首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The regulation of glucose transport in normal and insulin-resistant obese rat hearts have been studied by measuring glucose transport via the efflux of labelled 3-0-methyl-D-glucose. Glucose transporters in obese rat hearts were also investigated using the labelled cytochalasin B-binding assay. Basal, and insulin — or increasing workload-induced stimulation of glucose transport was decreased in obese rat hearts compared to those of normal ones. Total number of glucose transporters (plasma membrane plus microsomal ones) was about half that previously reported for normal rat hearts. Insulin or workload favoured the translocation of glucose transporters from an intercellular pool (microsomes) to the plasma membrane, as they do in normal rats. Due to the measured decrease in total number of transporters of obese rat hearts, those present in the plasma membrane (under basal conditions, or following stimulation by insulin or workload) were less than those previously found in normal rat hearts tested under identical conditions. In obese rat hearts, regulation of plasma membrane transporters was perturbed. The Hill coefficient (an index of positive cooperativity amongst glucose transporters) was paradoxically decreased by insulin while leaving affinity values unaltered. The Hill coefficient was unaltered by workload, although the affinity values were increased compared to respective controls. To sum up, obese rat hearts have decreased total transporter number, and although the two stimuli studied favour the translocation of available transporters, they fail to activate them adequately once present in the plasma membrane.  相似文献   

2.
We examined the effects of insulin on glucose transport and subcellular glucose transporter distribution in isolated omental adipose cells from men and women. 3-O-Methylglucose transport was measured in intact cells, and the number of glucose transporters in plasma membranes and low density microsomal membranes was determined using the cytochalasin B binding assay. Compared to adipocytes from women, omental adipocytes from men were characterized by 1) 2-fold larger cell volume; 2) 4- to 5- and 2.5-fold higher glucose transport rates when calculated per cell or per cell surface area, respectively, in either basal or insulin-stimulated cells; 3) similar 2-fold insulin stimulating effect per se; and 4) equal concentrations of transporters in both fractions examined, but a 2-fold increase in their total number per cell. Additionally, although not directly measured, the calculated glucose transporter activity in basal plasma membranes prepared from adipocytes from men was 2.7-fold higher than that in women, and insulin further induced a 30% increase in that activity. Thus, a sex-related difference was found between the number of glucose transporters per cell and the resultant glucose transport activity of the intact cells. Together with the increased specific activity of glucose transporters in men compared to women, our findings indicate a sex-related difference in adipocyte glucose transport, mainly due to an increase in the number and modulation of the intrinsic activity of glucose transporters in the plasma membrane.  相似文献   

3.
We have examined the acute effects of insulin and isoproterenol on the phosphorylation state of the insulin-regulatable glucose transporter (IRGT) in rat adipocytes. The IRGT was immunoprecipitated from either detergent-solubilized whole-cell homogenates or subcellular fractions of 32P-labeled fat cells and subjected to sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The 32P-labeled IRGT was detected by autoradiography as a species of apparent Mr 46,000. Insulin stimulated translocation of the IRGT from low-density microsomes to the plasma membrane but did not affect phosphorylation of the transporter in either fraction. Isoproterenol inhibited insulin-stimulated glucose transport by 40% but was without effect on the subcellular distribution of the transporter in either the presence or absence of insulin. Isoproterenol stimulated phosphorylation of the IRGT 2-fold. Incubating cells with dibutyryl-cAMP and 8-bromo-cAMP also stimulated phosphorylation 2-fold, and the transporter was phosphorylated in vitro when IRGT-enriched vesicles were incubated with cAMP-dependent protein kinase and [gamma-32P]ATP. These results suggest that isoproterenol stimulates phosphorylation of the IRGT via a cAMP-dependent pathway and that phosphorylation of the transporter may modulate its ability to transport glucose.  相似文献   

4.
The insulin responsiveness of the membrane transport system for glucose (2-deoxy-D-glucose) in diaphragm was measured during postnatal development of the rat. At birth, the basal rate of 2-deoxy-D-glucose transport is 3 nmol/min X g and it gradually decreases to 1 nmol/min X g over a period of 40 days. On the other hand, the insulin-stimulated rate of transport is 6 nmol/min X g at birth, it increases to 9 nmol/min X g in 16- to 20-day-old rats, and it decreases again to approximately 4 nmol/min X g in the 40-day-old rats. The stimulation of 2-deoxy-D-glucose transport by insulin is 2-fold at birth and increases to 4- to 5-fold 20 days after birth. The number of insulin receptors in the plasma membrane and the number of intracellular glucose transporters was also measured as a function of age to determine if there might be a correlation between these components of the insulin responsive system and the development of the increased insulin stimulation of 2-deoxy-D-glucose transport. The number of insulin receptors per g of wet weight decreased continuously with increasing age; the diaphragm of 40-day-old rats had about 50% of the receptors present in the diaphragm of the newborn rat. Similarly, the number of intracellular D-glucose transporters per g of wet weight decreased with increasing age; for adult rats, the number of transporters per g of diaphragm was 60% of that of newborn rats. The results indicate that the extent of insulin stimulation of glucose (2-deoxy-D-glucose) transport in the diaphragm during the first 20 days of life is not directly or simply related to the number of insulin receptors or the number of intracellular glucose transporters. The extent of the insulin response depends on some other factor that activates or is part of the machinery for translocation of the transporter.  相似文献   

5.
A previously developed technique for the isolation of plasma and intracellular membrane fractions from rat skeletal muscle was used to investigate transporter migration after insulin treatment or a bout of exercise (45 min of treadmill). Glucose-inhibitable cytochalasin-B binding was used to estimate the number of glucose transporters. Insulin and exercise caused increases in glucose uptake into the hindlimb muscles of 5- and 3-fold, respectively. Each stimulus also caused a 2-fold increase in the number of glucose transporters in plasma membranes prepared from hindlimb muscles. The insulin-induced increase in plasma membrane transporters was accompanied by a concomitant decrease in transporters from the intracellular pool. In contrast to insulin, there was no concomitant decrease in the number of cytochalasin-B-binding sites in the intracellular membrane fraction from exercised muscles. The ability of both insulin and exercise to increase the number of transporters in the plasma membrane is in accordance with recruitment of transporters as one cause of increased transport activity. However, the inability of exercise to decrease the number of transporters in the insulin-sensitive intracellular pool suggests the existence of either a second recruitable transporter pool or masked glucose transporters in the plasma membrane that are unmasked by the muscle contractile activity.  相似文献   

6.
O. Ezaki 《Diabetologia》1989,32(5):290-294
Summary A study was made on the mechanism of increased glucose metabolism in enlarged adipocytes from 13-week-old obese Zucker rats showing hyperinsulinaemia and hyperglycaemia. Glucose metabolism was assessed by measuring CO2 production from glucose and the concentration of glucose transporters was estimated by immunoblotting. In comparing adipocytes from obese rats with those from lean rats, the basal rates of glucose oxidation at 0.02 mmol/l glucose increased 2.6-fold per unit cellular surface area and the transporters in the plasma membrane increased 1.4-fold per protein, while that in low-density microsome was 67% of the value in lean rats. The increase of glucose oxidation rates observed in basal cells from obese rats could be partly explained by translocation of the transporters from the intracellular site to the plasma membrane. In the presence of insulin, as the basal rates of glucose oxidation increased in obese rats, maximally insulin-stimulated oxidation increased 4-fold in lean rats and 1.7-fold in obese rats. Thus, the rates of insulin-stimulated oxidation on a per unit cellular surface area as well as the transporters on a per protein basis in the plasma membrane became almost similar in cells from both groups of rats. Since protein content per cell increased with cell enlargement, increased glucose metabolism per cell which was observed in adipocytes from the obese rats was mainly due to an increase of glucose transporters accompanied by a similar degree of cellular protein increase.  相似文献   

7.
In 3T3-L1 adipocytes we have examined the effect of tri-iodothyronine (T(3)) on glucose transport, total protein content and subcellular distribution of GLUT1 and GLUT4 glucose transporters. Cells incubated in T(3)-depleted serum were used as controls. Cells treated with T(3) (50 nM) for three days had a 3.6-fold increase in glucose uptake (P<0.05), and also presented a higher insulin sensitivity, without changes in insulin binding. The two glucose carriers, GLUT1 and GLUT4, increased by 87% (P<0.05) and 90% (P<0. 05), respectively, in cells treated with T(3). Under non-insulin-stimulated conditions, plasma membrane fractions obtained from cells exposed to T(3) were enriched with both GLUT1 (3. 29+/-0.69 vs 1.20+/-0.29 arbitrary units (A.U.)/5 microg protein, P<0.05) and GLUT4 (3.50+/-1.16 vs 0.82+/-0.28 A.U./5 microg protein, P<0.03). The incubation of cells with insulin produced the translocation of both glucose transporters to plasma membranes, and again cells treated with T(3) presented a higher amount of GLUT1 and GLUT4 in the plasma membrane fractions (P<0.05 and P<0.03 respectively). These data indicate that T(3) has a direct stimulatory effect on glucose transport in 3T3-L1 adipocytes due to an increase in GLUT1 and GLUT4, and by favouring their partitioning to plasma membranes. The effect of T(3) on glucose uptake induced by insulin can also be explained by the high expression of both glucose transporters.  相似文献   

8.
Polyclonal antibodies to the amino- or carboxyl-terminated peptide sequences of the GLUT4 transporter protein were used in immunoelectron microscopic studies to demonstrate the location and insulin-induced translocation of GLUT4 in intact isolated rat adipocytes. Labeling of untreated adipocytes with the amino-terminal antibody revealed 95% of GLUT4 was intracellular, associated with plasma membrane invaginations or vesicles contiguous with or within 75 nm of the cell membrane. Insulin treatment increased plasma membrane labeling approximately 13-fold, to 52% of the total transporters, and decreased intracellular labeling proportionately. In contrast, labeling of untreated adipocytes with the carboxyl-terminal antibody or with a monoclonal antibody (1F8) that binds to the carboxyl terminus of GLUT4 detected fewer transporters, only approximately 40% of which were intracellular. In insulin-treated cells, plasma membrane labeling increased approximately 20-fold, but the total number of labeled transporters also increased approximately 13-fold. The number of intracellular transporters was not changed. The insulin-induced increase in plasma membrane labeling was reversible. Thus, the vast majority of GLUT4 transporters in untreated adipocytes are intracellular in invaginations or vesicles attached or close to the plasma membrane. Insulin treatment causes translocation of transporters to the plasma membrane, which involves flow of transporters from invaginations to the cell surface and possible fusion of subplasma membrane vesicles with the plasma membrane. Differences in the labeling of intracellular transporters by peptide antibodies suggested the carboxyl-terminal epitope of intracellular transporters was masked. The unmasking of the carboxyl terminus during translocation to the plasma membrane may be part of the mechanism by which insulin stimulates glucose transport in rat adipocytes.  相似文献   

9.
In this article we have described the hypothesis that insulin stimulates glucose transport through glucose transporter translocation from an intracellular pool to the plasma membrane. In addition, we have shown that changes in the numbers and subcellular distributions of glucose transporters correlate with alterations in insulin-stimulated glucose transport activity in several experimental models of insulin resistance and hyperresponsiveness. However, in experiments with counterregulatory hormones and with hyperresponsive states induced by nutritional repletion following deprivation, changes in insulin responsiveness cannot be fully explained by such alterations in the numbers and/or subcellular distribution of glucose transporters. Thus, evidence has been presented for changes in glucose transporter intrinsic activity that both inhibit and augment insulin-stimulated glucose transport rates. Finally, we have discussed data suggesting that the translocation process is applicable to human tissue and that significant changes in adipose cell glucose transport activity have been correlated with total glucose disposal in various metabolic states in humans. Determining the physiologic factors involved in modulating these events at the cellular level is an important area for further investigation.  相似文献   

10.
We have shown that 3,5,3'-tri-iodothyronine (T3) produces a prompt increase in sugar transport in rat thymocytes by increasing the maximal velocity without changing the Michaelis-Menten constant of the plasma membrane sugar transport system. To elucidate further the mechanism of this effect, we have now assessed the influence of T3 on the number and affinity of sugar transporters in thymocytes, measured as the sugar (2-deoxyglucose; dGlc)-displaceable binding of cytochalasin B. Cytochalasin B inhibited in a dose-related manner the uptake of dGlc by rat thymocytes with inhibition constant values of 0.19 and 0.22 mumol/l in the presence and absence of T3 respectively. Binding of cytochalasin B by the sugar-displaceable sites was rapid and saturable, demonstrating a single class of sites having an apparent dissociation constant of 0.33 +/- 0.02 (S.D.) mumol/l and maximal binding capacity of 3.73 +/- 0.48 pmol/20 x 10(6) cells (11.2 +/- 1.4 x 10(4) sites/thymocyte). In the rat thymocyte, sugar transporters were found to be located in two major subcellular pools, the plasma membrane and microsomes, the latter being about twice the size of the former. In these subcellular compartments, as well as in the intact cell, binding of [3H]cytochalasin B by the sugar-displaceable sites constituted about 40% of total cytochalasin B binding. 3,5,3'-Tri-iodothyronine in concentrations that stimulated uptake of dGlc by thymocytes had no effect on [3H]cytochalasin B binding (total and sugar-displaceable) in the intact cell and in the plasma membrane and microsomal compartments, nor did it influence the affinity and number of sugar transporters.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effects of insulin and glucose, alone and combined, on diacylglycerol (DAG), protein kinase-C (PKC), and glucose transport were compared in rat adipocytes and solei incubated in medium containing 0-20 mM glucose. In both tissues insulin rapidly stimulated [3H]DAG production from [3H]glycerol; extracellular glucose masked this effect in adipocytes, but not in solei. [3H]Glucose was avidly converted to DAG in adipocytes, and this conversion was enhanced by insulin. In contrast, [3H]glucose was poorly converted to DAG in solei. Glucose alone (5-20 mM) stimulated PKC translocation in adipocytes, but not in solei. Insulin stimulated PKC translocation in both tissues at all glucose concentrations. However, glucose modulated this effect of insulin in adipocytes by 1) decreasing cytosolic PKC and the absolute amount of PKC translocated, and 2) promoting apparent turnover of membrane PKC. In contrast, in solei, glucose did not affect PKC levels or translocation responses to insulin. In keeping with DAG-PKC signalling, the relative glucose transport effects of insulin were influenced by extracellular glucose in adipocytes, but not in solei. These results suggest that 1) glucose-induced PKC translocation requires metabolism of glucose to DAG; 2) glucose activates DAG-PKC signalling in adipocytes, but not in solei; 3) insulin activates DAG-PKC signalling in both tissues at all glucose levels; and 4) glucose may modulate the effects of insulin on DAG-PKC signalling in adipocytes, but not in solei. Consistent with in vitro results, in solei taken directly from diabetic rats, membrane PKC was decreased, and cytosolic PKC was increased, presumably reflecting diminished PKC translocation due to hypoinsulinemia. In contrast, in adipose tissue, cytosolic PKC was decreased, presumably reflecting hyperglycemia-induced PKC translocation. Accordingly, DAG levels were increased in adipose tissue, but not in solei, in diabetic rats, and insulin increased DAG in both tissues.  相似文献   

12.
We have studied the ability of dexamethasone to regulate the glucose transport system in primary cultured adipocytes and delineated the mechanisms of insulin resistance after both acute and chronic treatment. Acutely, 20 nM dexamethasone led to a 65% decrease in basal and a 31% decrement in maximally insulin-stimulated glucose transport (ED50 = 3-4 nM; t1/2 = 50 min). These effects were maximal by 90-120 min, and a plateau was maintained over an additional 1-1.5 h. Chronic dexamethasone exposure (24 h) led to a more profound decrease in basal (77%; ED50 = 0.4 nM) and maximally stimulated (55%; ED50 = 1.0 nM) rates of glucose transport and shifted the transport: insulin dose-response curve to the right by increasing the half-maximally effective insulin concentration from 0.2 to 0.4 ng/ml. Dexamethasone did not affect cell surface insulin binding over 24 h. Both the short and long term effects of dexamethasone were partially blocked by the combined presence of insulin during preincubation and were not modulated by glucose. We also assessed effects on the number and cellular distribution of glucose transporter proteins using the cytochalasin-B binding assay. After 2 h, dexamethasone (30 nM) decreased the number of glucose transporters in plasma membranes by 30% in basal cells and by 41% in maximally insulin-stimulated cells, while increasing the number of low density microsomal transporters by 22-23% (P = NS). Transporter number in a total cellular membrane fraction was unaltered by short term dexamethasone. Chronic dexamethasone exposure (24 h) decreased plasma membrane and low density microsomal transporters by 30-50% in both basal and insulin-stimulated cells and depleted transporters by 43% in a total cellular membrane fraction. In conclusion, 1) dexamethasone induces progressive insulin resistance by sequentially regulating multiple aspects of the insulin-responsive glucose transport system. At early times (2 h) dexamethasone impairs insulin's ability to translocate intracellular glucose transporters to the cell surface and with more chronic exposure (24 h), depletes the total number of cellular transporters. 2) Glucose modulates desensitization of the glucose transport system by insulin, but not by dexamethasone, and thus, there are both glucose-dependent and -independent mechanisms of insulin resistance. 3) Insulin can heterologously inhibit dexamethasone's effects on glucose transport at both early and late phases of desensitization. These studies highlight the complex hormonal regulation at the glucose transport system.  相似文献   

13.
The objective of this study was to investigate the long-term effects of anti-retroviral protease inhibitors (PIs) on 2-deoxy-d -glucose (2-DG) transport in L6 cells in vitro. Exposure of L6 cells to saquinavir, ritonavir, indinavir and amprenavir resulted in significant increases in 2-DG transport using PI concentrations of 1-10 microM with continual exposure to PI. After removal of the PI for up to 48 h, 2-DG transport increases did not change and remained at pre-reversal levels. These changes in 2-DG transport were not related to stress-induced sugar transport or to apoptosis. The examination of glucose transporter (GLUT) 1, 3 or 4 translocation with subcellular fractionation indicated that insulin (i.e. 67 nM) could induce the translocation of all the GLUTs to the plasma membrane. Also, ritonavir (10 microM), which leads to a 2-fold increase in 2-DG transport, demonstrated increased GLUT (i.e. 1, 3 or 4) presence in the plasma membrane fraction, in the presence or absence of insulin. This increased 2-DG transport involved transporter presence in plasma membrane preparations and did not affect the ability of insulin to stimulate 2-DG transport with continual PI exposure. The mechanism(s) involved indicates ready reversibility of PI effects on transporters. The mechanism(s) why reversibility of PI-induced 2-DG transport was similar plus or minus PI was not apparent.  相似文献   

14.
Recent observations suggest that insulin increases cellular levels of activated, GTP-bound Ras protein. We tested whether the acute actions of insulin on hexose uptake and glucose-transporter redistribution to the cell surface are mimicked by activated Ras. 3T3-L1 fibroblasts expressing an activated mutant (Lys-61) N-Ras protein exhibited a 3-fold increase in 2-deoxyglucose uptake rates compared with non-transfected cells. Insulin stimulated hexose uptake by approximately 2-fold in parental fibroblasts but did not stimulate hexose uptake in the N-Ras61K-expressing fibroblasts. Overexpression of N-Ras61K also mimicked the large effect of insulin on 2-deoxyglucose transport in 3T3-L1 adipocytes, and again the effects of the two agents were not additive. Total glucose transporter protein (GLUT) 1 was similar between parental and N-Ras61K-expressing 3T3-L1 fibroblasts or adipocytes, whereas total GLUT-4 protein was actually lower in the N-Ras61K-expressing compared with parental adipocytes. However, expression of N-Ras61K in 3T3-L1 adipocytes markedly elevated both GLUT-1 and GLUT-4 in plasma membranes relative to intracellular membranes, and insulin had no further effect. These modulations of glucose transporters by N-Ras61K expression are not due to upstream regulation of insulin receptors because receptor tyrosine phosphorylation and association of phosphatidylinositol 3-kinase with tyrosine-phosphorylated proteins were unaffected. These results show that activated Ras mimics the actions of insulin on membrane trafficking of glucose transporters, consistent with the concept that Ras proteins function as intermediates in this insulin signaling pathway.  相似文献   

15.
The purpose of this study was to examine the molecular mechanism responsible for the defective insulin-stimulated glucose transport in cultured fibroblasts from a patient (VH) with clinical features of Werner syndrome and severe insulin resistance. Thus, in cells derived from VH, the subcellular distribution, structure, functional activity, as well as plasma membrane insertion of GLUT1 glucose transporters were analyzed. Furthermore, the insulin signal transduction pathway leading to activation of phosphatidylinositol (PI) 3-kinase as well as components of GLUT1-containing membrane vesicles were characterized. In fibroblasts derived from VH, GLUT1 glucose transporters were overexpressed by 8-fold in plasma membranes (PM) and by 5-fold in high density microsomes, respectively. Exofacial photolabeling revealed that only 14% of the overexpressed PM-GLUT1 transporters were properly inserted into the plasma membrane. The complementary DNA structure of the patient's insulin receptor and the GLUT1 glucose transporter, the intrinsic activity of plasma membrane glucose transporters, the tyrosine phosphorylation, as well as the protein expression of insulin receptor substrate-1/2 and p85 alpha/beta- and p110 alpha/beta-subunits of PI 3-kinase were normal. However, insulin-stimulated association of the p85 subunit of PI 3-kinase was defective in fibroblasts derived from VH compared to those from controls, and this defect was associated with a reduced IRS-1-dependent activation of PI 3-kinase by 50.2% and 63.6% after incubation for 5 and 10 min with 100 nmol/L insulin, respectively. Furthermore, immunodetection of small GTP-binding Rab proteins in subcellular membrane fractions indicated a decreased expression of Rab4 in total cellular homogenates as well as in high density microsomes by 70% and 58%, respectively. After preparation of GLUT1-containing vesicles, Rab4 was not detected to be a component of these vesicles. Analysis of the PI 3-kinase in GLUT1-containing membrane vesicles revealed insulin-dependent targeting of the p85 subunit to the vesicles immunoadsorbed from VH and control fibroblasts. Importantly, the association of the p85 subunit as well as the p85-immunoprecipitable PI 3-kinase activity were markedly reduced in GLUT1-vesicles derived from the patient. In conclusion, impaired PI 3-kinase activity in GLUT1-containing membrane vesicles derived from fibroblasts of VH is associated with a defective docking and/or fusion process of glucose transporters with the plasma membrane and thus might contribute to the molecular defect causing insulin resistance in this patient.  相似文献   

16.
The glucose transport activity of fat cells was assayed in a cell-free system. The activity was solubilized and incorporated into egg-lecithin liposomes. The carrier-mediated glucose transport activity was estimated by subtracting the cytochalasin B-insensitive component from the total glucose uptake activity of the modified liposomes. When a crude microsomal preparation from fat cells was fractionated by sucrose density gradient centrifugation, two transport activities (peaks A and B) were separated. Peak A coincided with the peak of 5'-nucleotidase, a marker of the plasma membrane. Peak B appeared to coincide with the peak of UDPGal:N-acetylglucosamine galactosyltransferase, a marker of the Golgi apparatus. Peak A was considerably smaller than peak B under basal conditions. When cells were exposed to 1 nM insulin for 5 min before homogenization, the height of peak A increased whereas that of peak B decreased. Insulin had no significant effect on the galactosyltransferase activity. The Km values of glucose transport facilitated by the activities in peaks A and B were both approximately 10-15 mM. These results imply that insulin facilitates translocation of the transport activity from an intracellular storage site to the plasma membrane.  相似文献   

17.
Myocardial glucose transport is not only facilitated by the insulin sensitive glucose transporter (GLUT) 4 but also by GLUT1. It was recently demonstrated that ischemia induces GLUT4 translocation by a mechanism distinct from the insulin-induced signaling pathway. However, the role of ischemia-mediated GLUT1 translocation and the signaling pathway involved is not yet defined. This study investigated the effects of wortmannin, a phosphatidylinositol-3 kinase (PI3kinase) inhibitor, on basal, ischemia- and insulin-stimulated GLUT1 redistribution. PI3kinase is known to participate in insulin-mediated GLUT4 translocation. Rat hearts were perfused with Krebs-Henseleit buffer containing 10 mmol/l glucose according to Langendorff and treated with/without 1 micromol/l wortmannin, 100 nmol/l insulin and 15 min no-flow ischemia. Relative subcellular distribution of GLUT1 protein was analysed using membrane fractionation and subsequent Western blotting. Both ischemia and insulin significantly increased the relative amount of GLUT1 in the plasma membrane (PM) compared to controls (41.6+/-2.8% in controls v 46.0+/-2.3% in ischemic and 51.4+/-3.9% in insulin hearts, both P<0.05) with a concomitant decrease of GLUT1 in intracellular membranes. However, the increases were moderate in view of the more than 2-fold stimulated GLUT4 translocation shown for ischemia and insulin. Although wortmannin completely inhibited insulin-induced GLUT1 translocation (42.0+/-2.0% GLUT1 on PM), it had no effect on the ischemia-induced translocation of GLUT1 (45. 4+/-1% GLUT1 on PM). Treatment with the inhibitor alone did not influence basal GLUT1 distribution. Results show that in the perfused rat heart, PI3 kinase is involved in the insulin-induced signaling leading to GLUT1 translocation but not in the ischemia-mediated signaling and basal GLUT1 trafficking. This suggests two different pathways for ischemia- and insulin-induced GLUT1 translocation as recently shown for GLUT4.  相似文献   

18.
Summary Glucose transport and GLUT1 expression were studied in fibroblasts from 7 lean and 5 obese non-insulin-dependent diabetic (NIDDM) subjects with at least 2 NIDDM first-degree relatives and from 12 lean and 5 obese non-diabetic subjects with no family history of diabetes. The obese individuals also had a strong family history of obesity. Fibroblasts from all of the subjects exhibited no difference in insulin receptor binding, autophosphorylation, and kinase and hexokinase activity. At variance, basal 2-deoxyglucose (2-DG) uptake and 3H-cytochalasin B binding were 50 % increased in cells from individuals with NIDDM (p < 0.001) and/or obesity (p < 0.01) as compared to the lean non-diabetic subjects. Insulin-dependent (maximally stimulated – basal) 2-DG uptake and cytochalasin B binding were decreased three-fold in cells from the diabetic and/or obese subjects (p < 0.01). GLUT1 mRNA and total protein levels were comparable in fibroblasts from all the groups. However, basal GLUT1 cell-surface content was 50 % greater in fibroblasts from the NIDDM and/or obese subjects as compared to the lean non- diabetic individuals while insulin-dependent GLUT1 recruitment at the cell surface was diminished threefold. Increased basal GLUT1 content in the plasma membrane was also observed in skeletal muscle of 4 NIDDM and 3 non-diabetic obese individuals (p < 0.05 vs the lean non diabetic subjects). Basal 2-DG uptake in fibroblasts from diabetic/obese individuals and lean control subjects strongly correlated with the in vivo fasting plasma insulin concentration of the donor. A negative correlation was demonstrated between the magnitude of insulin-dependent glucose uptake by the fibroblasts and plasma insulin levels in vivo. We conclude that a primary abnormality in glucose transport and GLUT1 cell-surface content is present in fibroblasts from NIDDM and obese individuals. The abnormal GLUT1 content is also present in skeletal muscle plasma membranes from NIDDM and obese individuals. [Diabetologia (1997) 40: 421–429] Received: 9 August 1996 and in final revised form: 11 December 1996  相似文献   

19.
Chick embryo heart cells were propagated in a defined serum-free medium. They formed a confluent, synchronously contracting monolayer that is not different from myocytes grown in serum containing media. The uptake of 2-deoxy-D-[1-3H]glucose in these cells was stimulated by exposure to physiological concentrations of T3 (1 pM) and T4 (10 pM). Actinomycin-D and puromycin did not block the stimulation of 2-deoxy-D-[1-3H]glucose uptake when given with T3 throughout a 6-h incubation period. Cells grown in the absence of both insulin and hydrocortisone were unresponsive to T3. Insulin at 200 nM restored the sensitivity of the cells to 0.1 pM T3. Addition of 10 nM hydrocortisone to the growth medium enhanced the effects of T3 synergistically. The T3-stimulated sugar uptake was completely blocked by 5 X 10(-6) M cytochalasin B, suggesting that T3 acts, like insulin, by the translocation of glucose transporters to the plasma membrane.  相似文献   

20.
Plasma membranes from insulin or insulin mimicker (hydrogen peroxide, anti-insulin receptor antibody, and concanavalin A) treated adipocytes showed an increase in glucose transport compared to control cells due to an increase in Vmax and not due to alteration in Km. Arrhenius plots showed no difference in the energy of activation between control and insulin or insulin mimicker stimulated glucose transport states. Glucose transport by plasma membranes from control or treated adipocytes was equally (percentage) inhibited by N-ethylmaleimide, reduced glutathione, or cytochalasin B. The data indicate that the increased transport resulted from addition of new transport sites similar to the sites existing in the basal state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号