首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of cultured canine femoral artery vascular smooth muscle cells to serotonin (5-HT) caused a 3.6-fold stimulation of ouabain-sensitive 86Rb uptake. The 5-HT2 receptor antagonist, ketanserin, partly blocked the 5-HT-mediated Na+/K+ pump stimulation and the 5-HT1/5-HT2 receptor antagonist, methiothepin, completely blocked the response, suggesting that both 5-HT1 and 5-HT2 receptors play a role in the 5-HT-mediated Na+/K+ pump activation. Second messengers generated by 5-HT2 receptor-mediated phosphoinositide hydrolysis, Ins(1,4,5)P3 and diacylglycerol were implicated in the stimulatory action of 5-HT on the vascular Na+/K+ pump. Like some other contractile agonists, 5-HT activated a Na+ influx pathway which caused Na+/K+ pump stimulation by increasing the rate-limiting substrate. The maximum stimulation of Na+ influx by 5-HT was 2.5-fold. The 5-HT-stimulated Na+ influx was totally blocked by methiothepin but only 29% inhibited by ketanserin, indicating that most of the Na+ influx was mediated by the 5-HT1 receptor. The 5-HT-stimulated Na+ influx was substantially inhibited by 50 microM dimethylamiloride, suggesting that the Na+ influx pathway stimulated by 5-HT was Na+/H+ exchange. BAPTA/AM 1,2-[bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, tetra (acetoxymethyl) ester], an intracellular Ca++ chelator, partly blocked 5-HT-stimulated Na+ influx and ouabain-sensitive 86Rb uptake, suggesting that Ca++ is an important mediator of these responses. These data suggest that: 1) 5-HT, in addition to its well known activity as a contractile agonist, can stimulate the electrogenic Na+/K+ pump which, in theory, would tend to oppose contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
alpha(1a)-Adrenergic receptors (ARs) couple to phosphoinositide hydrolysis, adenylyl cyclase, and mitogen-activated protein kinase (MAPK) pathways. However, the interaction among these signaling pathways in activating extracellular signal-regulated kinase 1/2 (ERK1/2) is not well understood. We investigated the coupling of alpha(1a)-ARs to ERK1/2 in Chinese hamster ovary (CHO)-K1 cells stably transfected with mouse alpha(1a)-ARs, as well as the interaction between ERK1/2 and norepinephrine-induced cAMP accumulation. alpha(1a)-AR activation by norepinephrine increased the cytosolic Ca(2+) concentration and phosphorylated ERK1/2 in a time- and concentration-dependent manner. ERK1/2 phosphorylation was blocked by the MAPK kinase 1/2 inhibitor 2'-amino-3'-methoxyflavone (PD 98059) and the alpha(1)-AR antagonist prazosin. A transient elevation in intracellular Ca(2+) was required for the phosphorylation of ERK1/2; however, activation of protein kinase C did not seem to be required for ERK1/2 phosphorylation. Norepinephrine also stimulated cAMP accumulation in transfected CHO-K1 cells in a concentration-dependent manner via alpha(1a)-ARs, which was blocked by the Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Norepinephrine-induced ERK1/2 phosphorylation was inhibited by the adenylyl cyclase activator forskolin and was enhanced by the adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purine-6-amine (SQ 22536) and the protein kinase A inhibitor 4-cyano-3-methylisoquinoline. In conclusion, in transfected CHO-K1 cells, alpha(1a)-AR activation activates both phospholipase C and adenylyl cyclase-mediated signaling pathways. alpha(1a)-AR-mediated ERK1/2 phosphorylation was dependent on a rise in intracellular Ca(2+), and this pathway was reciprocally regulated by the concomitant activation of adenylyl cyclase, which inhibits ERK1/2 phosphorylation. Thus, alpha(1a)-AR stimulation of cAMP production may play an important role in regulating ERK1/2 phosphorylation in cell lines and native tissues.  相似文献   

3.
Postsynaptic P2X1 ATP-gated channels are expressed in smooth muscle cells of the vascular and genitourinary systems, where they mediate desensitizing neurogenic contractions. Using the model of the isolated rat tail artery, we show that the vasoactive mediator 5-hydroxytryptamine (5-HT), via the 5-HT2A metabotropic receptor, regulates the desensitization kinetics of P2X1 responses by increasing their rate of recovery. Reconstituting the potentiation of P2X1 ATP-gated currents by 5-HT2A receptors in the Xenopus oocyte expression system, we provide evidence that this modulation depends on the activation of novel protein kinase C isoforms and protein kinase D (also named PKCmu) downstream of phospholipase Cbeta. Other major kinases like Ca2+/calmodulin kinase II, protein kinase A, mitogen-activated protein kinases, and tyrosine kinases were found not to be involved. Moreover, we report that buffering intracellular Ca2+ ions with the chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) decreases the rate of recovery of P2X1 responses and increases their sensitivity to potentiation by 5-HT2A receptors or by the diacylglycerol analog phorbol ester 12-myristate 13-acetate. We conclude that intracellular Ca2+ and a subset of diacylglycerol-dependent protein kinases regulate the activity of P2X1 receptor channels by modulating their recovery from desensitization.  相似文献   

4.
Addition of ionophore A23187 to washed human platelets caused a time- and dose-dependent increase in the phosphotyrosyl content of 135, 124 and 76 kDa proteins. Platelets loaded with intracellular Ca2+ chelator 5,5'-demethyl-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid before addition of A23187 exhibited no protein-tyrosine phosphorylation. Replenishment of such platelets with extracellular CaCl2 restored A23187-induced protein-tyrosine phosphorylation. Upon stimulation with A23187, both aspirin and ADP scavengers-treated platelets exhibited protein-tyrosine phosphorylation without phosphoinositide hydrolysis or protein kinase C activation. Its protein-tyrosine phosphorylation was not inhibited by ML-9, a selective inhibitor of myosin light chain kinase. Genistein, a selective inhibitor of protein-tyrosine kinase, inhibited A23187-induced platelet aggregation but not secretion. These data show (a) that A23187 stimulates protein-tyrosine phosphorylation by elevation of intracellular Ca2+, (b) that A23187-induced protein-tyrosine phosphorylation is independent of formation of endoperoxides/thromboxane A2, released ADP, phosphoinositide hydrolysis, protein kinase C activation, fibrinogen binding and myosin light chain kinase, and (c) that A23187-induced protein-tyrosine phosphorylation may be involved in platelet aggregation but not in secretion. Furthermore, a synergistic effect of A23187 and protein kinase C activators in stimulating protein-tyrosine phosphorylation is suggested.  相似文献   

5.
The signal transduction mechanisms involved in tumor cell adhesion to endothelial cells are still largely undefined. The effect of metastatic murine melanoma cell and human prostate carcinoma cell contact on cytosolic [Ca2+] of bovine artery endothelial cells was examined in indo-1-loaded endothelial cell monolayers. A rapid increase in endothelial cell [Ca2+] occurred on contact with tumor cells, but not on contact with 8-microns inert beads. A similar increase in endothelial cell [Ca2+] was observed with human neutrophils or monocyte-like lymphoma cells, but not with endothelial cells, red blood cells, and melanoma cell-conditioned medium. The increase in endothelial cell [Ca2+] was not inhibited by extracellular Ca2+ removal. In contrast, endothelial cell pretreatment with thapsigargin, which releases endoplasmic reticulum Ca2+ into the cytosol and depletes this Ca2+ store site, abolished the cytosolic [Ca2+] rise upon melanoma cell contact. Endothelial cell pretreatment with the membrane-permeant form of the Ca2+ chelator bis-(O-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid blocked the increase in cytosolic [Ca2+]. Under static and dynamic flow conditions (0.46 dyn/cm2) bis-(O-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid pretreatment of bovine pulmonary artery endothelial cell monolayers inhibited melanoma cell adhesion to the endothelial cells. Thus, tumor cell contact with endothelial cells induces a rapid Ca2+ release from endothelial intracellular stores, which has a functional role in enhancing cell-cell adhesion.  相似文献   

6.
5-Hydroxytryptamine (5-HT) released from enterochromaffin cells activates secretory and peristaltic reflexes necessary for lubrication and propulsion of intestinal luminal contents. The aim of this study was to identify mechanosensitive intracellular signaling pathways that regulate 5-HT release. Human carcinoid BON cells displayed 5-HT immunoreactivity associated with granules dispersed throughout the cells or at the borders. Mechanical stimulation by rotational shaking released 5-HT from BON cells or from guinea pig jejunum during neural blockade with tetrodotoxin. In streptolysin O-permeabilized cells, guanosine 5'-O- (2-thiodiphosphate) (GDP-beta-S) and a synthetic peptide derived from the COOH terminus of Galphaq abolished mechanically evoked 5-HT release, while the NH(2)-terminal peptide did not. An antisense phosphorothioated oligonucleotide targeted to a unique sequence of Galphaq abolished mechanically evoked 5-HT release and reduced Galphaq protein levels without affecting the expression of Galpha(11). Depletion and chelation of extracellular calcium did not alter mechanically evoked 5-HT release, whereas depletion of intracellular calcium stores by thapsigargin and chelation of intracellular calcium by 1,2-bis (o-Aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester (BAPTA-AM) reduced 5-HT release. Mechanically evoked 5-HT release was inhibited by somatostatin-14 in a concentration-dependent manner. The results suggest that mechanical stimulation of enterochromaffin-derived BON cells directly or indirectly stimulates a G protein-coupled receptor that activates Galphaq, mobilizes intracellular calcium, and causes 5-HT release.  相似文献   

7.
Human gingival fibroblasts (HGFs) express protease-activated receptor-1 (PAR-1) at high levels. In cultured HGFs, we studied the signaling pathway of thrombin-induced interleukin-6 (IL-6) production. The PAR-1 agonist peptide SFLLRN mimicked the thrombin-induced IL-6 production in the presence of amastatin, an aminopeptidase inhibitor. Thrombin or a combination of SFLLRN and amastatin also strikingly induced the expression of IL-6 mRNA. Although continuous exposure of HGFs to thrombin rapidly desensitized Ca(2+) signaling, the cells did not lose their ability to produce IL-6 in response to thrombin. Similarly, although treatment of HGFs with BAPTA-AM [1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester], an intracellular Ca(2+) chelator, markedly attenuated the thrombin-induced increase in intracellular Ca(2+) concentration, the same treatment did not suppress the thrombin-induced IL-6 production. However, thrombin-induced IL-6 production was strongly inhibited by the p38 mitogen-activated protein (MAP) kinase and tyrosine kinase inhibitors, and Western blotting analyses showed that thrombin stimulates p38 MAP kinase phosphorylation. Specific inhibitors that inhibit extracellular signal-regulated kinase 1/2 kinase, phosphatidylinositol 3-kinase, and RhoA kinase also partially suppressed the thrombin-induced IL-6 production, but the effects were smaller than those of the p38 MAP and tyrosine kinase inhibitors. Thus, thrombin induces HGFs to produce IL-6 by activating PAR-1, and the tyrosine kinase- and p38 MAP kinase-dependent pathways, rather than the Ca(2+) signaling pathway, may play a crucial role in the IL-6 production.  相似文献   

8.
The ability of subnanomolar concentrations of thrombin to protect both neurons and glia from ischemia and other metabolic insults has recently been reported. In this study, we demonstrate an additional neuroprotective property of thrombin; its ability to promote the release of the organic osmolyte, taurine, in response to hypoosmotic stress. Incubation of human 1321N1 astrocytoma cells with hypo-osmolar buffers (320-227 mOsM) resulted in a time-dependent release of taurine. Inclusion of thrombin (EC(50) = 60 pM) resulted in a marked increase in taurine efflux that, although evident under isotonic conditions (340 mOsM), was maximal at an osmolarity of 270 mOsM (3-4-fold stimulation). Thrombin-stimulated taurine efflux was dependent upon its protease activity and could be mimicked by addition of the peptide SFLLRN, a proteinase activated receptor-1 (PAR-1) subtype-specific ligand. Inclusion of anion channel blockers known to inhibit the volume-sensitive organic osmolyte anion channel attenuated thrombin-stimulated taurine release. Depletion of intracellular Ca(2+) with either 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) or thapsigargin, or alternatively, inhibition of protein kinase C (PKC) with bisindolylmaleimide or chelerythrine resulted in a 30 to 50% inhibition of thrombin-stimulated taurine efflux. Under conditions in which intracellular Ca(2+) was depleted and PKC activity inhibited, thrombin-stimulated taurine efflux was reduced by >85%. The results indicate that activation of PAR-1 receptors by thrombin facilitates the ability of 1321N1 astrocytoma cells to release osmolytes in response to a reduction in osmolarity via a mechanism that is dependent on intracellular Ca(2+) and PKC activity.  相似文献   

9.
Although it is well recognized that interferon-gamma (IFN-gamma) is involved in the development of systemic inflammatory response syndrome, a condition characterized by loss of endothelial barrier function, whether or not IFN-gamma has any direct effect on endothelial cell (EC) death is unclear. Furthermore, which signal transduction pathway involved in IFN-gamma-induced EC apoptosis remains to be elucidated. To answer these questions, we investigated the effect of IFN-gamma on EC death (apoptosis versus necrosis) and the underlying signal transduction pathway responsible for IFN-gamma-induced EC apoptosis. IFN-gamma resulted in a dose-dependent increase in EC apoptosis after 24 h incubation (p < .05). However, IFN-gamma did not induce EC necrosis. Tumor necrosis factor-alpha (TNF-alpha), but not lipopolysaccharide (LPS), had a augmentative effect on IFN-gamma-induced EC apoptosis (p < .05), while both of them alone failed to induce EC apoptosis. These results indicate that exposure of EC to IFN-gamma can cause apoptosis rather than necrosis. Both calcium ionophore, A23187, and the protein kinase C (PKC) activator phorbol-myristate-acetate (PMA) had a synergistic effect on IFN-gamma-induced EC apoptosis (p < .05). However, neither the calcium chelator 1,2-bis 2-aminophenoxy ethane-N,N,N',N'-tetraacetic acid (BAPTA), nor the PKC inhibitor 1 -5-isoquinolinysulfonyl 2-methyl piperazine (H-7) attenuated IFN-gamma-induced EC apoptosis. Three specific tyrosine protein kinase (TPK) inhibitors, herbimycin A, tyrphostin, and genistein, significantly inhibited IFN-gamma-induced EC apoptosis in a dose-dependent fashion (p < .05). Furthermore, the activation of TPK in EC by IFN-gamma was completely abrogated by these TPK inhibitors. These findings suggest that the signal transduction pathway required for induction of EC apoptosis by IFN-gamma is TPK dependent and is independent of calcium and PKC.  相似文献   

10.
Mefloquine, a widely used antimalarial drug, has many neuropsychiatric effects. Although the mechanisms underlying these side effects remain unclear, recent studies show that mefloquine enhances spontaneous transmitter release and inhibits cholinesterases. In this study, we examined the effect of mefloquine on GABA receptor-mediated, spontaneous inhibitory postsynaptic currents (sIPSCs) of dopaminergic neurons, mechanically dissociated from the substantia nigra pars compacta of rats aged 6 to 17 postnatal days. Mefloquine (0.1-10 microM) robustly and reversibly increased the frequency of sIPSCs with an EC50 of 1.3 microM. Mefloquine also enhanced the frequency of miniature inhibitory postsynaptic currents in the presence of tetrodotoxin but without changing their mean amplitude. This suggests that mefloquine acts presynaptically to increase GABA release. Mefloquine-induced enhancement of sIPSCs was significantly attenuated in medium containing low Ca2+ (0.5 mM) or following pretreatment with 1,2-bis (2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester (30 microM), a membrane-permeable Ca2+ chelator. In contrast, 100 microM Cd2+ did not alter the action of mefloquine. This suggests that mefloquine-induced facilitation of GABA release depends on extracellular and intraterminal Ca2+ but not on voltage-gated Ca2+ channels. Mefloquine-induced enhancement of sIPSCs was significantly attenuated in the presence of the anticholinesterase agent physostigmine or blockers of non-alpha7 nicotinic acetylcholine receptors. Taken together, these data suggest that mefloquine enhances GABA release through its inhibition of cholinesterase. This allows accumulation of endogenously released acetylcholine, which activates neuronal nicotinic receptors on GABAergic nerve terminals. The resultant increase of Ca2+ entry into these terminals enhances vesicular release of GABA. This action may contribute to the neurobehavioral effects of mefloquine.  相似文献   

11.
Although sex differences in asthma severity are recognized, the mechanisms by which sex steroids such as estrogen influence the airway are still under investigation. Airway tone, a key aspect of asthma, represents a balance between bronchoconstriction and dilation. Nitric oxide (NO) from the bronchial epithelium is an endogenous bronchodilator. We hypothesized that estrogens facilitate bronchodilation by generating NO in bronchial epithelium. In acutely dissociated human bronchial epithelial cells from female patients exposure to 17β-estradiol (E(2); 10 pM-100 nM) resulted in rapid increase of diaminofluorescein fluorescence (NO indicator) within minutes, comparable with that induced by ATP (20 μM). Estrogen receptor (ER) isoform-specific agonists (R,R)-5,11-diethyl-5,6,11,12-tetrahydro-2,8-chrysenediol (THC) (ERα) and diaryl-propionitrile (DPN) (ERβ) stimulated NO production to comparable levels and at comparable rates, whereas the ER antagonist 7α,17β-[9-[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol (ICI 182,780) (1 μM) was inhibitory. Estrogen effects on NO were mediated via caveolin-1 (blocked using the caveolin-1 scaffolding domain peptide) and by increased intracellular calcium concentration [prevented by 20 μM 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester but not by blocking Ca(2+) influx using LaCl(3)]. Estrogen increased endothelial NO synthase activation (inhibited by 100 μM N(G)-nitro-l-arginine methyl ester) and phosphorylated Akt. In epithelium-intact human bronchial rings contracted with acetylcholine (1 μM), E(2), THC, and DPN all produced acute bronchodilation in a dose-dependent fashion. Such bronchodilatory effects were substantially reduced by epithelial denudation. Overall, these data indicate that estrogens, acting via ERα or ERβ, can acutely produce NO in airway epithelium (akin to vascular endothelium). Estrogen-induced NO and its impairment may contribute to altered bronchodilation in women with asthma.  相似文献   

12.
Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are a group of kinases that play an important role in proliferation and differentiation. In megakaryocyte-like human erythroleukemia (HEL) cells, ERK2 was found to be predominantly expressed and strongly activated by prostaglandin (PG) E(2), thrombin, and epinephrine. On the other hand, adenosine, ADP, ATP, and UTP did not significantly increase ERK1/2 phosphorylation. However, of the agonists tested, only ADP was able to stimulate thymidine uptake. Pretreatment with pertussis toxin abolished the PGE(2) response but had less of an effect on thrombin. PGE(2)- and thrombin-induced ERK1/2 activation was mimicked by 4-beta-phorbol-12-myristate-13-acetate and ionomycin and blocked by mitogen-activated protein kinase kinase inhibitor 1,4 diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene but displayed differential sensitivity to protein kinase C inhibitor bisindolylmaleimide I and Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Analogs of cAMP or agents that stimulate cAMP production were either weak or ineffective activators. Further studies indicate that the effect of thrombin was blocked by the phosphoinositide 3-kinase inhibitor wortmannin but not by agents inhibiting tyrosine kinase activity. On the contrary, herbimycin, but not wortmannin, attenuated the effect of PGE(2). Collectively, these results indicate that ERK1/2 are selectively activated by G protein-coupled receptors and not functionally associated with proliferation in HEL cells. ERK1/2 activation in response to PGE(2) and thrombin is mediated by distinctive types of G proteins and is differentially regulated by multiple pathways, including calcium mobilization, protein kinase C, phosphoinositide 3-kinase, and tyrosine kinases.  相似文献   

13.
Whole-cell patch-clamp techniques and fluorescence measurements of intracellular Ca2+ concentration, (Ca2+)i, were used to investigate the mechanism of taurodeoxycholate (TDC) stimulation of Cl- secretion in the T84 colonic cell line. During perforated whole-cell recordings, the cell membrane voltage was alternately clamped to EK and ECl. Initially, TDC (0.75 mM) stimulated inward nonselective cation currents that were composed of discrete large conductance single-channel events. This initial response was followed by activation of K+ and Cl- currents with peak values of 385 +/- 41 pA and 98 +/- 28 pA, respectively (n = 12). The K+ and Cl- currents oscillated while TDC was present and returned to baseline levels upon its removal. The threshold for activation of the oscillatory currents was 0.1 mM TDC. Taurocholate, a bile acid that does not stimulate colonic Cl- secretion, induced no current response. The TDC-induced currents could be activated in Ca(2+)-free bathing solutions. Preincubation of cells with the Ca2+ chelator, bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethy)-ester (20 microM), (BAPTA-AM), eliminated the K+ and Cl- current responses, although the nonselective cation channel events were still present. Replacement of bath Na+ with NMDG+ inhibited the TDC-induced nonselective cation current but did not affect the K+ or Cl- currents. TDC induced a transient (Ca2+)i rise of 575 +/- 70 nM from a baseline of 71 +/- 5 nM (n = 15); thereafter, (Ca2+)i either plateaued or oscillated. TDC-induced (Ca2+)i oscillations were observed in the absence of bath Ca2+; however, removal of bath Ca2+ during the TDC response caused (Ca2+)i to return to near baseline values. Simultaneous K+ current and (Ca2+)i measurements confirmed that the initial nonselective cation current was independent of (Ca2+)i, while K+ current oscillations were in phase with the (Ca2+)i oscillations. TDC induced inositol monophosphate (IP) accumulation, reflecting production of inositol 1,4,5-trisphosphate (IP3) during TDC stimulation. The response to TDC during standard whole-cell patch-clamp was similar to that observed with perforated whole-cell recordings, except the nonselective cation current was prolonged. When heparin (1 mg/ml) was added to the pipette under these conditions, the Ca(2+)-activated currents were inhibited, but the nonselective cation currents were unaffected. These data suggest that TDC induces a Ca(2+)-independent nonselective cation conductance, perhaps by directly permeabilizing the plasma membrane. TDC stimulates Cl- secretion by activating K+ and Cl- conductances via an IP3-mediated release of Ca2+ from intracellular stores.  相似文献   

14.
Aggregation of the high affinity receptor for immunoglobulin E (Fc epsilon RI) on mast cells results in rapid tyrosine phosphorylation and activation of Syk, a cytoplasmic protein tyrosine kinase. To examine the role of Syk in the Fc epsilon RI signaling pathway, we identified a variant of RBL-2H3 cells that has no detectable Syk by immunoblotting and by in vitro kinase reactions. In these Syk-deficient TB1A2 cells, aggregation of Fc epsilon RI induced no histamine release and no detectable increase in total cellular protein tyrosine phosphorylation. However, stimulation of these cells with the calcium ionophore did induce degranulation. Fc epsilon RI aggregation induced tyrosine phosphorylation of the beta and gamma subunits of the receptor, but no increase in the tyrosine phosphorylation of phospholipase C-gamma 1 and phospholipase C-gamma 2 and no detectable increase in intracellular free Ca2+ concentration. By transfection, cloned lines were established with stable expression of Syk. In these reconstituted cells, Fc epsilon RI aggregation induced tyrosine phosphorylation of phospholipase C- gamma 1 and phospholipase C-gamma 2, an increase in intracellular free Ca2+ and histamine release. These results demonstrate that Syk plays a critical role in the early Fc epsilon RI-mediated signaling events. It further demonstrates that Syk activation occurs downstream of receptor phosphorylation, but upstream of most of the Fc epsilon RI-mediated protein tyrosine phosphorylations.  相似文献   

15.
Binding of ligand to the alpha subunit of Fc gamma RIIIA(CD16), expressed at the natural killer (NK) cell membrane in association with homo or heterodimers of proteins of the zeta family, results in phosphorylation of several proteins on tyrosine residues. We have analyzed the role of protein tyrosine phosphorylation in the regulation of molecular events induced upon stimulation of Fc gamma RIIIA in NK cells and in T cells expressing the Fc gamma RIII alpha chain in association with endogenous zeta 2 homodimers and devoid of other (CD3, CD2) transducing molecules. Our data indicate that treatment of these cells with protein tyrosine kinase inhibitors prevents not only Fc gamma RIIIA-induced protein tyrosine phosphorylation but also phosphatidylinositol 4,5 diphosphate hydrolysis and increased intracellular Ca2+ concentration, indicating a primary role of tyrosine kinase(s) in the induction of these early activation events. Occupancy of Fc gamma RIIIA by ligand results in phospholipase C (PLC)-gamma 1 tyrosine phosphorylation in NK cells and in Fc gamma RIIIA-transfected CD3-/CD2- T cells, and induces functional activation of p56lck in Fc gamma RIIIA alpha/zeta 2-transfected T cells, suggesting the possibility that the receptor-induced PLC-gamma 1 activation occurs upon phosphorylation of its tyrosine residues mediated by this kinase and is, at least in part, responsible for the signal transduction mediated via CD16 upon ligand binding.  相似文献   

16.
alpha1-Adrenergic receptors mediate mitogenic responses and increase intracellular free Ca2+ ([Ca2+]i) in vascular smooth muscle cells. Induction of c-fos is a critical early event in cell growth; expression of this gene is regulated by a number of signaling pathways including Ca2+. We wondered whether Ca2+ signaling plays a critical role in the induction of c-fos gene by alpha1-adrenergic receptors. Using stably transfected rat-1 fibroblasts, we confirmed that PE induced c-fos mRNA expression in a time- and dose-dependent manner, and also increased [Ca2+]i (measured with Fura-2 AM). These responses were blocked by the alpha1-adrenergic receptor antagonist doxazosin. Both intracellular Ca2+ chelation (using BAPTA/AM) and extracellular Ca2+ depletion (using EGTA) significantly inhibited PE-induced c-fos expression by alpha1A and alpha1B receptors. Brief (1-min) stimulation of alpha1A and alpha1B receptors with PE did not maximally induce c-fos expression, suggesting that a sustained increase in [Ca2+]i due to Ca2+ influx is required. The calmodulin (CaM) antagonists, R24571, W7, and trifluoperazine, but not the CaM-dependent protein kinases inhibitor KN-62, significantly inhibited c-fos induction by alpha1A and alpha1B receptors. Neither inhibition of protein kinase C nor inhibition of adenylyl cyclase modified c-fos induction by PE. These results suggest that alpha1-adrenergic receptor-induced c-fos expression in rat-1 cells is dependent on a Ca2+/CaM-associated pathway.  相似文献   

17.
The type 1 sodium-proton exchanger (NHE-1) is expressed ubiquitously and regulates key cellular functions, including mitogenesis, cell volume, and intracellular pH. Despite its importance, the signaling pathways that regulate NHE-1 remain incompletely defined. In this work, we present evidence that stimulation of the 5-hydroxytryptamine 1A (5-HT1A) receptor results in the formation of a signaling complex that includes activated Janus kinase 2 (Jak2), Ca2+/calmodulin (CaM), and NHE-1, and which involves tyrosine phosphorylation of CaM. The signaling pathway also involves rapid agonist-induced association of CaM and NHE-1 as assessed by coimmunoprecipitation studies and by bioluminescence resonance energy transfer studies in living cells. We propose that NHE-1 is activated through this pathway: 5-HT1A receptor --> G(i2)alpha and/or G(i3)alpha --> Jak2 activation --> tyrosine phosphorylation of CaM --> increased binding of CaM to NHE-1 --> induction of a conformational change in NHE-1 that unmasks an obscured proton-sensing and/or proton-transporting region of NHE-1 --> activation of NHE-1. The G(i/o)-coupled 5-HT1A receptor now joins a handful of Gq-coupled receptors and hypertonic shock as upstream activators of this emerging pathway. In the course of this work, we have presented clear evidence that CaM can be activated through tyrosine phosphorylation in the absence of a significant role for elevated intracellular Ca2+. We have also shown for the first time that the association of CaM with NHE-1 in living cells is a dynamic process.  相似文献   

18.
Our experiments were conducted to evaluate, in rat myometrium, the potential contribution of a protein tyrosine kinase (PTK) pathway in the hydrolysis of phosphatidylinositol-4,5-bisphosphate mediated by bombesin, endothelin-1 (ET-1), and carbachol. The production of inositol phosphates (InsP) by agonists and AlF4- was partly inhibited (35-40%) by genistein and tyrphostins, two PTK inhibitors. Genistein attenuated uterine contractions elicited by the stimulation of muscarinic and bombesin receptors, whereas pervanadate, a protein tyrosine phosphatase inhibitor, potentiated receptor-mediated contraction. Tyrosine-phosphorylated proteins were detected in detergent extracts from agonist- and pervanadate-stimulated myometrium. The amount of InsP produced in response to pervanadate was related to the tyrosine phosphorylation status of phospholipase C-gamma1. In contrast, with ET-1 and bombesin, phosphorylated phospholipase C-gamma1 made a minor contribution. Additional findings were rather consistent with a role for Ca2+. In fura-2-loaded cells, genistein partly decreased both the transient and sustained intracellular Ca2+ concentration phases induced by bombesin. The removal of extracellular Ca2+ or the addition of nifedipine inhibited (35%) InsP production due to bombesin and ET-1. The inhibitory effects of genistein and tyrphostins were abolished in Ca2+-depleted medium, were not additive with that of nifedipine, and (as for nifedipine) were counteracted by the Ca2+ channel agonist Bay K 8644. The data are consistent with a PTK-mediated process in the activation of the voltage-gated Ca2+ influx that is involved in the production of InsP by stimulated G protein-coupled receptors.  相似文献   

19.
Presynaptic, cocaine- and antidepressant-sensitive norepinephrine (NE) transporters (NETs) dictate levels of extracellular NE after vesicular release. Recent studies suggest that G protein-coupled receptors linked to protein kinase C (PKC) down-regulate cell surface NET protein levels and diminish NE uptake capacity. We identified distinct phosphatidylinositol 3-OH kinase (PI3K)-linked pathways supporting basal and insulin-triggered NE transport in the human noradrenergic neuroblastoma, SK-N-SH. Acute (0-60 min) insulin treatments produced a time- and concentration-dependent stimulation of NE transport, resolved in kinetic studies as an enhancement of NE transport capacity (Vmax) without an alteration in NE Km. Basal and insulin-modulated NET activities were reduced by the tyrosine kinase inhibitor genistein and the PI3K inhibitors wortmannin and LY-294002, but not by the PKC inhibitor staurosporine. PI3K activation was found to support phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). However, basal and insulin-stimulated NET activities were differentiated by their reliance on p38 MAPK activation. Thus, the p38 MAPK inhibitor SB203580 and SB202190 abolished insulin activation of NE transport yet failed to impact basal NET activity. Moreover, p38 MAPK activation and insulin activation of NETs were found to be sensitive to external Ca2+ depletion, blockade of voltage-sensitive Ca2+ channels, and inhibition of protein phosphatase 2A. Effects of tyrosine kinase and PI3K inhibitors on basal NET uptake appear to arise from a loss of cell surface NET protein, whereas the p38 MAPK-dependent enhancement of NE transport occurs without a detectable enhancement of surface NET. Our findings establish two distinct pathways for regulation of NE uptake involving PI3K, one linked to transporter trafficking and a second linked to Ca2+-dependent, p38 MAPK phosphorylation that promotes activation of cell surface NETs.  相似文献   

20.
Genistein is a potent plant-derived isoflavone displaying estrogenic activity at low (nanomolar) concentrations and antiproliferative and antiangiogenic properties at higher concentrations (above 10-50 microM). The antiproliferative potential of genistein has made it an interesting candidate for cancer chemotherapy at high concentrations; however, the potential for genistein toxicity in neurons at such concentrations has not been previously addressed. We show that genistein is toxic to rat primary cortical neurons at a concentration of 50 microM, whereas daidzein, a structural analog, shows no toxicity at similar concentrations. The dying cells display an apoptotic morphology that is characterized by fragmented nuclei, appearance of apoptotic bodies, DNA laddering, and caspase-dependent poly(ADP-ribose) polymerase cleavage. This cell death is partially dependent on caspase activity, independent of estrogen receptors, and does not result in a significant loss of Bcl-2 or Bcl-X(L) protein. Genistein exposure induces delayed and prolonged activation of p42/44 mitogen-activated protein kinase (MAPK) and p38 MAPK but not c-Jun NH2-terminal kinase. The specific p42/44 MAPK kinase inhibitor PD98059 (50 microM) partially blocks genistein-induced apoptosis, whereas the p38 MAPK inhibitor SB202190 (10 microM) has no effect. Genistein elevates intracellular calcium and both 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (1 microM) and dantrolene (10 microM) inhibit genistein-induced apoptosis, suggesting a link between genistein-induced intracellular calcium release and apoptosis. The combination of dantrolene and PD98059 block genistein-induced apoptosis in an additive manner compared with either compound alone. These findings provide evidence for a proapoptotic function of p42/44 MAPK and raise caution about potential side effects in the nervous system with genistein use as a high-dose therapeutic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号