首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nebulized dispersion of amorphous, high surface area, nanostructured aggregates of itraconazole (ITZ):mannitol:lecithin (1:0.5:0.2, w/w) yielded improved bioavailability in mice. The ultra-rapid freezing (URF) technique used to produce the nanoparticles was found to molecularly disperse the ITZ with the excipients as a solid solution. Upon addition to water, ITZ formed a colloidal dispersion suitable for nebulization, which demonstrated optimal aerodynamic properties for deep lung delivery and high lung and systemic levels when dosed to mice. The ITZ nanoparticles produced supersaturation levels 27 times the crystalline solubility upon dissolution in simulated lung fluid. A dissolution/permeation model indicated that the absorption of 3mum ITZ particles is limited by the dissolution rate (BCS Class II behavior), while absorption is permeation-limited for more rapidly dissolving 230nm particles. The predicted absorption half-life for 230nm amorphous ITZ particles was only 15min, as a result of the small particle size and high supersaturation, in general agreement with the in vivo results. Thus, bioavailability may be enhanced, by decreasing the particle size to accelerate dissolution and increasing permeation with (1) an amorphous morphology to raise the drug solubility, and (2) permeability enhancers.  相似文献   

2.
Amorphous nanoparticle suspensions of a poorly water-soluble drug, cyclosporine A, are produced by a new process, evaporative precipitation into aqueous solution (EPAS). The rapid evaporation of a heated organic solution of the drug, which is atomized into an aqueous solution, results in fast nucleation leading to nanoparticles suspensions. Hydrophilic stabilizers, introduced in the organic or aqueous phases, limit particle growth and inhibit crystallization for drug concentrations as high as 35 mg/ml, and drug/surfactant ratios up to 1.0. The suspensions may be used in parenteral formulations to enhance bioavailability or may be dried to produce oral dosage forms with the potential for high dissolution rates due to the low crystallinity, small particle size and hydrophilic stabilizer that enhances wetting.  相似文献   

3.
The objective of this study was to compare the properties of particles formed by nucleation and polymer stabilization (e.g. evaporative precipitation into aqueous solution (EPAS)) versus rapid freezing (e.g. spray freezing into liquid (SFL)). Powders formed by EPAS and SFL, composed of danazol and PVP K-15 in a 1:1 ratio, were characterized using X-ray powder diffraction, modulated differential scanning calorimetry (MDSC), contact angle determination, dissolution, scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), BET specific surface area, and Z-contrast scanning transmission electron microscopy (STEM). Large differences in particle morphologies and properties were observed and explained in terms of the particle formation mechanisms. Both techniques produced amorphous powders with high T(g) and low contact angle values. However, STEM analysis showed highly porous bicontinuous nanostructured 30nm particles connected by narrow bridges for SFL versus aggregated 500 nm primary particles for EPAS. The combination of STEM and other characterization techniques indicates solid solutions were formed for the SFL powders consistent with rapid freezing. In contrast, the EPAS particle cores are enriched in hydrophobic API and the outer surface is enriched in the hydrophilic polymer, with less miscibility than in the SFL powders. Consequently, dissolution rates are faster for the SFL particles, although both techniques enhanced dissolution rates of the API.  相似文献   

4.
Controlled precipitation produced aqueous nanoparticle suspensions of a poorly water soluble drug, itraconazole (ITZ), in an amorphous state, despite unusually high potencies (drug weight/total weight) of up to 94%. Adsorption of the amphiphilic stabilizer hydroxypropylmethylcellulose (HPMC) at the particle-aqueous solution interface arrested particle growth, producing surface areas from 13 to 51 m(2)/g. Dissolution of the particles in acidic media yielded high plateau levels in supersaturation up to 90 times the equilibrium solubility. The degree of supersaturation increased with particle curvature, as characterized by the surface area and described qualitatively by the Kelvin equation. A thermodynamic analysis indicated HPMC maintained amorphous ITZ in the solid phase with a fugacity 90 times the crystalline value, while it did not influence the fugacity of ITZ in the aqueous phase. High surface areas led to more rapid and levels of supersaturation higher than those seen for low-surface area solid dispersions, which undergo crystallization during slow dissolution. The rapid generation of high levels of supersaturation with potent amorphous nanoparticles, containing small amounts of stabilizers oriented at the particle surface, offers new opportunities for improving bioavailability of poorly water soluble drugs.  相似文献   

5.
A new process, evaporative precipitation into aqueous solution (EPAS) has been developed to coat poorly water soluble drugs, in this case carbamazepine, with hydrophilic stabilizers to enhance dissolution rates. A heated organic solution of the drug in dichloromethane is sprayed though a fine nozzle into a heated aqueous solution. The rapid evaporation of the organic solvent produces high supersaturation and rapid precipitation of the drug in the form of a colloidal suspension that is stabilized by a variety of low molecular weight and polymeric surfactants. The stabilizer adsorbs to the drug surface and prevents particle growth and crystallization during the spray process. The suspensions are dried by spray drying or ultra-rapid freezing. The high dissolution rates are a consequence of the following advantages of the EPAS process: a small primary particle size, a hydrophilic coating on the particles that enhances wetting, and low crystallinity.  相似文献   

6.
The purpose of this paper is to investigate the influence of the emulsion composition of the feed liquid on physicochemical characteristics of drug-loaded powders produced by spray-freezing into liquid (SFL) micronization, and to compare the SFL emulsion process to the SFL solution process. Danazol was formulated with polyvinyl alcohol (MW 22,000), poloxamer 407, and polyvinylpyrrolidone K-15 in a 2:1:1:1 weight ratio (40% active pharmaceutical ingredient (API) potency based on dry weight). Emulsions were formulated in ratios up to 20:1:1:1 (87% API potency based on dry weight). Ethyl acetate/water or dichloromethane/water mixtures were used to produce o/w emulsions for SFL micronization, and a tetrahydrofuran/water mixture was used to formulate the feed solutions. Micronized SFL powders were characterized by X-ray diffraction, surface area, scanning and transmission electron microscopy, contact angle and dissolution. Emulsions containing danazol in the internal oil phase and processed by SFL produced micronized powders containing amorphous drug. The surface area increased as drug and excipient concentrations were increased. Surface areas ranged from 8.9 m(2)/g (SFL powder from solution) to 83.1 m(2)/g (SFL powder from emulsion). Danazol contained in micronized SFL powders from emulsion and solution was 100% dissolved in the dissolution media within 2 min, which was significantly faster than the dissolution of non-SFL processed controls investigated (<50% in 2 min). Micronized SFL powders produced from emulsion had similar dissolution enhancement compared to those produced from solution, but higher quantities could be SFL processed from emulsions. Potencies of up to 87% yielded powders with rapid wetting and dissolution when utilizing feed emulsions instead of solutions. Large-scale SFL product batches were manufactured using lower solvent quantities and higher drug concentrations via emulsion formulations, thus demonstrating the usefulness of the SFL micronization technology in pharmaceutical development.  相似文献   

7.
A spray freezing into liquid (SFL) particle engineering technology has been developed to produce micronized powders to enhance the dissolution of poorly water soluble active pharmaceutical ingredients (APIs). Previously, a tetrahydrofuran (THF)/water co-solvent was used as the solution source in the SFL process. In the present study, an organic system was developed to further enhance the properties of particles produced by SFL. The influence of solution type (e.g. organic versus organic/water) on the physicochemical properties of SFL powders was investigated and compared. The physicochemical properties of SFL carbamazepine (CBZ)/poloxamer 407/PVP K15 (2:1:1 ratio) powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), particle size distribution, surface area analysis, contact angle measurement, Karl-Fisher (KF) titration, gas chromatography (GC) analysis, HPLC analysis, and dissolution testing. The CBZ loading in the feed solution of the SFL acetonitrile system was 2.2% (w/w), which was greater than 0.22% (w/w) loading of the THF/water co-solvent system. XRD results indicated CBZ was amorphous in SFL powders produced by either system. SEM micrographs indicated that SFL powders from acetonitrile appeared less porous with a smaller primary particle size than particles from the co-solvent. The M50 (50% cumulative percent undersize) of micronized powder from the SFL acetonitrile system and the THF/water co-solvent system with 0.22% CBZ loading were 680nm and 7.06microm, respectively. The surface area of SFL powders from the acetonitrile and co-solvent systems were 12.89 and 13.31m(2)/g, respectively. The contact angle of the SFL powders against purified water was about 35 degrees for both systems. The SFL powders from both systems exhibited similar and significantly enhanced dissolution rates compared to the bulk CBZ. Acetonitrile was an effective alternative solvent to THF/water co-solvent for use with the SFL micronization process to produce free flowing particles containing CBZ with significantly enhanced wetting and dissolution properties.  相似文献   

8.
High-potency danazol particles with high dissolution rates were produced by evaporative precipitation into aqueous solution (EPAS). Aqueous suspensions formed by EPAS were centrifuged to remove the nonadsorbed surfactant. The resulting surfactant-coated drug particles had extremely high drug-to-surfactant ratios greater than 5, corresponding to potencies (wt drug/wt drug + wt surfactant) as high as 93%. The mechanism of the high dissolution rates was characterized as a function of surfactant adsorption, particle size and surface area, drug crystallinity, and the contact angle for water on the drug surface. For danazol stabilized by polyvinyl pyrrolidone (PVP) alone or with sodium lauryl sulfate (SLS), small particle diameter and high surface area led to high dissolution rates with approximately 90% drug dissolved in 2 min. The crystallinity of the danazol was typically 80%. The properties of the particles and the dissolution rates were mostly unchanged under a 2-week thermal cycling stress test.  相似文献   

9.
With the recent advent of nanotechnology for pharmaceutical applications, drug particle engineering is the focus of increasing interest as a viable approach for overcoming solubility limitations of poorly water-soluble drugs. Although these particle engineering techniques have been proven successful for enhancing the dissolution properties of many poorly water-soluble drugs, there are limitations associated with them such as particle aggregation, morphological instability, and poor wettability. The aim of this study was to demonstrate a processing technique in which hot-melt extrusion (HME) is utilized to overcome these limitations. Micronized particles of amorphous itraconazole (ITZ) stabilized with PVP or HPMC were produced and subsequently melt extruded with poloxamer 407 and PEO 200 M to deaggregate and disperse the particles into the hydrophilic polymer matrix. Differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy were used to demonstrate that the HME process did not alter the properties of the micronized particles. Dissolution testing conducted at sink conditions revealed that the dissolution rate of the micronized particles was improved by HME due to particle deaggregation and enhanced wetting. Supersaturation dissolution testing demonstrated that the ITZ-HPMC micronized particle extrudates provided superior supersaturation of ITZ compared to the ITZ-PVP micronized particle extrudates. Supersaturation dissolution testing incorporating a pH change (from pH 1.2 to 6.8 at 2 h) revealed that neither micronized particle extrudate formulation significantly reduced the rate of ITZ precipitation from supersaturated solution once pH was increased. Moreover, the two extrudate formulations performed very similarly when only considering dissolution testing from just before pH adjustment through the duration of testing at neutral pH. From oral dosing of rats, it was determined that the two extrudate formulations performed similarly in vivo as confirmed by their statistically equivalent AUC values. By correlating the results of supersaturation dissolution testing with pH change to the in vivo AUC, it appears that rapid precipitation of ITZ occurs upon entrance into the more neutral pH environment of the small intestine resulting in a brief opportunity for absorption. This suggests that perhaps the optimum formulation approach for ITZ is to control drug release so as to retard precipitation as pH is increased and extend the absorption window in the small intestine.  相似文献   

10.
The purpose of this article was to compare the in vitro and in vivo profiles of itraconazole (ITZ) extrudates and nanosuspension separately prepared by two different methods. And it was proved truly to form nanocrystalline and amorphous ITZ characterized by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) analysis, Fourier transform infrared spectrum (FTIR), transmission electron microscope (TEM), and scanning electron microscope (SEM). The release of ITZ/Soluplus solid dispersions with amorphous ITZ was almost complete while only 40% release was obtained with ITZ nanocrystals. The amorphous state need not to cross over the crystal lattice energy upon dissolution while the crystalline need to overcome it. In the in vivo assay, the AUC(0–t) and Cmax of ITZ/Soluplus were 6.9- and 11.6-time higher than those of pure ITZ. The formulation of the extrudate had an AUC(0–t) and Cmax similar to those of ITZ and also OH-ITZ compared with the commercial capsule (Sporanox®). The relative bioavailability values with their 95% confidence limit were calculated to be 98.3% (92.5–104.1%) and 101.3% (97.9–104.1%), respectively. The results of this study showed increased dissolution and bioavailability of the solid dispersion of Soluplus-based carrier loading ITZ prepared by HME compared with the ITZ nanosuspension prepared by wet milling.  相似文献   

11.
目的:制备伊曲康唑纳米晶体并进行药剂学性质表征。方法:采用湿法介质研磨结合冷冻干燥工艺制备伊曲康唑纳米晶体;采用马尔文激光粒度测定仪测定伊曲康唑纳米晶体的粒径和多分散系数(PDI);采用扫描电镜观察伊曲康唑粒子的形态;采用差示扫描量热法、红外光谱法、X-射线粉末衍射法研究伊曲康唑纳米化前后晶型和化学结构变化情况;采用浆法比较伊曲康唑纳米化前后及市售胶囊在pH 1.2、pH 4.0、pH 6.8的溶液以及水等4种溶出介质中的溶出行为。结果:制备的伊曲康唑纳米晶体平均粒径为317 nm,PDI值0.29;纳米化前后伊曲康唑晶型和化学结构没有发生明显改变;在pH 1.2、pH 4.0、pH 6.8的溶液以及水等4种溶出介质中,药物溶出速率快慢顺序为伊曲康唑纳米晶体> 市售伊曲康唑胶囊> 物理混合物及伊曲康唑原料药。结论:采用湿法介质研磨结合冷冻干燥工艺,可以制备平均粒径小且较为均匀的伊曲康唑纳米晶体;纳米化后伊曲康唑仍为结晶态;制成纳米晶体可以明显改善伊曲康唑的溶出性能,利于改善药物的口服吸收。  相似文献   

12.
The slow dissolution rate exhibited by poorly water-soluble drugs is a major challenge in the drug development process. Following oral administration, drugs with slow dissolution rates generally show erratic and incomplete absorption which may lead to therapeutic failure. The aim of this study was to improve the dissolution rate and subsequently the oral absorption and bioavailability of a model poorly water-soluble drug. Microparticles containing the model drug (griseofulvin) were produced by spray drying the drug in the absence/presence of a hydrophilic surfactant. Poloxamer 407 was chosen as the hydrophilic surfactant to improve the particle wetting and hence the dissolution rate. The spray dried particles were characterized and in vitro dissolution studies and in vivo absorption studies were carried out. The results obtained showed that the dissolution rate and absolute oral bioavailability of the spray dried griseofulvin/Poloxamer 407 particles were significantly increased compared to the control. Although spray drying griseofulvin alone increased the drug's in vitro dissolution rate, no significant improvement was seen in the absolute oral bioavailability when compared to the control. Therefore, it is believed that the better wetting characteristics conferred by the hydrophilic surfactant was responsible for the enhanced dissolution rate and absolute oral bioavailability of the model drug.  相似文献   

13.
Spray-freeze-drying (SFD) of oleanolic acid (OA), a BCS Class IV compound, with polyvinylpyrrolidone-40 (PVP-40) as stabilizer and sodium caprate (SC) as wetting agent and penetration enhancer produced kinetically stable, amorphous solid dispersion systems with superior in vitro dissolution performance, and better and more uniform absorption in comparison with commercial OA tablet. Relative to the SC-free formulation, the presence of SC in the formulation resulted in a significant increase in the in vivo absorption rate of OA while exerting no apparent impact on the extent of OA absorption. The SFD-processed OA formulations and commercial OA tablet generally exhibited large inter-animal variability in oral bioavailability, consistent with the absorption characteristics of BCS Class IV compounds. Inclusion of SC coupled with the replacement of OA with its sodium salt (OA-Na) in the formulation was shown to substantially decrease the observed absorption variability. Above results suggested that increases in both dissolution rate and intestinal permeability of BCS Class IV compounds, as exemplified by the SFD-processed dispersion system containing both OA-Na and SC, are critical to reducing the large inter-individual absorption variability commonly observed with this class of drugs.  相似文献   

14.
The purpose of this study was to produce a dry powder for inhalation (DPI) of a poorly soluble active ingredient (itraconazole: ITZ) that would present an improved dissolution rate and enhanced solubility with good aerosolization properties. Solid dispersions of amorphous ITZ, mannitol and, when applicable, D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) were produced by spray-drying hydro-alcoholic solutions in which all agents were dissolved. These dry formulations were characterized in terms of their aerosol performances and their dissolution, solubility and physical properties. Modulate differential scanning calorimetry and X-ray powder diffraction analyses showed that ITZ recovered from the different spray-dried solutions was in an amorphous state and that mannitol was crystalline. The inlet drying temperature and, indirectly, the outlet temperature selected during the spray-drying were critical parameters. The outlet temperature should be below the ITZ glass transition temperature to avoid severe particle agglomeration. The formation of a solid dispersion between amorphous ITZ and mannitol allowed the dry powder to be produced with an improved dissolution rate, greater saturation solubility than bulk ITZ and good aerosol properties. The use of a polymeric surfactant (such as TPGS) was beneficial in terms of dissolution rate acceleration and solubility enhancement, but it also reduced aerosol performance. For example, significant dissolution rate acceleration (f(2)<50) and greater saturation solubility were obtained when introducing 1% (w/w) TPGS (mean dissolution time dropped from 50.4 min to 36.9 min and saturation solubility increased from 20 ± 3 ng/ml to 46 ± 2 ng/ml). However, the fine particle fraction dropped from 47 ± 2% to 37.2 ± 0.4%. This study showed that mannitol solid dispersions may provide an effective formulation type for producing DPIs of poorly soluble active ingredients, as exemplified by ITZ.  相似文献   

15.
Purpose. The purpose of this work was to investigate spray-freezing into liquid (SFL) and atmospheric freeze-drying (ATMFD) as industrial processes for producing micronized SFL powders with enhanced aqueous dissolution. Micronized SFL powders dried by ATMFD were compared with vacuum freeze-dried SFL powders. Methods. Danazol was formulated with polyvinyl alcohol (MW 22,000), polyvinylpyrrolidone K-15, and poloxamer 407 to produce micronized SFL powders that were freeze-dried under vacuum or dried by ATMFD. The powders were characterized using Karl-Fischer titration, gas chromatography, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, surface area, and dissolution testing (SLS 0.75%/Tris 1.21% buffer media). Results. Micronized SFL powders containing amorphous drug were successfully dried using the ATMFD process. Micronized SFL powders contained less than 5% w/w and 50 ppm of residual water and organic solvent, respectively, which were similar to those contents detected in a co-ground physical mixture of similar composition. Micronized SFL powders dried by ATMFD had lower surface areas than powders produced by vacuum freeze-drying (5.7 vs. 8.9 m2/g) but significantly greater surface areas than the micronized bulk drug (0.5 m2/g) and co-ground physical mixture (1.9 m2/g). Rapid wetting and dissolution occurred when the SFL powders were introduced into the dissolution media. By 5 min, 100% dissolution of danazol from the ATMFD-micronized SFL powder had occurred, which was similar to the dissolution profile of the vacuum freeze-dried SFL powder. Conclusions. Vacuum freeze-drying is not a preferred technique in the pharmaceutical industry because of scalability and high-cost concerns. The ATMFD process enables commercialization of the SFL particle-engineering technology as a micronization method to enhance dissolution of hydrophobic drugs.  相似文献   

16.
Mesoporous materials have an ability to enhance dissolution properties of poorly soluble drugs. In this study, different mesoporous silicon (thermally oxidized and thermally carbonized) and non-ordered mesoporous silica (Syloid AL-1 and 244) microparticles were compared as drug carriers for a hydrophobic drug, itraconazole (ITZ). Different surface chemistries pore volumes, surface areas, and particle sizes were selected to evaluate the structural effect of the particles on the drug loading degree and on the dissolution behavior of the drug at pH 1.2. The results showed that the loaded ITZ was apparently in amorphous form, and that the loading process did not change the chemical structure/morphology of the particles' surface. Incorporation of ITZ in both microparticles enhanced the solubility and dissolution rate of the drug, compared to the pure crystalline drug. Importantly, the physicochemical properties of the particles and the loading procedure were shown to have an effect on the drug loading efficiency and drug release kinetics. After storage under stressed conditions (3 months at 40 °C and 70% RH), the loaded silica gel particles showed practically similar dissolution profiles as before the storage. This was not the case with the loaded mesoporous silicon particles due to the almost complete chemical degradation of ITZ after storage.  相似文献   

17.
Purpose. To develop and demonstrate a novel particle engineering technology, spray freezing into liquid (SFL), to enhance the dissolution rates of poorly water-soluble active pharmaceutical ingredients (APIs). Methods. Model APIs, danazol or carbamazepine with or without excipients, were dissolved in a tetrahydrofuran/water cosolvent system and atomized through a nozzle beneath the surface of liquid nitrogen to produce small frozen droplets, which were subsequently lyophilized. The physicochemical properties of the SFL powders and controls were characterized by X-ray diffraction, scanning electron microscopy (SEM), particle size distribution, surface area analysis, contact angle measurement, and dissolution. Results. The X-ray diffraction pattern indicated that SFL powders containing either danazol or carbamazepine were amorphous. SEM micrographs indicated that SFL particles were highly porous. The mean particle diameter of SFL carbamazepine/SLS powder was about 7 m. The surface area of SFL danazol/poloxamer 407 powder was 11.04 m2/g. The dissolution of SFL danazol/poloxamer 407 powder at 10 min was about 99%. The SFL powders were free flowing and had good physical and chemical stability after being stored at 25°C/60%RH for 2 months. Conclusions. The novel SFL technology was demonstrated to produce nanostructured amorphous highly porous particles of poorly water soluble APIs with significantly enhanced wetting and dissolution rates.  相似文献   

18.
The objective of the present study was to alter the crystal habit of itraconazole (ITZ) by cooling and anti-solvent crystallization and characterize its properties. ITZ was recrystallized in different solvents and the effects of each solvent on morphology of crystals, dissolution behavior and solid state of recrystallized drug particles were investigated. The results revealed that ITZ crystals recrystallized by cooling and anti-solvent crystallization showed the different crystal habits from the untreated ITZ. Using cooling crystallization tended to provide needle-shaped crystals while the crystals obtained from anti-solvent crystallization showed more flaky, plate shape. This indicated the importance of preparation method on nucleation and crystal growth. No change in drug polymorphism was observed, according to determination of thermal property and crystalline state by differential scanning calorimetry and powder X-ray diffractometry, respectively. The recrystallized ITZ showed higher drug dissolution than untreated ITZ and the highest drug dissolution was observed from the samples recrystallized in the presence of PEG 200, which provided the small plate-shaped crystals with tremendously increased in surface area. However, the increasing of drug dissolution is relatively small, therefore, further development may be required.  相似文献   

19.

Purpose

The purpose of this study was to develop an amorphous solid dispersion (SD) of an extremely water-insoluble and very weakly basic drug, itraconazole (ITZ), by interaction with weak organic acids and then drying that would enhance dissolution rate of drug and physical stability of formulation.

Methods

Aqueous solubility of ITZ in concentrated solutions of weak organic acids, such as glutaric, tartaric, malic and citric acid, was determined. Solutions with high drug solubility were dried using vacuum oven and the resulting SDs having 2 to 20% drug load were characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The dissolution of SDs was initially studied in 250 mL of 0.1 N HCl (pH 1.1), and any undissolved solids were collected and analyzed by PXRD. The pH of the dissolution medium was then changed from 1.1 to 5.5, particle size of precipitates were measured, and drug concentrations in solution were determined by filtration through membrane filters of varying pore sizes.

Results

The aqueous solubility of ITZ was greatly enhanced in presence of weak acids. While the solubility of ITZ in water was ~4 ng/ mL, it increased to 25–40 mg per g of solution at 25°C and 200 mg per g of solution at 65°C at a high acid concentration leading to extremely high solubilization. PXRD of SDs indicated that ITZ was present in the amorphous form, wherein the acid formed a partially crystalline matrix. ATR-FTIR results showed possible weak interactions, such as hydrogen bonding, between drug and acid but there was no salt formation. SDs formed highly supersaturated solutions at pH 1.1 and had superior dissolution rate as compared to amorphous drug and physical mixtures of drug and acids. Following the change in pH from 1.1 to 5.5, ITZ precipitated as mostly nanoparticles, providing high surface area for relatively rapid redissolution.

Conclusions

A method of highly solubilizing an extremely water-insoluble drug, ITZ, in aqueous media and converting it into an amorphous form in a physically stable SD was successfully investigated. The dissolution rate and the extent of supersaturation of the drug in dissolution media improved greatly, and any precipitate formed at high pH had very small particle size.
  相似文献   

20.
Polymorphism of rifampicin has been postulated to be responsible for its variable bioavailability from solid oral dosage forms. In this regard, it was believed that form II is the preferred form and the content of amorphous needs to be critically monitored. However, there was no study in literature that determines solubility advantage associated with rifampicin polymorphs and further the desired raw material characteristics for the consistent bioavailability. Hence, this investigation was undertaken with an objective to determine biopharmaceutic relevance of rifampicin physical forms and to propose critical raw material specifications for rifampicin bulk material. For this purpose, solid-state properties of standard form I, form II, amorphous and commercial samples acquired from rifampicin manufacturers were characterized by differential scanning calorimetry (DSC), Fourier transformed infrared spectroscopy (FTIR), hot stage microscopy (HSM), thermogravimetric analysis (TGA), powder X-ray diffraction (p-XRD), solid-state nuclear magnetic resonance (NMR) and molecular modelling. In addition, intrinsic dissolution of standard samples, powder dissolution as well as particle size distribution of all the samples and powder dissolution of various sieve fraction of commercial samples were done in order to study the influence of polymorphism and other factors on rate and extent of dissolution. It was found that rifampicin in commercial bulk samples exist as various combinations of form I, form II and amorphous. As physical forms show comparable intrinsic dissolution rate (IDR) at all the pH values, solubility advantage associated with rifampicin polymorphs is negligible. Nevertheless, powder dissolution of commercial samples was influenced by particle size. In powder dissolution of different sieve fractions of commercial samples, fine particles below 100 microm have shown high rate and extent of dissolution irrespective of polymorphic content, whereas particles above 100 microm exhibited reduced dissolution. In intrinsic dissolution, thermodynamically unstable form II exhibited lower IDR than stable form I. Further, this difference is evident only at pH 2.0 and at all other pH values there was no difference in IDR of these two forms. For this unexpected finding, two hypotheses based on differences in H-bonding of the polymorph have been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号