首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 850 毫秒
1.
T Nakadate  S Yamamoto  E Aizu  R Kato 《Carcinogenesis》1989,10(11):2053-2057
7-Bromomethylbenz[a]anthracene (BrMBA) has been shown to have a tumor-promoting action in mouse skin without an initial direct interaction with protein kinase C, which is believed to be a receptor for phorbol ester tumor promoters such as 12-O-tetradecanoylphorbol-13-acetate (TPA). An application of BrMBA to mouse dorsal skin caused epidermal ornithine decarboxylase (ODC) induction in a dose-dependent manner with a peak of activity at 12 h after the application. A single topical application of BrMBA failed to induce mouse ear edema formation, i.e. inflammation. However, repeated applications of BrMBA, i.e. twice a week for 3-4 times, caused a significant edema. Unlike TPA, BrMBA failed to stimulate the superoxide anion generation of rabbit peritoneal polmorphonuclear leukocytes. Lipoxygenase inhibitors such as 3,4,2',4'-tetrahydroxychalcone, nordihydroguaiaretic acid, quercetin and 2,3,5-trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone (AA861) effectively inhibited BrMBA-caused epidermal ODC induction and ear edema formation. In addition, BrMBA-caused skin tumor promotion was also potently inhibited by 3,4,2'4'-tetrahydroxychalcone and quercetin. These results indicate that a mechanism susceptible to lipoxygenase inhibitors plays a role not only in the TPA-caused but also in the BrMBA-caused epidermal ODC induction, skin inflammation and tumor promotion. It seems unlikely that superoxide anion generation is involved in the mechanism of BrMBA-caused skin tumor promotion.  相似文献   

2.
A single topical application of 7-bromomethyl-benz[a]anthracene (BrMBA; 200 nmol) to mouse skin induced epidermal ornithine decarboxylase (ODC) activity. A topical application of indomethacin (1.2 mumol), a cyclooxygenase inhibitor, 10 min before BrMBA application markedly inhibited BrMBA-caused ODC induction. Concurrent application of prostaglandin E2 (PGE2; 0.1-1.5 mumol) reversed the inhibitory effect of indomethacin. Without indomethacin, PGE2 suppressed BrMBA-caused ODC induction. The results indicate that PGE2 has dual actions on the BrMBA-caused ODC induction, i.e. PGE2 plays an essential role in ODC induction caused by BrMBA, whereas exogenous PGE2 rather suppressed BrMBA-caused ODC induction.  相似文献   

3.
The potent anti-tumor-promoting agent isoliquiritigenin   总被引:4,自引:0,他引:4  
A topical application of a chalcone derivative, 4,2',4'-trihydroxychalcone (isoliquiritigenin) inhibited epidermal ornithine decarboxylase (ODC) induction and ear edema formation, i.e. inflammation, caused by a topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA) in CD-1 mice. In addition, isoliquiritigenin potently inhibited 7,12-dimethylbenz[alpha]anthracene (DMBA)-initiated and TPA-promoted skin papilloma formation. This inhibitory effect of isoliquiritigenin was not due to any damage inflicted on the initiated cells but due to its anti-tumor-promoting action. Isoliquiritigenin also inhibited epidermal ODC induction and skin tumor promotion caused by 7-bromomethylbenz[alpha]anthracene (BrMBA), a non-TPA type of tumor-promoting agent, in DMBA-initiated mice. Isoliquiritigenin inhibits neither 12-lipoxygenase nor cyclooxygenase in epidermal subcellular fractions. This compound, however, inhibited TPA-stimulated prostaglandin E2 (PGE2) production in intact epidermal cells. ODC induction caused by TPA was inhibited by a topical application of cyclooxygenase inhibitor, indomethacin. Inhibition of ODC induction by indomethacin was counteracted by a topical application of PGE2, while inhibition caused by isoliquiritigenin was not overcome by PGE2. The results suggest that a mechanism other than the inhibition of PGE2 production is involved in the anti-tumor-promoting action of isoliquiritigenin. Isoliquiritigenin failed to inhibit phospholipase A2 activity of platelet sonicates, but inhibited platelet 12-lipoxygenase and 5-lipoxygenase in polymorphonuclear leukocytes. Therefore, it might be possible that isoliquiritigenin exerts its anti-tumor-promoting action through the lipoxygenase inhibition by acting on cells other than the target epidermal cells. Our present results, in combination with our previous data, demonstrate that some chalcone derivatives and flavonoids which show a potent lipoxygenase inhibitory action act on a common step in the skin tumor promotion caused by two different types of tumor-promoting agents, i.e. TPA and BrMBA, and suggest that these compounds show promise as drugs to prevent tumor promotion.  相似文献   

4.
The effect of staurosporine on 7,12-dimethylbenz[a]anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted skin papilloma formation was examined in CD-1 mice. A topical application of staurosporine 15 min prior to each TPA treatment resulted in a dose-related inhibition of tumor formation. Staurosporine by itself had no tumor producing activity in DMBA-initiated mice. Staurosporine failed to prevent TPA-induced edema formation, whereas quercetin markedly suppressed it. Staurosporine by itself did not induce a significant edema. Histological studies revealed that staurosporine failed to inhibit TPA-induced inflammation but rather augmented TPA-induced polymorphonuclear leukocyte (PMN) infiltration. Staurosporine by itself induced a slight PMN infiltration 1 h after the drug application, but the effect was only transient. Although staurosporine failed to inhibit the TPA-induced epidermal hyperplasia and DNA synthesis significantly, nuclear atypism of the superficial layer of the epidermis appeared to be less remarkable in staurosporine-pretreated mice. TPA-caused epidermal ornithine decarboxylase (ODC) induction was not inhibited by staurosporine but rather augmented by this agent. TPA enhanced the phosphorylation of 34 kd protein in intact epidermal cells in a concentration-dependent manner. Staurosporine and 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) suppressed the TPA-stimulated phosphorylation of 34 kd protein, but palmitoylcarnitine failed to suppress it. In addition, TPA-stimulated superoxide generation of rabbit peritoneal PMN was potently inhibited by staurosporine. It is possible that TPA induces inflammation, ODC activity, epidermal hyperplasia and tumor promotion through the activation of different type(s) of protein kinase C and staurosporine inhibits only certain type(s) of protein kinase C. Another possible explanation is that the protein kinase C inhibition by staurosporine depends on the nature of the substrate proteins or the intracellular localization of the enzyme.  相似文献   

5.
Extensive animal data have suggested that, in some systems, the induction of ornithine decarboxylase (ODC) is an essential, although not sufficient, aspect of tumor promotion and that compounds that inhibit ODC can inhibit tumor formation. Using fasting human volunteers, we report that human epidermal and dermal ODC are consistently induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in a manner similar to that seen in mouse skin. There is a marked intersubject variation in TPA-induced epidermal ODC activity levels. Orally administered compounds significantly inhibited TPA-caused human epidermal ODC induction. These data may be useful in the further development of drugs, doses, and dose schedules for use in human cancer chemoprevention studies.  相似文献   

6.
Retinoic acid, a potent inhibitor of mouse skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate, fails to inhibit tumor formation by the complete carcinogen, 7, 12-dimethylbenz[a]anthracene (DMBA). To obtain further clues about the nature of the mechanism of the carcinogenic process as well as the mechanism of the effect of retinoic acid on tumor promotion, the effect of retinoic acid and two other modifiers (dexamethasone and 7,8-benzoflavone) of tumor formation on tumor promotion by 7-bromomethylbenz[a]anthracene (BrMBA) was determined. BrMBA, a structural analogue of DMBA, is a weak mouse skin tumor-initiating agent but is a good skin tumor promoter. Application of 10, 100, and 200 nmol of BrMBA twice weekly to DMBA-initiated skin resulted in 0, 1.6, and 2.5 papillomas per mouse, and 0, 44, and 60% of mice had papillomas at the 25th week of promotion treatment, respectively. Application of 17 nmol of retinoic acid or 76 nmol of dexamethasone 30 min prior to each twice weekly application of 100 nmol of BrMBA to DMBA-initiated skin inhibited the formation of skin papillomas by 73 and 100%, respectively. 7,8-Benzoflavone, at a 367-nmol dose, did not inhibit tumor promotion by BrMBA. Application of 200 nmol of BrMBA to mouse skin induced epidermal ornithine decarboxylase activity; a peak activity was observed between 8 and 18 hr following BrMBA treatment. Application of 17 nmol of retinoic acid or 76 nmol of dexamethasone inhibited the induction of ornithine decarboxylase activity by BrMBA. 7,8-Benzoflavone did not inhibit the induction of ornithine decarboxylase activity by BrMBA. Retinoic acid and dexamethasone, which inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate, also inhibited tumor promotion by BrMBA, but the nature of the mechanism of tumor promotion by BrMBA is unclear; BrMBA did not inhibit specific binding of 12-O-[3H]tetradecanoylphorbol-13-acetate to the cellular membrane fraction of mouse epidermis.  相似文献   

7.
H Jiang  S Yamamoto  R Kato 《Carcinogenesis》1992,13(3):355-359
A single topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA) to mouse skin caused an induction of epidermal ornithine decarboxylase (ODC) activity. When mice were topically pretreated with staurosporine, a most potent protein kinase C inhibitor, 6-84 h prior to TPA treatment, TPA-caused ODC induction was markedly enhanced. The enhancement of TPA-caused ODC induction by staurosporine was most pronounced when the time interval between staurosporine and TPA treatment was 36 h. Staurosporine elicited this enhancing effect in a dose-related manner. Staurosporine by itself also induced epidermal ODC activity. But the activity induced was very slight and would not directly contribute to the enhancing effect of this compound. Although staurosporine markedly augmented TPA-caused ODC induction, staurosporine-caused ODC induction was not augmented by this compound. Other protein kinase C inhibitors, such as 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, sphingosine and palmitoylcarnitine did not mimic the enhancing effect of staurosporine. These results indicate that the enhancement of ODC induction by staurosporine is specific for the induction caused by TPA and that this enhancing effect is not related to the protein kinase C inhibitory action of staurosporine. TPA-caused epidermal ODC induction was inhibited by indomethacin, and this inhibition was reversed by prostaglandin E2 (PGE2). Staurosporine-caused ODC induction was also inhibited by indomethacin but the inhibition was not reversed by PGE2, indicating that the mechanism of staurosporine-caused ODC induction is different from that of TPA.  相似文献   

8.
Application of the tumor-promoting agent 12-O-tetradecanoylphorbol-13-acetate (TPA) to mouse skin leads to a manifold induction of ornithine decarboxylase (ODC) activity within 5 hr and an increased accumulation of putrescine. The relevance of these TPA-induced changes to the mechanism of tumor promotion was investigated using alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC. DFMO applied to mouse skin (0.3 mg in 0.2 ml of solvent) or administered in the drinking water (1%) in conjunction with skin tumor promotion by TPA inhibited the formation of mouse skin papillomas by 50 and 90%, respectively. TPA-induced ODC activity and the accumulation of putrescine were almost completely inhibited. DFMO given in the drinking water decreased spermidine levels, but DFMO treatment by any route did not alter the spermine levels of mouse epidermis. DFMO decreased TPA-induced hyperplasia by 25 to 40%, and the TPA-caused increases in DNA synthesis and mitotic index were inhibited by 60 and 50%, respectively. Therefore, in mouse epidermis, enhanced cell proliferation can be dissociated from ODC induction and the accumulation of putrescine. At the tested dose levels and routes of administration, DFMO did not inhibit the inflammatory response to TPA in several tissues. These results provide evidence for an essential role of ODC induction and the accumulation of putrescine in tumor promotion by TPA and add strength to the proposal that DFMO may be a promising drug for the prevention and treatment of cancer in human beings.  相似文献   

9.
Application of a single large dose (3.6 micromol) or smaller weekly repeated doses (0.2 micromol) of 7,12-dimethylbenz[a]anthracene (DMBA) to the skin of CD-1 mice led to a 20 to 50-fold increase in epidermal ornithine decarboxylase (ODC) (EC 4.1.1.17) activity as well as tumor formation. Retinoic acid (0.17-68 nmol), a potent inhibitor of both the induction of ODC activity and tumor formation by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), failed to inhibit both the induction of ODC activity and tumor formation by DMBA. In contrast, 7,8-benzoflavone (367 nmol), which did not inhibit the induction of ODC activity by TPA, effectively inhibited the induction of ODC activity as well as the formation of skin tumors caused by DMBA. These results indicate that (a) the mechanism of the induction of ODC activity and tumor formation by a complete carcinogen appears to be different from that of the tumor promoter TPA, (b) DMBA-induced ODC activity may be an important component of the mechanism of DMBA carcinogenesis, and (c) the protective effect of retinoic acid on skin carcinogenesis is not universal; it inhibits skin tumor formation by some agents and not by others.  相似文献   

10.
Naturally occurring plant phenols with antimutagenic and anticarcinogenic activities were tested for their abilities to inhibit the ornithine decarboxylase (ODC) response linked to skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA). Topical applications of tannic acid (TA) inhibit remarkably and in a dose-dependent manner TPA-induced ODC activity in mouse epidermis in vivo. This inhibitory effect of TA is dependent on the time of its administration relative to TPA. The induction of epidermal ODC activity by 8.5 nmol of TPA is inhibited maximally when 20 mumol of TA are applied topically to the skin 20 min before the tumor promoter. Gallic acid and several of its derivatives inhibit the ODC response to TPA to a lesser degree than TA. Ellagic acid is the least effective inhibitor tested. TA also inhibits the ODC-inducing activities of several structurally different tumor promoters and the greater ODC responses produced by repeated TPA treatments. The ability of TA to inhibit by 85% the ODC marker of skin tumor promotion suggests that TA and other polyphenols may be effective not only against tumor initiation and complete carcinogenesis but also against the promotion phase of tumorigenesis.  相似文献   

11.
Katiyar  SK; Mukhtar  H 《Carcinogenesis》1997,18(10):1911-1916
Over the past 10 years many studies from several laboratories defined anticarcinogenic and anti-inflammatory effects of tea, a widely consumed beverage by the human population. Much of such work has been conducted with green tea or its polyphenolic constituents. Regarding black tea, studies have shown that its water extract affords protection against tumor promotion caused by chemical carcinogens or ultraviolet B radiation in murine skin carcinogenesis models. Several studies have shown that topical application of chemical tumor promoters to murine skin results in the induction of epidermal edema, hyperplasia and ornithine decarboxylase (ODC) and cyclo-oxygenase activities, and interleukin-1 alpha (IL-1alpha) and ODC mRNA expression. In this study, we assessed whether topical application of polyphenols isolated from black tea leaves (hereafter referred to as BTP) mainly consisting of theaflavine gallates and (-)-epigallocatechin-3-gallate, inhibits phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA)- caused induction of these markers of inflammatory responses in murine skin. Topical application of BTP (6 mg in 0.2 ml acetone/animal) 30 min prior to TPA application on to the mouse skin resulted in significant inhibition against TPA-caused induction of epidermal edema (40%, P < 0.01), hyperplasia (57%, P < 0.005), leukocytes infiltration (50%), and induction of epidermal ODC (57%) and pro-inflammatory cytokine IL- 1alpha mRNA expression (69%). Pre-application of BTP to that of TPA also resulted in significant inhibition of TPA-caused induction of epidermal ODC (23-73%, P < 0.005-0.0001), and cyclo-oxygenase, in terms of prostaglandins metabolites formation (38-65%, P < 0.01-0.0005), enzyme activities. Our data indicate that the inhibition of TPA-caused changes in these markers of inflammatory responses in murine skin by BTP may be one of the possible mechanisms of chemopreventive effects associated with black tea against tumorigenesis. The results of this study suggest that black tea, specifically polyphenols present therein, may be useful against cutaneous inflammatory responses in human population.   相似文献   

12.
Green tea, next to water, is the most popular and commonly consumed beverage in the world, especially in eastern countries. In prior studies we have shown that the polyphenolic fraction isolated from green tea (GTP) exerts antigenotoxic effects in various mutagenicity test systems (Mutat. Res., 223: 273-285, 1989) and that its topical application or oral feeding in drinking water protects against polycyclic aromatic hydrocarbon-induced skin tumor initiation and complete carcinogenesis in SENCAR and BALB/c mice [Cancer Lett., 42: 7-12, 1988; Carcinogenesis (Lond.), 10: 411-415, 1989] and UV B radiation-induced photocarcinogenesis in SKH-1 hairless mice [Carcinogenesis (Lond.), 12: 1527-1530, 1991]. In the present study we assessed the effect of skin application of GTP to SENCAR mice on 12-O-tetradecanoylphorbol-13-acetate (TPA) and other skin tumor promoter-caused induction of epidermal ornithine decarboxylase (ODC) activity. Topical application of GTP to mouse skin inhibited TPA-induced epidermal ODC activity in a dose-dependent manner. The inhibitory effect of GTP was also dependent on the time of its application relative to TPA treatment. Maximum inhibitory effect was observed when GTP was applied 30 min prior to topical application of TPA. GTP application to animals also inhibited the induction of epidermal ODC activity caused by several structurally different mouse skin tumor promoters. In order to identify which of the specific epicatechin derivatives present in GTP is responsible for these inhibitory effects, they were isolated from GTP and evaluated for their inhibitory effects against TPA-caused induction of epidermal ODC activity. Among these, (-)epigallocatechin-3-gallate (EGCG), which was the major constituent present in GTP by weight, exerted the maximum inhibition. EGCG also showed greater inhibitory effects against TPA-caused induction of epidermal ODC activity when compared with several other naturally occurring polyphenols. The results of this study suggest that GTP, specifically its epicatechin derivative EGCG, could provide anti-tumor-promoting effects against a wide spectrum of skin tumor promoters.  相似文献   

13.
Protein Kinase Cdelta (PKCdelta), a Ca(2+)-independent, phospholipid-dependent serine/threonine kinase, is among the PKC isoforms expressed in mouse epidermis. We reported that FVB/N transgenic mice that overexpress ( approximately eightfold) PKCdelta protein in basal epidermal cells are resistant to skin tumor formation by the 7,12-dimethylbenz(a)anthracene (DMBA)-initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promotion protocol. However, despite being resistant to skin tumor promotion by TPA, PKCdelta transgenic mice elicited a 3-4-fold increase in TPA-induced epidermal ODC activity and putrescine levels than their wild-type littermates. PKCdelta was observed to be the key component of the TPA signal transduction pathways to the induction of mouse epidermal ODC activity. To determine if TPA-induced ODC activity and associated putrescine levels in PKCdelta transgenic mice contributed to PKCdelta-mediated suppression of skin tumor promotion by TPA, the irreversible inhibitor of ODC, alpha-difluoromethylornithine (DFMO), was used. PKCdelta transgenic mice and their wild-type littermates were initiated with 100 nmol DMBA and then promoted twice weekly with 5 nmol TPA. The experimental group was given 0.5% DFMO in their drinking water, while the control group was given tap water. After 25 weeks, the number of papillomas (>2 mm) per mouse was counted. The DFMO treatment did not affect the skin tumor multiplicity of PKCdelta transgenic mice. These results indicate that PKCdelta-induced ODC activity is not involved in PKCdelta-mediated tumor suppression. Thus, the signaling pathways via PKCdelta to epidermal ODC induction and skin tumor suppression appear to be independent.  相似文献   

14.
15.
Starting with an extract derived from the bark of Mundulea sericea Willd. (Leguminosae) that was active in the process of inhibiting 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced ornithine decarboxylase activity (ODC) in cultured mouse epidermal ME 308 cells, the isoflavonoid munetone was isolated and identified as an active principle (IC50 = 46 ng/ml). Topical application of munetone (0.04-5 micromol) to the skin of CD-1 mice 2 h prior to treatment with TPA (10 nmol) resulted in dose-dependent inhibition of epidermal ODC activity. In addition, munetone inhibited TPA-independent c-Myc-induced ODC activity with cultured BALB/c c-MycER cells, as well as 7,12-dimethylbenz[a]anthracene (DMBA)-induced preneoplastic lesion formation in a mouse mammary gland organ culture (MMOC) system. These data suggest the potential of munetone to serve as a cancer chemopreventive agent by virtue of blocking the process of tumor promotion.  相似文献   

16.
Several structurally different tumor promoters altered to various degrees both glutathione (GSH) peroxidase (EC 1.11.1.9) and ornithine decarboxylase (ODC, L-ornithine carboxy-lyase, EC 4.1.1.17) activities in mouse epidermis in vivo. At 5 h after their application to the skin, the complete tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and the stage 2 promoter mezerein were the most potent in inhibiting GSH peroxidase activity and inducing ODC activity. In comparison, the effects of anthralin, phorbol-12,13-didecanoate, benzoyl peroxide, H2O2, and phorbol-12,13-dibenzoate were much smaller, whereas the nontumor promoter phorbol, the hyperplastic agent ethyl phenylpropiolate, and the stage 1 promoter 4-O-methyl TPA did not alter GSH peroxidase and ODC activities. Various treatments including i.p. injections of 40 micrograms of Na2SeO3 and 100 mumol of GSH and/or topical applications of 40 mumol of D-alpha-tocopherol (vitamin E) 20 or 15 min, respectively, before tumor promoter treatment inhibited in an additive manner the effects of either TPA or mezerein on both GSH peroxidase activity and ODC induction. Moreover, these Na2SeO3, GSH, and/or vitamin E treatments inhibited in the same additive manner the tumor-promoting activity of TPA in the initiation-promotion protocol. However, when tested in the 2-stage promotion protocol with 4 doses of TPA followed by twice weekly applications of mezerein, Na2SeO3 plus vitamin E and GSH plus vitamin E treatments inhibited remarkably the tumor-promoting activity of mezerein but were ineffective in the first stage of promotion. The sequence and magnitude for the effects of 7,12-dimethylbenz[alpha]anthracene (DMBA) on GSH peroxidase and ODC activities were very different from those of the tumor promoters. In contrast with their antitumor-promoting activity, the treatments with Na2SeO3 plus vitamin E and GSH plus vitamin E failed to inhibit the carcinogenicity of a single large dose of DMBA and even enhanced the induction of skin tumors by repeated applications of subcarcinogenic doses of DMBA. These results suggest that the promoting component of DMBA carcinogenesis may be different from that of TPA. Moreover, the anticarcinogenicity of Na2SeO3, GSH, and vitamin E may be linked to their ability to facilitate or enhance the activity of the natural GSH-dependent antioxidant protective system of the epidermal cells during the later stages of skin tumor promotion.  相似文献   

17.
The antitumor antibiotics Adriamycin (ADR) and daunomycin (DAU) were tested for their ability to alter some of the molecular events linked to skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA). When applied topically to mouse skin, DAU is a more effective inhibitor of the basal level of epidermal DNA synthesis than ADR. However, these drugs alone are unable to inhibit the sequential induction of RNA, protein, and DNA synthesis caused by TPA in mouse epidermis in vivo. Moreover, ADR enhances substantially the induction of epidermal ornithine decarboxylase (ODC) activity by TPA. In vitro, the incorporation of [3H]DAU into isolated epidermal cells resembles more that of the HL-60 cells resistant to vincristine than that of the parental cell line. TPA does not alter the incorporation of [3H]DAU into epidermal cells. The Ca2+ antagonists verapamil (VRP) and trifluoperazine (TFP) enhance significantly the amount of [3H]DAU associated with the epidermal cells after 1 h. When applied shortly before TPA in vivo, VRP and TFP inhibit TPA-induced ODC activity at 5 h and TPA-induced DNA synthesis at 17 h. Moreover, the combinations of Ca2+ antagonists and anthracycline antibiotics administered before TPA inhibit synergistically these ODC and DNA responses to the tumor promoter. When they are applied at various times after TPA treatment, the same combinations of ADR or DAU and VRP or TFP fail to alter TPA-induced RNA and protein synthesis but still exert synergistic inhibitory effects on the peak of DNA synthesis observed 17 h after TPA. However, the chronic administration of ADR and DAU alone or in combination with VRP prior to the peak of TPA-induced DNA synthesis 16 h after each promotion treatment with TPA fails to alter the promotion of skin papillomas in the two-stage protocol of mouse skin carcinogenesis. In contrast, when administered alone or in combination with DAU prior to each TPA treatment, VRP inhibits skin tumor promotion and reveals the antitumor-promoting activity of DAU. These results point to the modulatory role of Ca2+ in the action of ADR and TPA and demonstrate the refractory nature of mouse epidermis to cancer chemotherapy by anthracycline antibiotics. However, ADR and DAU may be effective against skin tumor promotion if they are applied in combination with Ca2+ antagonists and at a time when they can inhibit the inductions of both ODC activity and DNA synthesis by TPA.  相似文献   

18.
A single topical application of 1 microgram of 12-O-tetradecanoylphorbol- 13-acetate (TPA) to the ears of mice was shown to induce edema, and this TPA-induced inflammation was inhibited by 4-methylsterol and triterpene derivatives. The ED50 of these compounds against TPA-induced inflammation was 0.1-3 mumol. Phytosterols had only slight inhibitory effects. Furthermore, application of 5 micrograms TPA to mouse skin rapidly caused accumulation of ornithine decarboxylase (ODC). Similarly, sitosterol and lupane-type triterpene derivatives markedly inhibited this TPA-induced ODC accumulation. In addition, 5 mumol betulinic acid markedly inhibited the promoting effect of 2.5 micrograms TPA applied twice weekly on skin tumor formation in mice initiated with 50 micrograms of 7,12-dimethylbenz[a]anthracene, and 5 mumol of sitosterol caused slight suppression. Thus, the inhibitory effects of sterol and triterpene derivatives on TPA-induced inflammation roughly parallelled their inhibitory activities against tumor promotion.  相似文献   

19.
The anti-tumor promoting activity of a polyphenolic fraction from grape seeds (GSP) was examined in CD-1 mouse skin epidermis. Specifically, the ability of this fraction to inhibit 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced tumor promotion and two markers of promotion in mouse skin, ornithine decarboxylase (ODC) and myeloperoxidase (MPO) activities, was evaluated. Pretreatment of mouse skin with 5, 10, 20 and 30 mg of GSP resulted in a dose-dependent reduction in TPA-induced epidermal ODC activity of 27, 37, 48 and 70%, respectively, compared to controls. In addition, pretreatment of mouse skin with 1, 5, 10 and 20 mg of GSP resulted in a significant 43, 39, 54 and 73% inhibition of MPO activity, respectively, compared to controls. In 7,12-dimethylbenz[a]anthracene (DMBA)-initiated CD-1 mice, biweekly treatment of mouse skin with 5, 10, and 20 mg of GSP 20 min prior to TPA application resulted in a 30, 40, and 60% inhibition of final skin tumor incidence, respectively, compared to controls. In addition, the final number of tumors per mouse in the 5, 10 and 20 mg GSP-treated animals was decreased 63, 51, and 94%, respectively, compared to controls. These studies indicate that GSP possesses anti-tumor promoting activity when applied to CD-1 mouse skin prior to treatment with TPA. The mechanism of this tumor inhibition is due, in part, to a GSP-associated inhibition of TPA-induced epidermal ODC and MPO activities. Thus, GSP warrants further evaluation as a skin cancer chemopreventative agent.  相似文献   

20.
Effects of methyiglyoxal bis(butylamidinohydrazone) (MGBB),a reversible inhibitor of ornithine decarboxylase (ODC) andS-adenosylmethionine decarboxylase (AdoMetDC), on 12-0-tetradecanoylphorbol-13-acetate(TPA)-induced increases of ODC and AdoMetDC activities, ODCmRNA level and polyamine contents in mouse skin were investigatedin connection with tumor formation. Formation of papillomasby applications of TPA to 7,12-dimethylbenz[a]anthracene (DMBA)-initiatedmouse skin was effectively inhibited by simultaneous topicalapplications of MGBB. MGBB also dose-dependently inhibited theability of TPA to induce increases of ODC activity, ODC mRNAlevel and the accumulation of putrescine and spermidine in mouseskin. Induction of AdoMetDC activity was not affected by thedrug. These inhibitory effects of MGBB on ODC induction andtumor promotion were more evident in multiple application experimentsthan with a single application of the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号