首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phillips ER  McKinnon PJ 《Oncogene》2007,26(56):7799-7808
Normal development of an organism requires the ability to respond to DNA damage. A particularly deleterious lesion is a DNA double-strand break (DSB). The cellular response to DNA DSBs occurs via an integrated sensing and signaling network that maintains genomic stability. The outcomes of defective DNA DSB repair are related to the developmental stage of an organism, and often show striking tissue specificity. Many human diseases are associated with deficiencies in DNA DSB repair and can be characterized by neuropathology, immune deficiency, growth retardation or predisposition to cancer. This review will focus on the requirements of the DNA DSB response that function to maintain homeostasis during mammalian development.  相似文献   

2.
DNA双链断裂修复(DSBR)是人类最主要的修复途径之一,其中修复基因可以修复损伤DNA,保持遗传信息的完整性,从而抑制癌症的发生.随着对DSBR与肿瘤关系的深入研究,DSBR中相关基因在卵巢癌的发生发展及治疗等方面产生了重要影响.
Abstract:
DNA double-strand break repair (DSBR) pathways are important repair pathways in human. DSBR pathways repair damaged DNA, maintain the integrity of the genetic information and therefore suppress cancer. More and more researches have indicated important roles of DSBR pathway genes in the development and treatment of ovarian cancer.  相似文献   

3.
Radiation and other types of DNA damaging agents induce a plethora of signaling events simultaneously originating from the nucleus, cytoplasm, and plasma membrane. As a result, this presents a dilemma when seeking to determine causal relationships and better insight into the intricacies of stress signaling. ATM plays critical roles in both nuclear and cytoplasmic signaling, of which, the DNA damage response (DDR) is the best characterized. We have recently created experimental conditions where the DNA damage signal alone can be studied while minimizing the influence from the extranuclear compartment. We have been able to document pro-survival and growth promoting signaling (via ATM-AKT-ERK) resulting from low levels of DSBs (equivalent to ?2 Gy). More extensive DSBs (>2 Gy eq.) result in phosphatase-mediated ERK dephosphorylation, and thus shutdown of ERK signaling. In contrast, radiation does not result in such dephosphorylation even at very high doses. We propose that phosphatases are inactivated perhaps as a result of reactive oxygen species, which does not occur in response to ‘pure’ DNA damage. Our findings suggest that clinically relevant radiation doses, which are intended to halt tumor growth and induce cell death, are unable to inhibit tumor pro-survival signaling via ERK dephosphorylation.  相似文献   

4.
Combined cytogenetic and biochemical approaches were used to investigate the contributions of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in the maintenance of genomic stability in nonirradiated and irradiated primary mouse embryo fibroblasts (MEF). We show that telomere dysfunction contributes only marginally to genomic instability associated with DNA-PKcs deficiency in the absence of radiation. Following exposure to ionizing radiation, DNA-PKcs-/- MEFs are radiosensitized mainly as a result of the associated DNA double-strand break (DSB) repair defect. This defect manifests as an increase in the fraction of DSB rejoining with slow kinetics although nearly complete rejoining is achieved within 48 hours. Fifty-four hours after ionizing radiation, DNA-PKcs-/- cells present with a high number of simple and complex chromosome rearrangements as well as with unrepaired chromosome breaks. Overall, induction of chromosome aberrations is 6-fold higher in DNA-PKcs-/- MEFs than in their wild-type counterparts. Spectral karyotyping-fluorescence in situ hybridization technology distinguishes between rearrangements formed by prereplicative and postreplicative DSB rejoining and identifies sister chromatid fusion as a significant source of genomic instability and radiation sensitivity in DNA-PKcs-/- MEFs. Because DNA-PKcs-/- MEFs show a strong G1 checkpoint response after ionizing radiation, we propose that the delayed rejoining of DNA DSBs in DNA-PKcs-/- MEFs prolongs the mean life of broken chromosome ends and increases the probability of incorrect joining. The preponderance of sister chromatid fusion as a product of incorrect joining points to a possible defect in S-phase arrest and emphasizes proximity in these misrepair events.  相似文献   

5.
Long-term XPC silencing reduces DNA double-strand break repair   总被引:2,自引:0,他引:2  
To study the relationships between different DNA repair pathways, we established a set of clones in which one specific DNA repair gene was silenced using long-term RNA interference in HeLa cell line. We focus here on genes involved in either nucleotide excision repair (XPA and XPC) or nonhomologous end joining (NHEJ; DNA-PKcs and XRCC4). As expected, XPA(KD) (knock down) and XPC(KD) cells were highly sensitive to UVC. DNA-PKcs(KD) and XRCC4(KD) cells presented an increased sensitivity to various inducers of double-strand breaks (DSBs) and a 70% to 80% reduction of in vitro NHEJ activity. Long-term silencing of XPC gene expression led to an increased sensitivity to etoposide, a topoisomerase II inhibitor that creates DSBs through the progression of DNA replication forks. XPC(KD) cells also showed intolerance toward acute gamma-ray irradiation. We showed that XPC(KD) cells exhibited an altered spectrum of NHEJ products with decreased levels of intramolecular joined products. Moreover, in both XPC(KD) and DNA-PKcs(KD) cells, XRCC4 and ligase IV proteins were mobilized on damaged nuclear structures at lower doses of DSB inducer. In XPC-proficient cells, XPC protein was released from nuclear structures after induction of DSBs. By contrast, silencing of XPA gene expression did not have any effect on sensitivity to DSB or NHEJ. Our results suggest that XPC deficiency, certainly in combination with other genetic defects, may contribute to impair DSB repair.  相似文献   

6.
7.
<正>DNA repair factors function through spatiotemporal condensation and dissolution at DNA double-strand breaks(DSBs). Recent advances have indicated that some DSB repair factors undergo liquid-liquid phase separation(LLPS) and show droplet-like properties, as well as dynamic material exchange. Importantly, LLPS regulates various biological processes, and aberrant LLPS is involved in the pathologic progression of various diseases.  相似文献   

8.
Zhu B  Deng X  Sun Y  Bai L  Xiahou Z  Cong Y  Xu X 《癌症》2012,31(8):392-398
DNA double-strand break(DSB) is the most severe form of DNA damage,which is repaired mainly through high-fidelity homologous recombination(HR) or error-prone non-homologous end joining(NHEJ).Defects in the DNA damage response lead to genomic instability and ultimately predispose organs to cancer.Nicotinamide phosphoribosyltransferase(Nampt),which is involved in nicotinamide adenine dinucleotide metabolism,is overexpressed in a variety of tumors.In this report,we found that Nampt physically associated with CtIP and DNA-PKcs/Ku80,which are key factors in HR and NHEJ,respectively.Depletion of Nampt by small interfering RNA(siRNA) led to defective NHEJ-mediated DSB repair and enhanced HR-mediated repair.Furthermore,the inhibition of Nampt expression promoted proliferation of cancer cells and normal human fibroblasts and decreased β-galactosidase staining,indicating a delay in the onset of cellular senescence in normal human fibroblasts.Taken together,our results suggest that Nampt is a suppressor of HR-mediated DSB repair and an enhancer of NHEJ-mediated DSB repair,contributing to the acceleration of cellular senescence.  相似文献   

9.
The use of DNA double-strand break quantification in radiotherapy   总被引:4,自引:0,他引:4  
DNA double-strand breaks (DSB) are an important direct consequence of treating cells with ionizingradiation. A variety of evidence points toward DSBs being the key damage type linked to radiation-induced lethality. In particular, the link between DSB and chromosome breakage, which in turn closely correlates with cell death in some cell types, is strongly supportive of this concept. There has been much interest in the possibility of using measures of strand breaks as a pretreatment test of radiation response. This has largely been in the context of assessing inherent cellular sensitivity through damage induction or repair parameters. A number of studies have produced hopeful results, but overall there has been no parameter that can reliably predict radiosensitivity. This may be due to the inadequacies of the assays, but it is more likely to reflect the fact that the radiosensitivity of cells is dictated by a whole series of events; alterations in many of these can alter the overall response. In addition, it is now recognized that cell-signalling pathways form an essential part of the cellular response to damage, and these can be triggered by damage other than DSB. It is therefore possible that while DSBs are clearly important--and they may be the single most important lesion in some types--other damage types may be significant triggers of cell death pathways after ionizing radiation treatment.  相似文献   

10.
Genomic instability is characteristic of tumor cells, and a strong correlation exists between abnormal karyotype and tumorigenicity. Increased expression of the homologous recombination and DNA repair protein Rad51 has been reported in immortalized and tumor cells, which could alter recombination pathways to contribute to the chromosomal rearrangements found in these cells. We used a genetic system to examine the potential for multiple double-strand breaks to lead to genome rearrangements in the presence of increased Rad51 expression. Analysis of repair revealed a novel class of products consistent with crossing over, involving gene conversion associated with an exchange of flanking markers leading to chromosomal translocations. Increased Rad51 also promoted aneuploidy and multiple chromosomal rearrangements. These data provide a link between elevated Rad51 protein levels, genome instability, and tumor progression.  相似文献   

11.
Five established human breast cancer cell lines and one established human bladder cancer cell line of varying radiosensitivity have been used to determine whether the rejoining of DNA double-strand breaks (dsbs) shows a correlation with radiosensitivity. The kinetics of dsb rejoining was biphasic and both components proceeded exponentially with time. The half-time (t1/2) of rejoining ranged from 18.0 +/- 1.4 to 36.4 +/- 3.2 min (fast rejoining process) and from 1.5 +/- 0.2 to 5.1 +/- 0.2 h (slow rejoining process). We found a statistically significant relationship between the survival fraction at 2 Gy (SF2) and the t1/2 of the fast rejoining component (r = 0.949, P = 0.0039). Our results suggest that cell lines which show rapid rejoining are more radioresistant. These results support the view that, as well as the level of damage induction that we have reported previously, the repair process is a major determinant of cellular radiosensitivity. It is possible that the differences found in DNA dsb rejoining and the differences in DNA dsb induction are related by a common mechanism, e.g. conformation of chromatin in the cell.  相似文献   

12.
DNA double-strand break repair capacity and risk of breast cancer   总被引:4,自引:0,他引:4  
Bau DT  Mau YC  Ding SL  Wu PE  Shen CY 《Carcinogenesis》2007,28(8):1726-1730
A tumorigenic role of the non-homologous end-joining (NHEJ) pathway for the repair of DNA double-strand breaks (DSBs) has been suggested by our finding of a significant association between increased breast cancer risk and a cooperative effect of single-nucleotide polymorphisms in NHEJ genes. To confirm this finding, this case-control study detected both in vivo and in vitro DNA end-joining (EJ) capacities in Epstein-Barr virus-immortalized peripheral blood mononuclear cells (PBMCs) of 112 breast cancer patients and 108 healthy controls to identify individual differences in EJ capacity to repair DSB as a risk factor predisposing women to breast cancer. PBMCs from breast cancer patients consistently showed lower values of in vivo and in vitro EJ capacities than those from healthy women (P < 0.05). Logistic regression, simultaneously considering the effect of known risk factors of breast cancer, shows that the in vitro EJ capacity above the median of control subjects was associated with nearly 3-fold increased risks for breast cancer (adjusted odds ratio, 2.98; 95% confidence interval, 1.64-5.43). Furthermore, a dose-response relationship was evident between risk for breast cancer and EJ capacity, which was analyzed as a continuous variable (every unit decrease of EJ capacity being associated with an 1.09-fold increase of breast cancer risk) and was divided into tertiles based on the EJ capacity values of the controls (P for trend < 0.01). The findings support the conclusion that NHEJ may play a role in susceptibility to breast cancer.  相似文献   

13.
中性单细胞凝胶电泳测定DNA双链断裂   总被引:1,自引:0,他引:1  
目的 :检测人类肿瘤细胞系统经 X线照射产生的 DNA双链断裂 (DSB)及其修复过程 ,初步验证双链断裂及其修复与细胞放射敏感性的关系。材料与方法 :采用中性单细胞凝胶电泳定量测定 DSB的实验方法 ("彗星 "法 ) ,测定了细胞 SF2差异较大的 He La和 GL C细胞的 DSB及 DSB修复动力学过程。结果 :不同剂量 X线照射引起的细胞 DSB呈显著的线性关系 ,与细胞 SF2不存在相关性 ,但其修复与 SF2具有一定相关性。结论 :X线导致细胞 DSB的修复能力比 DSB初始断裂数更能反映细胞的放射敏感性  相似文献   

14.
卵巢癌发生发展与DNA损伤累积引起的基因不稳定性和细胞行为异常密切相关。DNA双链断裂修复通路中最为重要的是同源重组和非同源末端连接机制以及最近发现的微同源介导的末端修复形式,能够快速准确地修复DNA双链断裂,对维持基因组稳定性起着至关重要的作用,对卵巢癌的基因诊断、基因治疗以及卵巢癌分子水平研究均有重要意义。  相似文献   

15.
Experiments with the supF20 mutagenesis system demonstrate that extracts from Bloom's syndrome (BS) cells are unable to use microhomology elements within the supF20 gene to restore supF function after the induction of a double-strand break (DSB). Additional experiments with the pUC18 mutagenesis system demonstrate that although the efficiency and fidelity of DSB repair by BS extracts are comparable with those of normal extracts when ligatable ends are present, a significant 5-fold increase in mutation rate with BS extracts is observed when terminal phosphates are removed from the DNA substrate that needs repair. Mutant plasmids recovered after DSB repair by BS extracts contain smaller deletions within the lacZalpha gene not commonly recovered from normal extracts. This work demonstrates that BS cells, lacking the BLM helicase, process DSBs differently than normal cells and strongly suggests a role for the BLM helicase in aligning microhomology elements during recombinational events in DSB repair.  相似文献   

16.
Polymorphisms in DNA double-strand break repair genes and skin cancer risk   总被引:9,自引:0,他引:9  
UV can cause a wide range of DNA lesions. UVA-induced oxidative DNA damage and blocked DNA replication by UVB-induced photoproducts can lead to double-strand breaks (DSBs). We selected 11 haplotype-tagging single nucleotide polymorphisms in three DSB repair genes XRCC2, XRCC3, and LigaseIV and evaluated their associations with skin cancer risk in a nested case-control study within the Nurses' Health Study [219 melanoma, 286 squamous cell carcinoma (SCC), 300 basal cell carcinoma (BCC), and 873 controls]. We observed that the XRCC3 18085T (241Met) allele and its associated haplotype were significantly inversely associated with the risks of SCC and BCC, whereas the XRCC3 4552C allele along with its associated haplotype and the XRCC2 30833A allele were significantly associated with increased BCC risk. The LigaseIV 4044T and 4062T alleles were associated with decreased BCC risk; two of four haplotypes were significantly associated with altered BCC risk. A trend toward decreased risk of nonmelanoma skin cancer was found in those harboring a greater number of putative low risk alleles (P for trend, 0.05 for SCC, <0.0001 for BCC). The main effects of these genotypes were essentially null for melanoma risk. This study provides evidence to suggest the role of the DSB repair pathway in skin cancer development, especially for BCC.  相似文献   

17.
DNA repair pathways are crucial for the maintenance of genome integrity. The pathway that repairs DNA double-strand breaks (DSB) has components involved in both signaling and repairing DNA damage. Impairing DSB repair using specific inhibitors of signaling or repair might, in principle, sensitize tumor cells to particular DNA-damaging agents. Moreover, the existence of specific defects in DNA repair pathways in tumors provides the rationale for the use of "synthetic lethal" approaches targeting this cellular "Achilles' heel." Here, we discuss the mechanisms involved in DSB repair and detail potential therapeutic approaches based on targeting this pathway.  相似文献   

18.
DNA double-strand breaks (DSBs) seriously damage DNA and promote genomic instability that can lead to cell death. They are the source of conditions such as carcinogenesis and aging, but also have important applications in cancer therapy. Therefore, rapid detection and quantification of DSBs in cells are necessary for identifying carcinogenic and anticancer factors. In this study, we detected DSBs using a flow cytometry-based high-throughput method to analyze γH2AX intensity. We screened a chemical library containing 9600 compounds and detected multiple DNA-damaging compounds, although we could not identify mechanisms of action through this procedure. Thus, we also profiled a representative compound with the highest DSB potential, DNA-damaging agent-1 (DDA-1), using a bioinformatics-based method we termed “molecular profiling.” Prediction and verification analysis revealed DDA-1 as a potential inhibitor of topoisomerase IIα, different from known inhibitors such as etoposide and doxorubicin. Additional investigation of DDA-1 analogs and xenograft models suggested that DDA-1 is a potential anticancer drug. In conclusion, our findings established that combining high-throughput DSB detection and molecular profiling to undertake phenotypic analysis is a viable method for efficient identification of novel DNA-damaging compounds for clinical applications.  相似文献   

19.
Downs JA 《Oncogene》2007,26(56):7765-7772
Defects in the detection and repair of DNA double-strand breaks (DSBs) have been causatively linked to tumourigenesis. Moreover, inhibition of DNA damage responses (DDR) can increase the efficacy of cancer therapies that rely on generation of damaged DNA. DDR must occur within the context of chromatin, and there have been significant advances in recent years in understanding how the modulation and manipulation of chromatin contribute to this activity. One particular covalent modification of a histone variant--the phosphorylation of H2AX--has been investigated in great detail and has been shown to have important roles in DNA DSB responses and in preventing tumourigenesis. These studies are reviewed here in the context of their relevance to cancer therapy and diagnostics. In addition, there is emerging evidence for contributions by proteins involved in mediating higher order structure to DNA DSB responses. The contributions of a subset of these proteins--linker histones and high-mobility group box (HMGB) proteins--to DDR and their potential significance in tumourigenesis are discussed.  相似文献   

20.
Follicle center cell lymphoma is among the most radioresponsive of human cancers. To assess whether this radioresponsiveness might be a result of a compromised ability of the tumor cells to accomplish the biologically-effective repair of DNA double-strand breaks (DSBs), we have measured i) the extent of the mechanical rejoining of radiation-induced DSBs in biopsy-derived follicle center cell lymphoma cells and ii) the fidelity with which nuclear protein extracts from these cells rejoin restriction enzyme-induced DSBs. Cell suspensions derived from two lymphoma biopsies, designated FCL1 and FCL2, as well as two established human glioblastoma cell lines, M059J and M059K, were exposed to 30 Gy of gamma-rays and evaluated for their ability to rejoin DSBs using a Southern transfer-pulsed-field gel electrophoresis assay. The fidelity of rejoining of restriction enzyme-induced DSBs was assessed using a cell-free plasmid reactivation assay. Both lymphoma suspensions rejoined DSBs relatively slowly and exhibited a similar phenotype to the known DSB-rejoining deficient M059J line. The level of DSB mis-rejoining in the cell-free plasmid reactivation assay was also similar in M059J and FCL2 cells and was considerably ( approximately 6-fold) higher than in M059K cells. Because of insufficient numbers of cells, we were unable to perform this assay with the FCL1 lymphoma. These limited data suggest that follicle center cell lymphoma cells may be intrinsically deficient in performing the biologically-effective rejoining of DSBs. Such a deficiency might contribute to the radioresponsiveness of this disease and may be exploitable in the development of improved treatment strategies, such as radioimmunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号