首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background:

Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pathophysiology. We examined the resting-state connectivity differences in the intrinsic networks between schizophrenic patients, their unaffected siblings, and healthy controls.

Methods:

Resting-state functional magnetic resonance images were obtained from 25 individuals in each subject group. The posterior cingulate cortex/precuneus and right dorsolateral prefrontal cortex were used as seed regions to identify the TNN and TPN through functional connectivity analysis. Interregional connectivity strengths were analyzed using overlapped intrinsic networks composed of regions common to all subject groups.

Results:

Schizophrenic patients and their unaffected siblings showed increased connectivity in the TNN between the bilateral inferior temporal gyri. By contrast, schizophrenic patients alone demonstrated increased connectivity between the posterior cingulate cortex/precuneus and left inferior temporal gyrus and between the ventral medial prefrontal cortex and right lateral parietal cortex in the TNN. Schizophrenic patients exhibited increased connectivity between the left dorsolateral prefrontal cortex and right inferior frontal gyrus in the TPN relative to their unaffected siblings, though this trend only approached statistical significance in comparison to healthy controls.

Conclusion:

Resting-state hyperconnectivity of the intrinsic networks may disrupt network coordination and thereby contribute to the pathophysiology of schizophrenia. Similar, though milder, hyperconnectivity of the TNN in unaffected siblings of schizophrenic patients may contribute to the identification of schizophrenia endophenotypes and ultimately to the determination of schizophrenia risk genes.  相似文献   

2.

Background

Individuals with anorexia nervosa are thought to exert excessive self-control to inhibit primary drives.

Methods

This study used functional MRI (fMRI) to interrogate interactions between the neural correlates of cognitive control and motivational processes in the brain reward system during the anticipation of monetary reward and reward-related feedback. In order to avoid confounding effects of undernutrition, we studied female participants recovered from anorexia nervosa and closely matched healthy female controls. The fMRI analysis (including node-to-node functional connectivity) followed a region of interest approach based on models of the brain reward system and cognitive control regions implicated in anorexia nervosa: the ventral striatum, medial orbitofrontal cortex (mOFC) and dorsolateral prefrontal cortex (DLPFC).

Results

We included 30 recovered patients and 30 controls in our study. There were no behavioural differences and no differences in hemodynamic responses of the ventral striatum and the mOFC in the 2 phases of the task. However, relative to controls, recovered patients showed elevated DLPFC activity during the anticipation phase, failed to deactivate this region during the feedback phase and displayed greater functional coupling between the DLPFC and mOFC. Recovered patients also had stronger associations than controls between anticipation-related DLPFC responses and instrumental responding.

Limitations

The results we obtained using monetary stimuli might not generalize to other forms of reward.

Conclusion

Unaltered neural responses in ventral limbic reward networks but increased recruitment of and connectivity with lateral–frontal brain circuitry in recovered patients suggests an elevated degree of self-regulatory processes in response to rewarding stimuli. An imbalance between brain systems subserving bottom–up and top–down processes may be a trait marker of the disorder.  相似文献   

3.

Background

Functional neuroimaging studies on schizophrenia have suggested abnormal task-related functional connectivity in patients with schizophrenia who have auditory verbal hallucinations (AVHs). However, little is known about intrinsic functional connectivity in these patients.

Methods

Between January 2009 and February 2010, we studied patients with schizophrenia who had persistent and treatment-refractory AVHs in comparison with healthy controls. Using functional magnetic resonance imaging, we studied the functional connectivity of multiple resting state networks (RSNs) and their relation to symptom severity. We analyzed the data using a spatial group independent component analysis, and we used random-effects t tests to compare spatial components between groups.

Results

There were 10 patients and 14 controls enrolled in this study. In total, 16 RSNs were identified, from which we selected 4 networks of interest for further analyses. Within a speech-related network, patients showed increased connectivity in bilateral temporal regions and decreased connectivity in the cingulate cortex. Within 2 additional RSNs associated with attention and executive control, respectively, patients exhibited abnormal connectivity in the precuneus and right lateral prefrontal areas. We found correlations between measures of AVH severity and functional connectivity of the left anterior cingulate, left superior temporal gyrus and right lateral prefrontal cortex.

Limitations

The relatively small sample size, the patients’ use of antipsychotic medication and the lack of a clinical control group have to be considered as potential limitations.

Conclusion

Our findings indicate that disrupted intrinsic connectivity of a speech-related network could underlie persistent AVHs in patients with schizophrenia. In addition, the occurrence of hallucinatory symptoms seems to modulate RSNs associated with attention and executive control.  相似文献   

4.

Background

Working memory processing and resting-state connectivity in the default mode network are altered in patients with post-traumatic stress disorder (PTSD). Because the ability to effortlessly switch between concentration on a task and an idling state during rest is implicated in both these alterations, we undertook a functional magnetic resonance imaging study with a block design to analyze task-induced modulations in connectivity.

Methods

We performed a working memory task and psychophysiologic interaction analyses with the posterior cingulate cortex and the medial prefrontal cortex as seed regions during fixation in 12 patients with severe, chronic PTSD and 12 healthy controls.

Results

During the working memory task, the control group showed significantly stronger connectivity with areas implicated in the salience and executive networks, including the right inferior frontal gyrus and the right inferior parietal lobule. The PTSD group showed stronger connectivity with areas implicated in the default mode network, namely enhanced connectivity between the posterior cingulate cortex and the right superior frontal gyrus and between the medial prefrontal cortex and the left parahip-pocampal gyrus.

Limitations

Because we were studying alterations in patients with severe, chronic PTSD, we could not exclude patients taking medication. The small sample size may have limited the power of our analyses. To avoid multiple testing in a small sample, we only used 2 seed regions for our analyses.

Conclusion

The different patterns of connectivity imply significant group differences with task-induced switches (i.e., engaging and disengaging the default mode network and the central-executive network).  相似文献   

5.

Objective:

In the present study, we employ mathematical modeling (partial least squares regression, PLSR) to elucidate the functional connectivity signatures of discrete brain regions in order to identify the functional networks subserving PCP-induced disruption of distinct cognitive functions and their restoration by the procognitive drug modafinil.

Methods:

We examine the functional connectivity signatures of discrete brain regions that show overt alterations in metabolism, as measured by semiquantitative 2-deoxyglucose autoradiography, in an animal model (subchronic phencyclidine [PCP] treatment), which shows cognitive inflexibility with relevance to the cognitive deficits seen in schizophrenia.

Results:

We identify the specific components of functional connectivity that contribute to the rescue of this cognitive inflexibility and to the restoration of overt cerebral metabolism by modafinil. We demonstrate that modafinil reversed both the PCP-induced deficit in the ability to switch attentional set and the PCP-induced hypometabolism in the prefrontal (anterior prelimbic) and retrosplenial cortices. Furthermore, modafinil selectively enhanced metabolism in the medial prelimbic cortex. The functional connectivity signatures of these regions identified a unifying functional subsystem underlying the influence of modafinil on cerebral metabolism and cognitive flexibility that included the nucleus accumbens core and locus coeruleus. In addition, these functional connectivity signatures identified coupling events specific to each brain region, which relate to known anatomical connectivity.

Conclusions:

These data support clinical evidence that modafinil may alleviate cognitive deficits in schizophrenia and also demonstrate the benefit of applying PLSR modeling to characterize functional brain networks in translational models relevant to central nervous system dysfunction.  相似文献   

6.

Background

Executive cognitive functions, including working memory, cognitive flexibility, and inhibition, are impaired in schizophrenia. Executive functions rely on coordinated information processing between the prefrontal cortex (PFC) and thalamus, particularly the mediodorsal nucleus. This raises the possibility that anatomical connectivity between the PFC and mediodorsal thalamus may be 1) reduced in schizophrenia and 2) related to deficits in executive function. The current investigation tested these hypotheses.

Methods

Forty-five healthy subjects and 62 patients with a schizophrenia spectrum disorder completed a battery of tests of executive function and underwent diffusion-weighted imaging. Probabilistic tractography was used to quantify anatomical connectivity between six cortical regions, including PFC, and the thalamus. Thalamocortical anatomical connectivity was compared between healthy subjects and patients with schizophrenia using region-of-interest and voxelwise approaches, and the association between PFC-thalamic anatomical connectivity and severity of executive function impairment was examined in patients.

Results

Anatomical connectivity between the thalamus and PFC was reduced in schizophrenia. Voxelwise analysis localized the reduction to areas of the mediodorsal thalamus connected to lateral PFC. Reduced PFC-thalamic connectivity in schizophrenia correlated with impaired working memory but not cognitive flexibility and inhibition. In contrast to reduced PFC-thalamic connectivity, thalamic connectivity with somatosensory and occipital cortices was increased in schizophrenia.

Conclusions

The results are consistent with models implicating disrupted PFC-thalamic connectivity in the pathophysiology of schizophrenia and mechanisms of cognitive impairment. PFC-thalamic anatomical connectivity may be an important target for procognitive interventions. Further work is needed to determine the implications of increased thalamic connectivity with sensory cortex.  相似文献   

7.

Background:

Schizophrenia is a severe mental disorder associated with derogated function across various domains, including perception, language, motor, emotional, and social behavior. Due to its complex symptomatology, schizophrenia is often regarded a disorder of cognitive processes. Yet due to the frequent involvement of sensory and perceptual symptoms, it has been hypothesized that functional disintegration between sensory and cognitive processes mediates the heterogeneous and comprehensive schizophrenia symptomatology.

Methods:

Here, using resting-state functional magnetic resonance imaging in 71 patients and 196 healthy controls, we characterized the standard deviation in BOLD (blood-oxygen-level-dependent) signal amplitude and the functional connectivity across a range of functional brain networks. We investigated connectivity on the edge and node level using network modeling based on independent component analysis and utilized the brain network features in cross-validated classification procedures.

Results:

Both amplitude and connectivity were significantly altered in patients, largely involving sensory networks. Reduced standard deviation in amplitude was observed in a range of visual, sensorimotor, and auditory nodes in patients. The strongest differences in connectivity implicated within-sensorimotor and sensorimotor-thalamic connections. Furthermore, sensory nodes displayed widespread alterations in the connectivity with higher-order nodes. We demonstrated robustness of effects across subjects by significantly classifying diagnostic group on the individual level based on cross-validated multivariate connectivity features.

Conclusion:

Taken together, the findings support the hypothesis of disintegrated sensory and cognitive processes in schizophrenia, and the foci of effects emphasize that targeting the sensory and perceptual domains may be key to enhance our understanding of schizophrenia pathophysiology.  相似文献   

8.

Introduction

Disturbed interregional functional connectivity has been hypothesized to be a promising marker of schizophrenia. The relationship between working memory (WM) impairment, disturbed functional connectivity, and the characteristic symptoms of schizophrenia, however, remains elusive.

Methods

We used functional MRI (fMRI) to investigate in patients with schizophrenia and matched controls the patterns of functional connectivity during the performance of different tasks selectively engaging subcomponent processes of working memory.

Results

Compared with controls, patients showed reduced connectivity of the prefrontal cortex with the intraparietal cortex and the hippocampus and abnormal negative interactions between the ventrolateral and dorsolateral prefrontal cortex during the non-articulatory maintenance of phonological information. During the maintenance of visuospatial information, patients presented reduced connectivity between regions in the superior parietal and occipital cortex, as well as enhanced positive connectivity of the frontal eye field with visual processing areas.

Discussion

Our findings suggest complex dysregulations within the networks supporting working memory functions in schizophrenia, which manifest as decreased positive and abnormal negative interactions. Correlations between the connection strength and WM performance suggest that these dysregulations may be neurofunctional correlates of the WM deficits seen in schizophrenia. Altered prefronto-hippocampal and parieto-occipital connectivity was further found to be associated with higher positive symptoms, providing a possible explanation for the development of delusions and disorganization symptoms.

Conclusion

The present findings can help to better understand the relationship between altered patterns of synchronized brain activity and the cognitive and clinical symptoms of schizophrenia.  相似文献   

9.

Background

We sought to investigate the altered brain responses to emotional stimuli in patients with schizophrenia.

Methods

We analyzed data from 14 patients with schizophrenia and 14 healthy controls who performed an emotional face matching task. We evaluated brain activity and connectivity in the amygdala and cortical regions during the initial (first 21 seconds of each stimulation block) and sustained (last 21 seconds) stages of an emotional processing task, and we determined changes in amygdala activity across the emotional processing task.

Results

The patients with schizophrenia showed similar amygdala activation to the controls during the initial stage of processing, but their activation decreased during the sustained stage. The controls showed increasing amygdala activity across the emotional blocks, whereas activity progressively decreased in the schizophrenia group. The patients with schizophrenia showed increased cortical activity and interconnectivity in the medial frontal and inferior parietal cortex in the initial stage of emotional processing. There was increased activity in the superior temporal cortex and greater connectivity with the inferior parietal cortex in the sustained stage. Performance accuracy was lower in the schizophrenia group in the first part of the block, while their reaction time was longer in the latter part of the block.

Limitations

It was not possible to specify the moment at which the switch in amygdala response occurred.

Conclusion

Our findings suggest that patients with schizophrenia have an initial automatic emotional response but that they need to switch to a compensatory cognitive strategy to solve the task.  相似文献   

10.

Background

Patients with schizophrenia have an approximately 10-fold higher risk for obsessive–compulsive symptoms (OCS) than the general population. A large subgroup seems to experience OCS as a consequence of second-generation antipsychotic agents (SGA), such as clozapine. So far little is known about underlying neural mechanisms.

Methods

To investigate the role of SGA treatment on neural processing related to OCS in patients with schizophrenia, we stratified patients according to their monotherapy into 2 groups (group I: clozapine or olanzapine; group II: amisulpride or aripiprazole). We used an fMRI approach, applying a go/no-go task assessing inhibitory control and an n-back task measuring working memory.

Results

We enrolled 21 patients in group I and 19 patients in group II. Groups did not differ regarding age, sex, education or severity of psychotic symptoms. Frequency and severity of OCS were significantly higher in group I and were associated with pronounced deficits in specific cognitive abilities. Whereas brain activation patterns did not differ during working memory, group I showed significantly increased activation in the orbitofrontal cortex (OFC) during response inhibition. Alterations in OFC activation were associated with the severity of obsessions and mediated the association between SGA treatment and co-occurring OCS on a trend level.

Limitations

The main limitation of this study is its cross-sectional design.

Conclusion

To our knowledge, this is the first imaging study conducted to elucidate SGA effects on neural systems related to OCS. We propose that alterations in brain functioning reflect a pathogenic mechanism in the development of SGA-induced OCS in patients with schizophrenia. Longitudinal studies and randomized interventions are needed to prove the suggested causal interrelations.  相似文献   

11.

Background and Purpose

To determine how cognitive function is related to epilepsy classification and comorbid attention deficit hyperactivity disorder (ADHD) in children with newly diagnosed epilepsy of genetic or unknown etiology.

Methods

The medical records of children aged 6-16 years with newly diagnosed epilepsy of genetic or unknown etiology were reviewed retrospectively. The Korean Education Development Institute-Wechsler Intelligence Scale for Children and the Comprehensive Attention Test were used to evaluate intelligence and attention/executive function, respectively.

Results

The data of a total of 149 children, 103 with focal seizures and 46 with generalized seizures, were reviewed. The prevalence of ADHD was 49.2% (59 out of 120 examined patients), and ADHD patients exhibited significantly worse auditory selective attention, flanker test results, and spatial working memory. Patients with generalized seizures exhibited significantly worse auditory selective and sustained attention than patients with focal seizures. In patients with generalized seizures, sustained attention, flanker test findings, and spatial working memory were found to be affected by ADHD, and auditory selective and sustained attention were significantly worse in patients with benign childhood epilepsy with centrotemporal spikes and ADHD than in their counterparts without ADHD.

Conclusions

Cognitive processes are affected by seizure type and comorbid ADHD. Proper characterization of these neuropsychiatric impairments may allow earlier intervention during the disease course.  相似文献   

12.

Background

Brain frontostriatal circuits have been implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, effects of methylphenidate on circuit-level functional connectivity are as yet unclear. The aim of the present study was to comprehensively investigate the functional connectivity of major striatal subregions in children with ADHD, including subanalyses directed at mapping cognitive and treatment response characteristics.

Methods

Using a comprehensive seeding strategy, we examined resting-state functional connectivity of dorsal and ventral subdivisions of the caudate nucleus and putamen in children and adolescents with ADHD and in age- and sex-matched healthy controls.

Results

We enrolled 83 patients with ADHD and 22 controls in our study. Patients showed significantly reduced dorsal caudate functional connectivity with the superior and middle prefrontal cortices as well as reduced dorsal putamen connectivity with the parahippocampal cortex. These connectivity measures were correlated in opposite directions in patients and controls with attentional performance, as assessed using the Continuous Performance Test. Patients showing a good response to methylphenidate had significantly reduced ventral caudate/nucleus accumbens connectivity with the inferior frontal cortices compared with poor responders.

Limitations

Possible confounding effects of age-related functional connectivity change were not excluded owing to the wide age range of participants.

Conclusion

We observed a region-specific effect of methylphenidate on resting-state functional connectivity, suggesting the pretreatment level of ventral frontostriatal functional connectivity as a possible methylphenidate response biomarker of ADHD.  相似文献   

13.

Background

Although there is considerable evidence that patients with schizophrenia have impaired executive functions, the neural mechanisms underlying these deficits are unclear. Generation and selection is one of the basic mechanisms of executive functioning. We investigated the neural correlates of this mechanism by means of functional magnetic resonance imaging (fMRI) in patients with schizophrenia and healthy controls.

Methods

We used the Wisconsin Card Sorting Test (WCST) in an event-related fMRI study to analyze neural activation patterns during the distinct components of the WCST in 36 patients with schizophrenia and 28 controls. We focused our analyses on the process of set-shifting. After participants received negative feedback, they had to generate and decide on a new sorting rule.

Results

A widespread activation pattern encompassing the inferior and middle frontal gyrus, parietal, temporal and occipital cortices, anterior cingulate cortex (ACC), supplementary motor area, insula, caudate, thalamus and brainstem was observed in patients with schizophrenia after negative versus positive feedback, whereas in healthy controls, significant activation clusters were more confined to the cortical areas. Significantly increased activation in the rostral ACC after negative feedback and in the dorsal ACC during matching after negative feedback were observed in schizophrenia patients compared with controls. Controls showed activation in the bilateral dorsolateral prefrontal cortex (Brodmann area 46), whereas schizophrenia patients showed activation in the right dorsolateral pre-frontal cortex only.

Limitations

All patients were taking neuroleptic medication, which has an impact on cognitive function as well as on dopaminergic and serotonergic prefrontal metabolism.

Conclusion

Our data suggest that, in patients with schizophrenia, set-shifting is associated with increased activation in the rostral and dorsal ACC, reflecting higher emotional and cognitive demands, respectively.  相似文献   

14.

Background

Several functional neuroimaging studies have reported regionally abnormal activation of the frontal cortex in individuals with borderline personality disorder (BPD) during cognitive and affective task performance. However, little is known about neural function in individuals with BPD during the resting state. Using functional magnetic resonance imaging (fMRI), this study investigated the functional connectivity of prefrontal and limbic networks in patients with BPD.

Methods

Between January 2009 and March 2010, we investigated patients with BPD according to DSM-IV criteria and healthy controls by means of resting-state fMRI. The data were analyzed using a spatial group independent component analysis, and random effects t tests were used to compare spatial components between groups (p < 0.005, uncorrected).

Results

There were 17 women with BPD and 17 female healthy controls enrolled in this study. Within a network comprising cortical midline regions (“default mode network”), patients with BPD showed an increase in functional connectivity in the left frontopolar cortex (FPC) and the left insula, whereas decreased connectivity was found in the left cuneus. Within a network comprising predominantly right lateral prefrontal and bilateral parietal regions, patients with BPD showed decreased connectivity of the left inferior parietal lobule and the right middle temporal cortex compared with healthy controls. Two networks comprising lateral prefrontal and cingulate regions did not exhibit significant between-group differences. We found correlations between functional connectivity of the FPC and measures of impulsivity as well as between connectivity of the insula/cuneus and dissociation tension.

Limitations

Co-occurrent axis I disorders and medication use in this sample of patients with BPD have to be considered as potential limitations.

Conclusion

These data suggest that abnormal functional connectivity of temporally coherent resting-state networks may underlie certain symptom clusters in patients with BPD.  相似文献   

15.

Objective

This study was conducted to investigate the cognitive factors that can longitudinally predict the response to treatment in patients with schizophrenia.

Methods

The subjects were 49 patients with schizophrenia who were newly hospitalized in an acute psychiatry ward and had not been treated with medication for at least 8 weeks prior to the study. The symptoms and cognitive functions of the patients were evaluated at baseline before treatment (T0), at eight weeks after treatment (T1), and one year after treatment (T2). Clinical symptoms were assessed using the PANSS, and cognitive functions were estimated using the Vigilance Test, Cognitrone Test, Wisconsin Card Sorting Test (WCST), and the Korean version of the Memory Assessment Scales (K-MAS).

Results

The patient group showed marked impairments in cognitive function when compared to the normal group, but the patients'' clinical symptoms and cognitive functions improved after drug treatment. The patients also showed consistent improvement in verbal and nonverbal memory function as time progressed. Furthermore, there was a significant correlation between clinical symptoms and cognitive functions in the patient group. The cognitive variables that best predicted treatment response and prognosis were total errors on the WCST and immediate list recall component of the K-MAS. It was also shown that the number of total errors on the WCST was a better cognitive predictor than the number of errors in immediate recall.

Conclusion

The results of the present study show that the neurocognitive functions of patients with schizophrenia can be stabilized with treatment intervention, that treatment response is related to improvement in cognitive function, and that cognitive domains, especially executive function, can predict treatment response and prognosis in patients with schizophrenia.  相似文献   

16.

Background

Repetitive transcranial magnetic stimulation (rTMS) applied over the dorsolateral prefrontal cortex (DLPFC) is a new treatment procedure that holds promise of more insight into the pathophysiology of depression because the DLPFC may play an important role in the interplay between emotional and attentional information processing. We sought to investigate whether acute neurocognitive effects of rTMS are related to antidepressant outcomes.

Methods

Between January 2005 and May 2007, we examined the effects of a single session compared with 2 weeks of rTMS over the left DLPFC on cognition and mood in therapy-resistant patients with depression. We used a crossover placebo-controlled double-blind design and differentiated rTMS treatment responders and nonresponders. We used a task-switching paradigm to measure cognitive function.

Results

After 2 weeks of high-frequency rTMS over the left DLPFC, depressive symptoms improved in more than half (53%) of our therapy-resistant population. After a single session, mood did not improve but attentional control was increased solely within our group of treatment responders.

Limitations

Our results should be interpreted as preliminary because our sample was small and because the cognitive task we used has not been tested for validity and reliability. In addition, despite minimal stimulation of the DLPFC during sham stimulation, it is possible that the stiumlation was partially active. Finally, benzodiazepines may have had impairing effects on the attentional task.

Conclusion

Cognitive reactivity after a single session of rTMS may hold promise as a predictor of beneficial treatment outcomes. Moreover, within the group of responders, attentional control appears to play an important role in the progress of mood disorders.  相似文献   

17.

Background

Autism spectrum disorders (ASD) are associated with severe impairments in social functioning. Because faces provide nonverbal cues that support social interactions, many studies of ASD have examined neural structures that process faces, including the amygdala, ventromedial prefrontal cortex and superior and middle temporal gyri. However, increases or decreases in activation are often contingent on the cognitive task. Specifically, the cognitive domain of attention influences group differences in brain activation. We investigated brain function abnormalities in participants with ASD using a task that monitored attention bias to emotional faces.

Methods

Twenty-four participants (12 with ASD, 12 controls) completed a functional magnetic resonance imaging study while performing an attention cuing task with emotional (happy, sad, angry) and neutral faces.

Results

In response to emotional faces, those in the ASD group showed greater right amygdala activation than those in the control group. A preliminary psychophysiological connectivity analysis showed that ASD participants had stronger positive right amygdala and ventromedial prefrontal cortex coupling and weaker positive right amygdala and temporal lobe coupling than controls. There were no group differences in the behavioural measure of attention bias to the emotional faces.

Limitations

The small sample size may have affected our ability to detect additional group differences.

Conclusion

When attention bias to emotional faces was equivalent between ASD and control groups, ASD was associated with greater amygdala activation. Preliminary analyses showed that ASD participants had stronger connectivity between the amygdala ventromedial prefrontal cortex (a network implicated in emotional modulation) and weaker connectivity between the amygdala and temporal lobe (a pathway involved in the identification of facial expressions, although areas of group differences were generally in a more anterior region of the temporal lobe than what is typically reported for emotional face processing). These alterations in connectivity are consistent with emotion and face processing disturbances in ASD.  相似文献   

18.

Background

Psychopathic offenders inevitably violate interpersonal norms and frequently resort to aggressive and criminal behaviour. The affective and cognitive deficits underlying these behaviours have been linked to abnormalities in functional interhemispheric connectivity. However, direct neurophysiological evidence for dysfunctional connectivity in psychopathic offenders is lacking.

Methods

We used transcranial magnetic stimulation combined with electroencephalography to examine interhemispheric connectivity in the dorsolateral and motor cortex in a sample of psychopathic offenders and healthy controls. We also measured intracortical inhibition and facilitation over the left and right motor cortex to investigate the effects of local cortical processes on interhemispheric connectivity.

Results

We enrolled 17 psychopathic offenders and 14 controls in our study. Global abnormalities in right to left functional connectivity were observed in psychopathic offenders compared with controls. Furthermore, in contrast to controls, psychopathic offenders showed increased intracortical inhibition in the right, but not the left, hemisphere.

Limitations

The relatively small sample size limited the sensitivity to show that the abnormalities in interhemispheric connectivity were specifically related to the dorsolateral prefrontal cortex in psychopathic offenders.

Conclusion

To our knowledge, this study provides the first neurophysiological evidence for abnormal interhemispheric connectivity in psychopathic offenders and may further our understanding of the disruptive antisocial behaviour of these offenders.  相似文献   

19.

Introduction:

While auditory verbal hallucinations (AH) are a cardinal symptom of schizophrenia, people with a diagnosis of schizophrenia (SZ) may also experience visual hallucinations (VH). In a retrospective analysis of a large sample of SZ and healthy controls (HC) studied as part of the functional magnetic resonance imaging (fMRI) Biomedical Informatics Research Network (FBIRN), we asked if SZ who endorsed experiencing VH during clinical interviews had greater connectivity between visual cortex and limbic structures than SZ who did not endorse experiencing VH.

Methods:

We analyzed resting state fMRI data from 162 SZ and 178 age- and gender-matched HC. SZ were sorted into groups according to clinical ratings on AH and VH: SZ with VH (VH-SZ; n = 45), SZ with AH but no VH (AH-SZ; n = 50), and SZ with neither AH nor VH (NoH-SZ; n = 67). Our primary analysis was seed based, extracting connectivity between visual cortex and the amygdala (because of its role in fear and negative emotion) and visual cortex and the hippocampus (because of its role in memory).

Results:

Compared with the other groups, VH-SZ showed hyperconnectivity between the amygdala and visual cortex, specifically BA18, with no differences in connectivity among the other groups. In a voxel-wise, whole brain analysis comparing VH-SZ with AH-SZ, the amygdala was hyperconnected to left temporal pole and inferior frontal gyrus in VH-SZ, likely due to their more severe thought broadcasting.

Conclusions:

VH-SZ have hyperconnectivity between subcortical areas subserving emotion and cortical areas subserving higher order visual processing, providing biological support for distressing VH in schizophrenia.  相似文献   

20.

Objective

According to the increase of older people, the need for effective methods to maintain or improve cognitive functions in the elderly has increased. These cognitive enhancing methods may contribute to the prevention of elderly cognitive decline by aging and dementing illness as well. This study aimed to examine the effectiveness of multistrategic memory training with the metamemory concept on cognitive functions in the normal health elderly in Korea.

Methods

The program used in this study was developed by psychiatrists and psychologists in accordance with Korean situations. We applied the training program to the community-dwelling elderly with subjective memory complaints. Twenty participants were randomly received the intervention with 20 non-treatment controls. This program consisted of 10 sessions and was administered once a week. We examined the effects of this memory training for verbal memory, visuospatial memory, working memory, and verbal fluency ability by repeated ANOVA.

Results

There were significant improvements in Word List Short-term Delayed Free and Cued Recall, Word list Long-term Delayed Free and Cued Recall and visuospatial recognition memory. Performance improvements in visuospatial span forwards and the Categorical Fluency Test were also significant. These improvements were still significant after adjusting for depression improvement exact categorical fluency.

Conclusion

This study shows that multistrategic memory training with the metamemory concept may improve memory ability and other cognitive functions which are not trained and that these improvements may be achieved by pure cognitive training effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号