询到5条相似文献,搜索用时 5 毫秒
1.
During the development of binocular maps in the tectum of Xenopus laevis, axons that relay input from the ipsilateral eye via the nucleus isthmi undergo a prolonged period of shifting connections. This shifting accompanies the dramatic change in eye position that takes place as the laterally placed eyes of the tadpole move dorsofrontally. There is a concomitant expansion of the proportion of tectum that receives contralateral retinotectal input corresponding to the binocular portion of the visual field. Electrophysiological recording demonstrates that ipsilateral units are present in those rostral tectal zones, and anatomical methods show that the isthmotectal axons arborize densely in the rostral region but also extend sparser branches into the caudal zone, which is occupied by contralateral inputs with receptive fields in the monocular zone of the visual field. A mechanism that aligns the ipsilateral and contralateral maps is activity-dependent stabilization of isthmotectal axons that exhibit firing patterns correlated with those of nearby retinotectal axons. In order for activity patterns to function in stabilizing correct connections and promoting the withdrawal of incorrect connections, synaptic communication of some sort is hypothesized to be essential. We have investigated whether isthmotectal axons make morphologically identifiable synapses during development and where such synapses are located. We find evidence for morphologically identifiable synapses in all regions of the tectum, along with many growth cones and structures that are probably immature synapses. As in the adult, the synapses contain round, clear vesicles, have asymmetric specializations, and terminate on structures that appear to be dendrites. In both adult and tadpole, the rarity of serial synapses involving isthmotectal terminals suggests that the interactions between retinotectal and isthmotectal inputs are mediated by postsynaptic dendrites. 相似文献
2.
The nucleus isthmi NI of frogs is a relay for input from the eye to the ipsilateral tectum; each NI receives retinotopic input from one tectum and sends retinotopic output to both tecta. The crossed isthmotectal projection in Xenopus displays tremendous plasticity during development. Physiological and anatomical studies have suggested that the location at which a developing isthmotectal axon will terminate is determined by the correlation of its visually evoked activity with the activity of nearby retinotectal terminals. What structures could mediate such communication? We have examined quantitatively the ultrastructural characteristics of crossed isthmotectal axons and synapses in order to determine whether retinotectal axons communicate directly with isthmotectal axons via axo-axonic synapses or whether the communication is indirect, e.g., via common postsynaptic dendrites. Our results support the conclusion that isthmotectal axons interact with retinotec tal axons indirectly and that tectal cell dendrites are the critical site of interaction. 相似文献
3.
Sexually differentiated calling patterns of Xenopus laevis are conveyed to the vocal organ by a dedicated neuromuscular system. Here, we define afferents to vocal motor neurons and determine whether the connectivity of the vocal pathway is sexually differentiated. The use of fluorescent dextran amines and the isolated brain preparation readily permitted identification of anterograde and retrograde connectivity patterns. The whole-mount preparation allowed us to observe projections in their entirety, including cells of origin of a projection (for retrograde projections), terminal fields (for anterograde connections), and fiber tracts. Major findings are the confirmation of a robust and reciprocal connection between cranial nucleus (n.) IX-X and the pretrigeminal nucleus of the dorsal tegmental area of the medulla (DTAM) as well as between DTAM and the ventral striatum (VS). Newly revealed is the extensive connectivity between the rostral subdivision of the dorsal nucleus raphe (rRpd) and candidate vocal nuclei. In contrast to previous results using peroxidase, we did not observe dramatic sex differences in connectivity, although some connections were less robust in female than in male brains. Some retrograde connections previously observed (e.g., anterior preoptic area to DTAM) were not confirmed. Plausible hypotheses are that a set of rhombencephalic neurons located in DTAM, the inferior reticular formation and n.IX-X are responsible for generating patterned vocal activity, that activity is modulated by neurons in rRpd, and that activity in VS (particularly that evoked by conspecific calls), together with effects of steroid hormones at many sites in the vocal circuit, contribute to the initiation of calling. 相似文献
4.
The presence of the N-methyl-D-aspartate (NMDA) receptor glycine-binding site and its role in locomotor activity have been examined using fictive swimming in stage 42 Xenopus laevis frog tadpoles as a simple model system. The specific NMDA/glycine site blocker L-689560 (0.1-20 microm) impaired swimming rhythm generation and abolished NMDA-induced locomotor-like ventral root activity. D-serine (50 microm), an agonist at the NMDA/glycine site, increased the duration of skin stimulus-induced fictive swimming episodes, and produced slow modulations of burst frequency and amplitude. These effects of D-serine were reversed by L-689560. In some animals, D-serine also induced an alternative intense, non-locomotory form of rhythmic motor output termed struggling. Glycine (100 microm), another endogenous agonist at this site, triggered similar effects to D-serine, but only when applied in the presence of strychnine. Manipulations of endogenous glycine levels using sarcosine or ALX 5407 (inhibitors of the glycine re-uptake protein, GlyT1b), produced similar effects to glycine site agonists, including increased episode durations, and modulations in cycle period and burst amplitude. Sarcosine and ALX 5407 also induced struggling. In summary, these experiments support the hypothesis that NMDA receptors in the swimming network of Xenopus laevis tadpoles possess glycine-binding sites, not all of which are fully occupied under normal circumstances. Altering the strength of the NMDA receptor-mediated component of the synaptic drive for swimming by increasing or decreasing occupancy of this site potently influences the locomotor pattern. 相似文献
5.
Neuronal responses to 1.0 or 5.0 mg/kg d-amphetamine were recorded simultaneously in the neostriatum and nucleus accumbens of rats pretreated twice daily with these doses or with saline for 6 consecutive days. In all groups, the number of neurons responding to a challenge injection of either dose of amphetamine with an overall excitation or inhibition was not significantly different. During the first 30–60 min of the drug response, however, neurons in the neostriatum of amphetamine-pretreated rats responded with a significant increase in firing rate compared to saline controls. In the nucleus accumbens, on the other hand, tolerance developed to the inhibition produced by 1.0 mg/kg d-amphetamine, whereas the responses produced by 5.0 mg/kg were not significantly altered by long-term treatment. Liquid chromatography with electrochemical detection revealed that pretreatment with 5.0 mg/kg d-amphetamine produced a slight, but significant, reduction of dopamine and norepinephrine levels in the neostriatum. Catecholamine levels were not significantly altered in the nucleus accumbens by either dose. These electrophysiological and neurochemical changes are discussed in relation to the known involvement of these sites in the dose-dependent behavioral alterations that accompany repeated amphetamine injections. 相似文献