首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six analogs of the highly delta opioid receptor selective, conformationally restricted, cyclic peptide [d -Pen2,d -Pen5]enkephalin, Tyr-d -Pen-Gly-Phe-d -PenOH (DPDPE), were synthesized and evaluated for opioid activity in rat brain receptor binding and mouse vas deferens (MVD) smooth muscle assays. All analogs were single amino acid modifications of DPDPE and employed amino acid substitutions of known effects in linear enkephalin analogs. The effect on binding affinity and MVD potency of each modification within the DPDPE structural framework was consistent with the previous reports on similarly substituted linear analogs. Conformational features of four of the modified DPDPE analogs were examined by 1H NMR spectroscopy and compared with DPDPE. From these studies it was concluded that the observed pharmacological differences with DPDPE displayed by diallyltyrosine1-DPDPE ([DAT1]DPDPE) and phenylglycine4-DPDPE ([Pgl4]DPDPE) are due to structural and/or conformational differences localized near the substituted amino acid. The observed enhanced μ receptor binding affinity of the carboxamide terminal DPDPE-NH2 appears to be founded solely upon electronic differences, the NMR data suggesting indistinguishable conformations. The observation that the α-aminoisobutyric acid substituted analog [Aib3]DPDPE displays similar in vitro opioid behavior as DPDPE while apparently assuming a significantly different solution conformation suggests that further detailed conformational analysis of this analog will aid the elucidation of the key structural and conformational features required for action at the δ opioid receptor.  相似文献   

2.
The mu opioid receptor ligand [D-Ala2, NMePhe4, Gly-ol5]enkephalin (DAGO) and delta opioid receptor ligand [D-Pen2,D-Pen5]enkephalin (DPDPE) show similar specificity in competition binding studies in whole brain homogenate in rat and mouse. However, in saturation studies, the density and affinity of DPDPE binding sites were substantially greater in the mouse. There was no difference between the mouse and rat in the density and affinity of DAGO sites. Results from dose-response studies for analgesia using the same ligands administered i.c.v. in both species paralleled the binding studies. DAGO was approximately 2 times more potent in the mouse compared to the rat; while DPDPE was more than 15 times more potent in the mouse. Thus, binding capacity and affinity differences appear to be related to the functional potency of the mu and delta ligands in the two species. These results suggest that the difference in potency of DPDPE between rat and mouse is related to the differences in brain delta opioid receptors.  相似文献   

3.
The periaqueductal gray (PAG) region of the midbrain has been implicated in both stimulation produced and opioid induced analgesia. In the present study the opioid binding characteristics of the PAG were examined with an in vitro radioligand binding technique. [3H]Ethylketocyclazocine (EKC), 2 nM, was used as a tracer ligand to nonselectively label mu, delta, and kappa binding sites in PAG enriched P2 membrane. The mu selective ligand [D-Ala2,N-methylPhe4,Glyol5]enkephalin (DAGO) competed with [3H]EKC for more than one population of binding sites with both high and low affinity. In contrast the delta selective ligand [D-Pen2,D-Pen5]enkephalin (DPDPE) and the kappa selective ligand trans-3,4-dichloro-N-methyl-N-[2-(1- pyrrolidinyl)cyclohexyl]benzeneacetamide, methane sulfonate, hydrate (U50,488H) each competed with [3H]EKC for a single population of binding sites with low affinity. DPDPE and U50,488H also competed with 2 nM [3H]DAGO for a single population of binding sites with similar low affinity. DAGO and not DPDPE competed with 2 nM [3H][D-Ala2,D-Leu5]enkephalin (DADLE) with high affinity. 2 nM [3H]DPDPE did not substantially label PAG enriched P2 membrane, and 1 nM DAGO competed with all specific [3H]DPDPE binding which was observed. These binding data are consistent with the presence of a single population of mu selective high affinity binding sites in PAG enriched P2 membrane to which delta ligands and kappa ligands have low affinity.  相似文献   

4.
The previously described cyclic delta opioid receptor-selective tetrapeptide H-Tyr-d -Cys-Phe-d -Pen-OH (JOM-13) was modified at residue 3 by incorporation of both natural and unnatural amino acids with varying steric, electronic, and lipophilic properties. Effects on mu and delta opioid receptor binding affinities were evaluated by testing the compounds for displacement of radiolabeled receptor-selective ligands in a guinea pig brain receptor binding assay. Results obtained with the bulky aromatic 1-Nal3 and 2-Nal3 substitutions suggest that the shape of the receptor subsite with which the side chain of the internal aromatic residue interacts differs for delta and mu receptors. This subsite of either receptor can accommodate the transverse steric bulk of the 1-Nal3 side chain but only the delta receptor can readily accept the more elongated 2-Nal3 side chain. Several analogs with pi-excessive heteroaromatic side chains in residue 3 were examined. In general, these analogs display diminished binding to mu and delta receptors, consistent with previous findings for analogs with residue 3 substitutions of modified electronic character. Several analogs with alkyl side chains in residue 3 were also examined. While delta receptor binding affinity is severely diminished with Val3, Ile3, and Leu3 substitutions, Cha3 substitution is very well tolerated, indicating that, contrary to the widely held belief, an aromatic side chain in this portion of the ligand is not required for delta receptor binding. Where possible, comparison of results in this delta-selective tetrapeptide series with those reported for analogous modification in the cyclic delta-selective pentapeptide [d -Pen2, d -Pen5]enkephalin (DPDPE) and linear pentapeptide enkephalins reveals similar trends.  相似文献   

5.
  1. In order to improve the in vivo stability of the opioid peptide dermorphin we synthesized O-βglucosylated analogs ([Ser7-O-βGlc]dermorphin and [Ser7-O-βGlc(Ac)4]-dermorphin) and C-αgalactosylated analogs ([Ala7-C-αGal]dermorphin and [Ala7-C-αGal(Ac)4]-dermorphin).
  2. O- and C-glycosylation of dermorphin halved the peptide affinity for brain μ-opioid receptors and the biological potency in guinea-pig ileum assay (GPI). Despite their lower opioid receptor affinity, when administered intracerebroventricularly (i.c.v., 8–40 pmol) and subcutaneously (s.c., 0.5–3 μmol kg?1) in rats, glycosylated analogs were two times more potent than dermorphin in reducing the nociceptive response to radiant heat. Acetylation of sugar hydroxyl groups reduces 5–10 times both biological activity on GPI and μ-receptor affinity, whereas the antinociceptive potency was equal to (i.c.v.) or only two-three times lower (s.c.) than dermorphin potency.
  3. Blood-Brain Barrier Permeability Index (BBB-PI) of the glycodermorphins was significantly higher than that of dermorphin, indicating a facilitated entry into the brain: O-β-linked glucoconiugates are expected to enter CNS by the glucose transporter GLUT-1 of the endothelial barrier. However the calculated BBB-PI for the C-αgalactoside was about two times higher than that of the O-βglucoside, excluding the implication of GLUT-1 that is known to be selective for O-β-links and preferring for the exose glucose.
  4. The enhanced brain permeability with the subsequent decrease in peripheral dosage of these opioid peptides did not result in lowering constipation.
  相似文献   

6.
The characteristics of mu and delta opioid receptor sites present in human neuroblastoma SH-SY5Y cells were investigated using [D-Ala2-N-methyl-Phe4-Gly-(01)5]enkephalin (DAGO) and [2-D-penicillamine, 5-D-penicillamine]enkephalin (DPDPE), which are the most selective radioligands available for mu and delta sites, respectively. Scatchard analysis of the saturation isotherms revealed high affinity binding to a single class of sites for both [3H]DAGO (mu) and [3H]DPDPE (delta). [3H]DAGO labeled twice the number of sites compared to the binding capacity of [3H]DPDPE, yielding a mu/delta ratio of 2:1. Selective suppression of [3H]diprenorphine binding by specific opioid "blocking" ligands also showed a predominance of mu receptors, representing 65-70% of the total opioid sites. Competition binding studies carried out with a series of opiates and opioid peptides displayed higher potencies of mu- and delta-selective ligands in displacing the specific binding of [3H]DAGO and [3H]DPDPE, respectively. The [3H]diprenorphine/agonist competition curves were biphasic, indicating the high and low affinity states of mu and delta receptor sites in SH-SY5Y cells. Guanine nucleotide and sodium had differential effects on the agonist affinity and the proportion of high affinity states of mu and delta receptors. The mu and delta receptor sites were shown to be functionally coupled to adenylate cyclase. All of these data support the independent existence of mu and delta receptor types in human neuroblastoma cells. SH-SY5Y cells, therefore, represent a suitable model for investigating opioid-mediated responses in nerve cell populations.  相似文献   

7.
The purpose of this study was to compare the binding potency to opioid receptors of met-enkephalin-derived, hypophysiotrophic peptides with their reported growth hormone (GH)-releasing strengths in vitro and further, to determine the relative selectivity of each peptide for mu and delta opioid binding sites in the forebrain of the rat. A series of (GH)-releasing pentapeptides and hexapeptides (GHRP's), as well as rat (rGHRH) and human (hGHRH) growth hormone-releasing hormones were tested for preferential binding to specific opioid receptors. The site selectivity of each peptide was determined by its ability to compete for binding with synthetic ligands for mu (Tyr-D-Ala-Gly-MePhe-Gly-ol; DAGO) and delta ([D-Pen2,5]-enkephalin; DPDPE) opioid receptors. The various peptides differed in their selectivities for the two opioid receptors in that most of the GHRP's were mu-selective, while the naturally occurring GHRH's were delta-selective. Amidation of the C-terminal decreased delta selectivity. Besides affecting selectivity for the site, structural changes that enhanced GH-release by enkephalin-derived peptides also decreased their potency to compete for opioid binding sites. For example, dose-response curves for His-D-Trp-Ala-Trp-D-Phe-Lys-NH2 (SK&F 110679) inhibition of the binding of DAGO and DPDPE yielded IC50's of 6 and 20 microM, respectively. In contrast, Tyr-D-Trp-Gly-Phe-Met-NH2 (BI360), which is 1 X 10(3) times weaker than SK&F 110679 in releasing GH, had IC50's of 0.1 microM and 0.08 microM for inhibition of the binding of DAGO and DPDPE, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Effects of the δ-opioid receptor ligand, [ -Pen2, -Pen5]enkephalin (DPDPE) on basal and endothelin-1-induced ion secretion in guinea pig colon were investigated. Muscle-stripped segments of guinea pig colon were mounted in Ussing flux chambers and changes in the short-circuit current (Isc) were monitored continuously. DPDPE significantly reduced baseline Isc at a low dose, 1 nM; however DPDPE increased Isc at 10 and 100 μM. Endothelin-1 stimulated ion secretion that was unaltered in tissues pretreated with DPDPE. In guinea pig colon, δ-opioid receptor activation evoked both a proabsorptive and prosecretory response.  相似文献   

9.
二氢埃托啡对大鼠脑阿片受体的结合特性   总被引:4,自引:0,他引:4  
本文在大鼠脑匀浆P_2膜上,观察了二氢埃托啡(DHE)对[~3H]纳洛酮,[~3H]DPDPE和[~3H]埃托啡(预先用30nmol/L吗啡和100nmol/L DADLE阻断μ和δ受体)与阿片受体结合的抑制强度。结果表明:DHE对[~3H]纳洛酮与阿片受体结合的抑制强度远远大于对[~3H]DPDPE和[~3H]埃托啡(预先阻断μ和δ受体后)。DHE对μ,δ和κ受体的相对亲和力之比为1951:2:1,提示DHE为μ受体相对选择性配体。  相似文献   

10.
The previously described cyclic, delta opioid receptor-selective tetrapeptide H-Tyr-d -Cys-Phe-d -Pen-OH, where Pen, penicillamine, is β,β-dimethylcysteine, was modified at residues 2 and 4 by varying combinations of d - and l -Cys and d - and l -Pen, and effects on mu and delta opioid receptor binding affinities and on potency in the mouse vas deferens (MVD) smooth muscle assay were evaluated. A comparison was drawn between consequences of alterations in this series of analogs and those of analogous modifications in the related cyclic pentapeptide series which includes the highly delta receptor-selective [d -Pen2,d -Pen5]enke-phalin, DPDPE. Unlike effects observed in the cyclic pentapeptide series, the mu receptor binding affinities of the cyclic tetrapeptides are not dramatically influenced by substitution of Pen for Cys at residue 2. Conversely, while binding of the pentapeptides is only slightly affected by alteration of the chirality of the carboxy-terminal residue, modification of stereochemistry at the carboxy terminus in the tetrapeptides critically alters binding behavior at both mu and delta sites. In contrast with the pentapeptide series, the tetrapeptides appear to be highly dependent upon primary sequence for binding and activity, as only the lead compound binds with high affinity to the delta site. Results suggest that the less flexible cyclic tetrapeptides, lacking the Gly3 residue, display more stringent structural requirements for binding and activity than do the corresponding cyclic pentapeptides.  相似文献   

11.
Structural features influencing binding activity of dermorphin to opioid receptors have been investigated in the rat brain through the synthesis and evaluation of binding affinity of a series of synthetic dermorphin analogs. Tritiated dermorphin was used as primary ligand. The single population of high affinity dermorphin binding sites present in the rat brain is clearly of an opioid nature since bound radiolabeled dermorphin was fully displaced with high affinity either by morphine or naloxone. Displacement of tritiated dermorphin by all alkaloid opiates or dermorphin related peptides tested was monophasic, consistent with simple competitive inhibition at a single population of binding sites. Dermorphin (Tyr-d -Ala-Phe-Gly-Tyr-Pro-Ser-NH2) was the most potent competitor in all experiments. The d -configuration of the amino acid residue in position 2 was found to be of crucial importance for binding. Replacement of d -Ala2 with l -Ala led to a deleterious effect, this analog being 1/5000th as potent as dermorphin in displacing bound tritiated dermorphin from its receptor. Shorter dermorphin homologs, dermorphin-(1-4)-NH2 and dermorphin-(1-3)-NH2, were found to be 20 and 40-fold less potent, respectively, than dermorphin. The C-terminal carboxamide function is of significant importance for manifestation of the full intrinsic binding potency of dermorphin. Deamidated dermorphin had 1/5th the potency of the parent peptide. This suggests that while the whole dermorphin sequence is required for the expression of the full intrinsic binding activity of the molecule, the N-terminal tripeptide is a key structure as it contains the features which allow receptor recognition.  相似文献   

12.
The involvement of delta opioid receptors in supraspinal analgesia was investigated. With this aim, opioids that produced analgesia in the tail immersion test were administered i.c.v. to mice a few minutes before the irreversible antagonist, beta-funaltrexamine (beta-FNA). Protection of the respective analgesic effects from beta-FNA blockade was obtained when evaluated 24 h later. Moreover, mu ligands protected the analgesia evoked by ED50s of morphine, [D-Ala2,N-Me-Phe4,Met-(o)5-ol]enkephalin (FK 33-824), [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAGO) and human beta-endorphin at doses (ED50s) lower than those required for delta ligands (approximately ED90s) to reach a similar protection. delta Preferential ligands effectively protected the analgesia induced by ED50s of [D-Ala2,D-Leu5]enkephalin (DADLE), [D-Thr2,Leu5]enkephalin-Thr6 (DTLET) and [D-Pen2,D-Pen5]enkephalin (DPDPE) from the beta-FNA-deteriorating effect. FK 33-824 and DAGO also provided good protection of the analgesia elicited by these delta ligands whereas morphine protected much less. Binding studies after i.c.v. injection of beta-FNA showed that its alkylating effect on opioid receptors was restricted to periventricular areas. In PAG, where the mu/delta receptor ratio is about 10, [3H]DADLE specific binding was still present after ED50s of DPDPE, DAGO, morphine and DADLE as protecting agents. [3H]Dihydromorphine [( 3H]DHM) binding was well protected by ED90s of morphine and DAGO, and to a lesser extent by DPDPE and DADLE. These results suggest that delta ligands, after binding to delta receptors, also need to act upon mu receptors to produce high levels of supraspinal analgesia in the tail immersion test.  相似文献   

13.
Sixteen dermorphin analogues were synthesized and characterized for μ- and δ-opioid receptor binding properties using [3H]DAGO and [3H]DPDPE, respectively. The analogues included the following: substitutions at position 4 and/or the C-terminal residue; deletions of Gly4 or Pro6-Ser7; inclusion of Z or an acetyl group on the β-amino group of Lys7; and the presence of either a C-terminal amide or free acid group. Two peptides, [Lys7-OH]- and [Lys7-NH2]dermorphin, had μ-affinities (Kiμ= 0.15–0.13 nm ) and μ-selectivities (Kiδ/Kiμ= 1158–1482) higher than dermorphin (Kiμ= 0.28 nm ; Kiδ/Kiμ= 295) and best fitted a one-site binding model similar to dermorphin. Significantly better (P <0.0001) fits to a two-site binding model vs. a one-site model were observed with four dermorphin analogues: [Lys(Z)7-OH]heptapeptide, [des-Gly4(Tyr4,Pro5,Asn6-OH)]hexapeptide and two pentapeptides, [Tyr5-NH2] and [Trp4,Asn5-OH]. Our data revealed a complex binding pattern for dermorphin analogues to brain μ-receptors in which Hill coefficients less than 0.85 generally suggest heterogeneity of μ-receptors; however, only detailed analyses of the data derived from the non-linear regression fits for one- or two-components gave evidence for the possible existence of two separate [3H]DAGO binding sites. Eight of our dermorphin analogues had significantly better fits for a two-site model (P <0.05), but only four seemed to have two distinct Ki, values (P <0.0001).  相似文献   

14.
The conformationally restricted, cyclic disulfide-containing delta opioid receptor selective enkephalin analogue [D-Pen2,D-Pen5] enkephalin (DPDPE) was modified by 2' (CH3) and 3' (I, OCH3, NO2, NH2) ring substitutions and by beta-methyl conformationally constrained beta-methyltyrosine derivatives in the 1 position. The potency and selectivity of these analogues were evaluated by bioassay in the mouse vas deference (MVD, delta receptor assay) and guinea pig ileum (GPI, mu receptor assay) assays and by radioreceptor binding assays in the rat brain using [3H]CTOP (mu ligand) and [3H][p-ClPhe4]DPDPE (delta ligand). The analogues showed highly variable potencies in the binding assays and in the bioassays. Aromatic ring substituents with positive Hammett constants had decreased potency, while substituents with negative Hammett constraints has increased potency for the opioid receptor. The most potent and most selective compound based on the binding was [2'-MeTyr1]DPDPE (IC50 = 0.89 nM and selectivity ratio 1310 in the binding assays). The 6-hydroxy-2-aminotetralin-2-carboxylic acid-containing analogue, [Hat1]DPDPE, also was highly potent and selective in both assays, demonstrating that significant modifications of tyrosine in enkephalins are possible with maintenance of high potency and delta opioid receptor selectivity. Of the beta-methyl-substituted Tyr1 analogues, [(2S,3R)-beta-MeTyr1]DPDPE was the most potent and the delta receptor selective. The results with substitution of beta-MeTyr or Hat instead of Tyr also demonstrate that topographical modification in a conformationally restricted ligand can significantly modulate both potency and receptor selectivity of peptide ligands that have multiple sites of biological activity.  相似文献   

15.
The conformationally restricted, cyclic disulfide-containing delta opioid receptor selective enkephalin analogue [D-Pen2,D-Pen5]enkephalin (1, DPDPE) was systematically modified topographically by addition of a methyl group at either the pro-S or pro-R position of the beta carbon of an L-Phe4 or D-Phe4 residue to give [(2S,3S)-beta-MePhe4]DPDPE (2), [(2R,3R)-beta-MePhe4]DPDPE (3), [(2S,3R)-beta-MePhe4]DPDPE (4), and [(2R,3S)-beta-MePhe4]DPDPE (5). The four corresponding isomers were prepared in which the beta-methylphenylalanine residue was p-nitro substituted, that is with a beta-methyl-p-nitrophenylalanine (beta-Me-p-NO2Phe) residue, to give [(2S,3S)-beta-Me-p-NO2Phe4]DPDPE (6), [(2R,3R)-beta-Me-p-NO2Phe4]DPDPE (7), [(2S,3R)-beta-Me-p-NO2Phe4] DPDPE (8), and [(2R,3S)-beta-Me-p-NO2Phe4]DPDPE (9), respectively. The potency and selectivity (delta vs mu opioid receptor) were evaluated by radioreceptor binding assays in the rat brain using [3H]CTOP (mu ligand) and [3H]DPDPE (delta ligand) and by bioassay with mouse vas deferens (MVD, delta receptor assay) and guinea pig ileum (GPI, mu receptor assay). The eight analogues of DPDPE showed highly variable binding and bioassay activities particularly at the delta opioid receptor (4 orders of magnitude), but also at the mu opioid receptor, which led to large differences (3 orders of magnitude) in receptor selectivity. For example, [(2S,3S)-beta-MePhe4]DPDPE (2) is 1800-fold selective in binding to the delta vs mu receptor, making it one of the most selective delta opioid receptor ligands in the enkephalin series as assessed by the rat brain binding assay, whereas the corresponding (2R,3R)-beta-Me-p-NO2Phe-containing analogue 9 is only 4.5-fold selective (nonselective) in this same assay. On the other hand, in the bioassay systems, [(2S,3S)-beta-Me-p-NO2Phe4]DPDPE (5) is more potent than DPDPE and 8800-fold selective for the MVD (delta receptor) vs the GPI (mu receptor), making it the most highly selective ligand in this series for the delta opioid receptor on the basis of these bioassays. In these assay systems, the (2R,3S)-beta-MePhe4-containing analogue 5 had very weak potency and virtually no receptor selectivity (4.4-fold). These results demonstrate that topographical modification alone in a conformationally restricted peptide ligand can significantly modulate both potency and receptor selectivity of peptide ligands that have multiple sites of biological activity and suggest that this approach may have general application to peptide ligand design.  相似文献   

16.
The present study was designed to investigate the effects of centrally administered morphine and opioid peptides on the discriminative stimulus properties of pentazocine in the rat. Rats were trained to discriminate 3 mg/kg (s.c.) of pentazocine from vehicle in a shock avoidance paradigm. A 3 mg/kg (s.c.) dose of pentazocine produced stimulus effects in common with those induced by a training dose (3 mg/kg, s.c.) of pentazocine. Morphine (0·1–3 μg, i.c.v.) produced a dose-dependent increase in responding appropriate for pentazocine lever. The μ-selective opioid receptor agonist [D-Ala2,NMePhe4,Gly-ol] enkephalin (DAMGO) (0·0003–0·03 μg, i.c.v.) generalized to pentazocine cue. d -Pen2, l -Pen5] enkephalin (DPLPE) (3 and 10 μg, i.c.v.), a δ-selective opioid receptor agonist, produced partial generalization to pentazocine cue. However, the κ-selective opioid receptor agonist dynorphin A-(1–13) (3 and 10 μg, i.c.v.) did not generalize to pentazocine cue. The pentazocine-like discriminative stimulus effects of morphine (3 μg, i.c.v.) and DAMGO (0·03 μg, i.c.v.) were fully reversed by intracerebroventricular injection of the μ-selective opioid receptor antagonist β-funaltrexamine (5 μg, i.c.v.). These results suggest that μ-opioid receptors play a major role in the discriminative stimulus effects of pentazocine, while δ-opioid receptors only partially contribute to them. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
β-Endorphin     
Three βh-EP analogs which show different extents of alteration in analgesic potency by substitution of a single amino acid residue were assayed for their peripheral opioid activity and the binding to opioid μ-receptor to determine the relationships among the opioid activities obtained from different assays. In the guinea pig ileum assay, [Gln8]-βh-EP showed a higher inhibitory activity than the parent peptide. [Tyr31]-analog had the same potency as βh-EP, while [Trp27]-analog retained only one fourth the potency of βh-EP. Assayed on the vas deferens of the mouse and the rat, all three substituted βh-EP analogs exhibited a lower potency than their parent peptide. Receptor binding assay using [3H]-dihydromorphine as the primary ligand showed that [Gln8]-analog had a binding potency 1.5-fold that of βh-EP, while the potencies of [Tyr31]- and [Trp27]-analogs were not significantly different from that of the parent peptide. No correlation in relative potency was found between vas deferens assays and their μ-receptor binding or analgesic activity. However, the relative potencies of binding to μ-receptor in [Gln8]- and [Tyr31]-analogs were found to be consistent with those of analgesic and guinea pig ileum assays, whereas the binding to β-EP receptor of all analogs appeared to be related to the charge properties of β-EP molecule.  相似文献   

18.
[d-Pen2,d-Pen5]enkephalin (DPDPE; 3–30 µg) and morphine (10 µg) both caused Straub tails, increased locomotion, and circling after ICV administration to ICR mice. DPDPE-induced tail stiffening was reduced when mice were pretreated with naloxone (0.5 mg/kg SC) or-funaltrexamine (10 µg ICV), but not with ICI 174864 (2 mg/kg SC), the selective antagonist at delta opioid receptors. These results point to (a) mu receptors mediating the tail stiffening and (b) the loss of delta receptor selectivity after 10 and 30 µg DPDPE.  相似文献   

19.
The N-terminal dipeptide Tyr-d -Ala of a p-selective agonist, dermorphin tetrapeptide (DT, H-Tyr-d -Ala-Phe-Gly-NH2) and δ-selective agonist deltorphin C (DEL-C, H-Tyr-d -Ala-Phe-Asp-Val-Val-Gly-NH2) was changed into an aminodiacyl moiety. The relevant synthetic step is a nucleophilic substitution of bromine from a chiral 2-bromopropanamide by the amino group of tyrosine, with overall retention of configuration. The resulting pseudo tetra- and heptapeptides I-VI were characterized for μ and δ-opioid receptor binding properties using [3H]DAGO and [3H]DPDPE, respectively, and in a bioassay using guinea pig ileum (GPI) and mouse vas deferens (MVD). As a result of chemical alteration of N-terminal dipeptide moiety, all synthesized analogs showed considerable reduction in opioid receptor affinity compared to μ and δ-prototypes (500-fold on the μ-site, analog I , and 125-fold on the δ-site, analog IV ). Interestingly, analogs I and IV showed moderate antagonist activity, respectively, on GPI and MVD, with pA2 values of 6.05 and 6.82. Analog IV did not exhibit the δ-antagonist potency and δ-selectivity of TIPP peptides. © Munksgaard 1995.  相似文献   

20.
Dermorphin structural analogues were utilized to determine the nature of opioid receptor subsite specificity, affinity, and selectivity in rat brain membranes. The data suggest that these parameters are influenced by the amino acid composition and sequence and the known solution conformation of dermorphin, in addition to the conformation of the membrane receptor. Two hydrophobic components of dermorphin are required for optimal binding. One component encompasses the stacked phenol groups in Tyr1 and Tyr5; the second involves the phenyl group of Phe3. Evidence to support this proposal includes the following results: (a) removal of aromaticity, as occurs in [des-Tyr5]- and [Gly5]dermorphin, drastically reduced binding to both mu and delta sites; (b) inversion of the Phe3-Gly4 sequence in dermorphin to the Gly3-Phe4 in enkephalin enhanced binding to delta receptor sites, yet the peptide remained mu-selective; (c) substitution of Pro4 for Gly4 disrupted the solution conformation of dermorphin and decreased affinities at both receptor subsites, substantiating the requirement for the Phe3-Gly4-Tyr5 sequence in dermorphin to interact with mu sites; and (d) modification of the serine residue, as occurs in [Ser(Bzl7)] dermorphin and [Ser-NHNHZ7]dermorphin, enhanced interaction with delta opioid receptors; the apparent delta affinity increased over 50-fold with [Ser(Bzl7)]dermorphin, although it retained a weak mu-selectivity. However, both [Ser(Bzl7)]- and [Ser-NHNHZ7]dermorphin exhibited high affinity for mu receptor sites. Furthermore, the D-configuration about the alpha-carbon of residue 2 and the alpha-amine function and hydroxyl group on Tyr1 are essential for receptor binding. We conclude that mu-opioid receptors contain distinct regions that accomodate the stacked phenol groups of Tyr1 and Tyr5 residues and the phenyl group of Phe3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号