首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five antifungal agents with different mechanisms of action were compared for their ability to affect mitochondrial dehydrogenase activity and adherence capacity of Candida albicans to polystyrene and extracellular matrix proteins. Only amphotericin B inhibited mitochondrial dehydrogenase activity when the culture medium was supplemented with galactose. 5-Fluorocytosine and terbinafine did not affect this activity, whereas itraconazole and fluconazole improved it. Furthermore, in these experimental conditions, the effect of sub-inhibitory concentrations of antifungals on adherence was dependent on the tested antifungal and the adherence surface: amphotericin B inhibited adherence to polystyrene and fibrinogen, but improved adherence to extracellular matrix. For all surfaces tested, when culture medium was supplemented with galactose, fluorocytosine did not affect adherence, and itraconazole, fluconazole and terbinafine inhibited adherence. Our results also confirmed the influence of the carbohydrates: sub-minimum inhibitory concentrations (MIC) of itraconazole increased or did not modify the mitochondrial metabolism of yeasts when the culture medium was supplemented with galactose, but this antifungal always decreased mitochondrial metabolism when the culture medium was supplemented with glucose. These data indicate that antifungals used below their MIC values can have various effects. It is important to distinguish the effects of antifungals on the metabolism of C. albicans from effects on its adherence capacity. The former effects are linked to the viability of the yeast and the latter depends on the colonization of cellular as opposed to inert surfaces.  相似文献   

2.
Lysozyme (muramidase) is a non-specific, antimicrobial protein ubiquitous in human mucosal secretions such as saliva. Although its antibacterial and antifungal activities are well recognised, there are no data on the specific concentrations necessary to affect the growth of Candida albicans or about the effect of lysozyme on the production of secreted aspartyl proteinase (Sap), a putative virulence factor of C. albicans. Five Sap-producing isolates of C. albicans were cultured in YCB-BSA medium with various concentrations of lysozyme to examine its effect on yeast cell growth, ultrastructural cellular topography and extracellular and intracellular Sap concentration and activity. Lysozyme was candidacidal at high concentrations and decreased significantly the extracellular Sap concentration at sublethal doses, accompanied by intracellular accumulation of the enzyme. At low concentrations of lysozyme (c. 10 microg/ml), Sap activity decreased more than two-fold and Sap concentration decreased five-fold without any appreciable effect on cell growth or viability. Ultrastructural investigations showed ballooned cells and cells with invaginations (especially present near bud scars), indicating that cell-wall components may be possible targets for this enzyme. All concentrations of lysozyme tested were well within physiologically attainable levels. These data suggest that lysozyme has, at least, a bimodal action on C. albicans, killing the organism at higher concentrations and modulating Sap metabolism at lower concentrations.  相似文献   

3.
The ability of murine recombinant gamma interferon (IFN) or lymphokines to enhance the fungicidal activity of murine pulmonary macrophages (PuM) was studied in in vitro. PuM monolayers were incubated overnight with IFN, lymph node cells (LNC) plus concanavalin A, supernatants from Con A stimulated LNC or spleen cell cultures (Con A Sup), or tissue culture medium (TCM) +/- Con A (5 micrograms/ml) or +/- lipopolysaccharide (LPS, 10 ng to 10 micrograms/ml). After treatment, culture fluids were removed and PuM were challenged for 4 h with the yeast-form Blastomyces dermatitidis or 2 h with Candida albicans. Inoculum colony forming units (CFU) of B. dermatitidis were significantly reduced by PuM treated with 1000 U/ml of IFN (25 +/- 3%), Con A Sup (25 +/- 3%) or LNC plus Con A (37-44%), but not by TCM, ConA or LPS. Candida albicans was killed by PuM treated with Con A Sup (33 +/- 8%) or LNC plus Con A (30-43%), but not by TCM, Con A, or LPS, and the activity of Con A Sup was neutralized by anti-IFN antibody. Candida albicans was not significantly killed by PuM treated with IFN doses ranging from 1 to 10(5) U/ml; nor did addition of LPS to IFN, or prolonged (3 day) treatment with IFN, result in significant killing of C. albicans by PuM. However, IFN (100 U/ml) could activate resident peritoneal macrophages for significant candidacidal activity (63%). These data indicate that PuM can be activated for fungicidal activity, and that PuM differ from resident peritoneal macrophages with regard to induction of candidacidal activity by recombinant gamma-IFN.  相似文献   

4.
5.
We have previously demonstrated the ability of human neutrophil myeloperoxidase to bind to mannan isolated from Candida albicans. Mannan may therefore be a primary component of the yeast cell wall which provides for binding of myeloperoxidase, a requirement potentially important for the candidacidal activity of the enzyme. In this report, we describe experiments to consider the relationship of the mannan-binding activity of myeloperoxidase to its candidacidal activity and the possibility that free mannan may inhibit myeloperoxidase-mediated candidacidal activity. We observed that binding of myeloperoxidase to the target yeasts was required for killing of C. albicans. We also observed that addition of soluble mannan significantly reduced myeloperoxidase-mediated killing of the yeasts in a dose-dependent manner by antagonizing binding of myeloperoxidase. Soluble mannan was demonstrated to have a similar dose-dependent inhibitory effect on neutrophil-mediated candidacidal activity without influencing phagocytosis of the organism. On the basis of these observations, we speculate that mannan solubilized in plasma and tissue fluid may interfere with neutrophil-mediated host defense against Candida infection.  相似文献   

6.
Several salivary proteins exhibit fungicidal activity against the opportunistic oral pathogen Candida albicans when they are tested as pure proteins in vitro. However, salivary secretions that are examined by the same assays either lack or exhibit very low candidacidal activity. Since ionic strength is known to have an inhibitory effect on the fungicidal activities of some proteins, parotid secretion was subjected to dialysis with membranes having molecular weight cutoffs (MWCOs) of 500, 1000, 10000, and 25000. Dialysis with membranes with MWCOs of >=1000 promoted fungicidal activity of parotid secretion, and this activity was dose dependent. The addition of sodium chloride to dialyzed, fungicidal parotid secretion abolished this activity, indicating that the fungicidal component was salt sensitive. Similar results were obtained with submandibular and sublingual secretions. Polyacrylamide gel electrophoresis under native and denaturing conditions was used to analyze the composition of the dialysate. Unexpectedly, proteins with MWs much lower than the nominal MWCOs of the membranes were not lost during dialysis. Among the retained proteins, the two fractions with MWs of approximately 17000 and 4000 exhibited fungicidal activity. These results are consistent with the presence of lysozyme and histatins, respectively, which may represent the major candidacidal capacity of dialyzed parotid secretion.  相似文献   

7.
We tested the ability of rabbit macrophages to kill Candida albicans in vitro. Resident (unstimulated) alveolar macrophages killed 28.1 +/- 1.9% of ingested organisms in 4 h, whereas resident peritoneal macrophages killed only 15.2 +/- 1.3% (mean +/- standard error of the mean, P < 0.01). Peritoneal macrophages obtained from rabbits treated 3 weeks earlier with complete Freund adjuvant showed enhanced candidacidal activity relative to normally resident peritoneal cells (28.2 +/- 3.1%, P < 0.01). Candidacidal activity by alveolar macrophages recovered from such treated animals was slightly enhanced relative to untreated alveolar macrophages (32.9 +/- 2.3%). Candidacidal activity by peritoneal and alveolar macrophages was not decreased by several agents (cyanide, azide, sulfadiazine, and phenylbutazone) that inhibit the ability of human blood monocytes to kill C. albicans. In contrast, candidacidal activity by alveolar macrophages was greatly diminished by iodoacetate, an ineffective inhibitor of this function in human monocytes. We conclude that rabbit macrophages kill C. albicans by a fungicidal mechanism distinct from the peroxidase-H2O2 mechanism of human granulocytes and monocytes, and that the fungicidal properties of peritoneal and alveolar macrophage populations are enhanced after nonspecific stimulation with complete Freund adjuvant.  相似文献   

8.
The adherence of Candida albicans was studied in situ by using the perfused mouse liver model. After exhaustive washing, 10(6) C. albicans were infused into mouse livers. At the time of recovery, 62 +/- 5% (mean +/- standard error of the mean) of the infused C. albicans were recovered from the liver and 14 +/- 3% were recovered from the effluent for a total recovery of 76 +/- 4%. This indicates that 86 +/- 3% of the original inoculum was trapped by the liver and that 24 +/- 4% was killed within the liver. Chemical pretreatment of C. albicans with 8 M urea, 12 mM dithiothreitol, 2% beta-mercaptoethanol, 1% sodium dodecyl sulfate, 10% Triton X-100, or 3 M potassium chloride or enzyme pretreatment with alpha-mannosidase, alpha-chymotrypsin, subtilisin, beta-N-acetyl-glucosaminidase, pronase, trypsin, papain, or lipase did not alter adherence of C. albicans to hepatic tissue. By contrast, pepsin pretreatment significantly decreased hepatic trapping. Simultaneous perfusion with either 100 mg of C. albicans glycoprotein per liter or 100 mg of C. albicans mannan per liter also decreased trapping. Furthermore, both substances eluted previously trapped C. albicans from hepatic tissue. Chemical pretreatment with 8 M urea, 12 mM dithiothreitol, or 3 M KCI or enzymatic pretreatment with alpha-mannosidase, subtilisin, alpha-chymotrypsin, or papain increased killing of C. albicans three- to fivefold within hepatic tissue. The data suggest that mannose-containing structures on the surface of C. albicans, for example. mannans or glucomannoproteins, mediate adherence of C. albicans within the liver. Indirectly, chemical and enzymatic pretreatment renders C. albicans more susceptible to hepatic killing.  相似文献   

9.
During Pneumocystis carinii pneumonia (PCP) in mice, the degree of pulmonary inflammation correlates directly with the severity of lung function deficits. Therefore, studies were undertaken to determine whether the host inflammatory response contributes to PCP-related respiratory impairment, at least in part, by disrupting the pulmonary surfactant system. Protein and phospholipid content and surfactant activity were measured in the lavage fluid of infected mice in either the absence or presence of an inflammatory response. At 9 weeks postinfection with P. carinii, nonreconstituted SCID mice exhibited no signs of pulmonary inflammation, respiratory impairment, or surfactant dysfunction. Lavage fluid obtained from these mice had protein/phospholipid (Pr/PL) ratios (64% +/- 4.7%) and minimum surface tension values (4.0 +/- 0.9 mN/m) similar to those of P. carinii-free control mice. However, when infected SCID mice were immunologically reconstituted, an intense inflammatory response ensued. Pr/PL ratios (218% +/- 42%) and minimum surface tension values (27.2 +/- 2.7 mN/m) of the lavage fluid were significantly elevated compared to those of the lavage fluid from infected, nonreconstituted mice (P < 0.05). To examine the specific role of CD8(+) T-cell-mediated inflammation in surfactant dysfunction during PCP, mice with defined T-cell populations were studied. P. carinii-infected, CD4(+)-depleted mice had elevated lavage fluid Pr/PL ratios (126% +/- 20%) and elevated minimum surface tension values (16.3 +/- 1.0 mN/m) compared to normal mice (P < 0.05). However, when infected mice were additionally depleted of CD8(+) cells, Pr/PL ratios were normal and surfactant activity was improved. These findings demonstrate that the surfactant pathology associated with PCP is related to the inflammatory process rather than being a direct effect of P. carinii. Moreover, CD8(+) lymphocytes are involved in the mechanism leading to surfactant dysfunction.  相似文献   

10.
NP-1, a candidacidal peptide purified from rabbit granulocytes, bound extensively and with biphasic kinetics to Candida albicans. The primary phase of binding was temperature independent and occurred even at 0 degrees C. This primary binding was relatively specific, reversible, saturable, and of high capacity. It was inhibited by increased salt concentrations in the incubation medium, but was relatively unaffected by increasing the calcium ion concentration or by lowering the incubation temperature to 0 degrees C. The secondary phase of binding was only noted under conditions that supported candidacidal activity. Secondary binding was inhibited by millimolar concentrations of calcium, but not magnesium, ions and did not occur at 0 degrees C or when subtoxic concentrations of NP-1 were tested. NP-2 and NP-3a, other potent candidacidal peptides from rabbit granulocytes, also bound directly and extensively to C. albicans and competed for binding with NP-1. NP-4 and NP-5, less candidacidally active homologs of the aforementioned peptides, showed relatively little direct binding activity and competed poorly for binding with NP-1 or NP-2. NP-3b, another less candidacidal homolog, bound extensively to C. albicans, but did not compete effectively with NP-1 or NP-2. By comparing candidacidal and binding activity of the peptides, we conclude that the candidacidal activity of NP-1 involves primary binding to C. albicans followed by postbinding events that are temperature dependent and inhibitable by calcium ions.  相似文献   

11.
Certain environmental, physical, and biochemical aspects of Candida albicans adherence to human vaginal epithelial cells were characterized by using an in vitro radiometric adherence assay. Blastospores harvested from cultures grown at 25 degrees C adhered to vaginal epithelial cells in significantly greater numbers than did blastospores isolated from cultures grown at 37 degrees C. C. albicans viability was not essential for adherence, but severe methods used to kill the blastospores did reduce their attachment. The addition of sodium chloride, divalent cations, sugars, mannan, or mannoprotein to the assay had no effect on attachment. Pretreatment of the blastospores with detergents, salts, urea, glycosidases, lipase, or pepsin did not affect adherence, but treatment with reducing agents or five proteolytic enzymes did render C. albicans nonadherent. Cell wall fragments prepared from C. albicans, but not from Candida krusei, adhered to vaginal epithelial cells. Loss of adherence after the cell walls were treated with alpha-mannosidase or papain suggests that cell wall mannoprotein is an essential component of the C. albicans adhesin.  相似文献   

12.
The incidence of life threatening mycoses caused by opportunistic fungi has increased dramatically in recent years with Candida and Aspergillus being the most commonly encountered species. Candida albicans ranks among the four most common causes of bloodstream infections and is responsible for vulvovaginal candidiasis in the majority of women in their reproductive years. Limited spectrum of antifungal activity of currently available antifungals and emergence of resistance has become a serious problem. Therefore, in search of an alternative form of treatment of candidiasis, in the present study a monoclonal antibody (MAb-G5) of IgA isotype was identified from the hybridoma produced by the fusion of lymphocytes of C. albicans immunized mouse with Sp2/O cells. The MAb-G5 exhibited in vitro candidacidal activity and was also found to be useful for treatment and prophylactic use under experimental conditions in vivo.  相似文献   

13.
Previous studies have demonstrated that Friend leukemia virus (FLV) induces a profound immunosuppression in susceptible mice. The studies described in this report indicate that mice infected with FLV have an increased susceptibility to subsequent infection with the opportunistic pathogen Candida albicans, as measured by increased numbers of C. albicans CFU in the kidneys of FLV-infected mice relative to uninfected controls. Experiments in which the NB-tropic and N-tropic strains of FLV were used suggest that virus replication or the resulting virus burden may be important in the observed increased susceptibility to C. albicans. Since neutrophils are believed to be important in the response of mice to systemic Candida infections, the effect of FLV infection on neutrophil candidacidal activity was investigated. The percentage of neutrophils present in unfractionated Proteose Peptone-elicited peritoneal exudates of mice infected with FLV for 14 days was significantly lower than in uninfected control mice or mice infected with FLV for 6 or 10 days. When neutrophils from FLV-infected and control mice were purified, adjusted to equal concentrations, and tested for in vitro candidacidal activity, neutrophils from mice infected with FLV for 14 days were deficient in their ability to kill C. albicans relative to normal controls and mice infected with FLV for 6 or 10 days. Addition of normal mouse serum increased killing in all groups but did not restore candidacidal activity of neutrophils from mice infected with FLV for 14 days to levels of control neutrophils or neutrophils from mice infected for 6 or 10 days with the virus. These results suggest a defect in neutrophil function, at the later stages of FLV infection, involving in vitro candidacidal activity. In addition, neutrophils from FLV-infected mice may be deficient in in vivo chemotactic activity. These defects in neutrophil function could account, at least in part, for the observed increased susceptibility of FLV-infected mice to C. albicans.  相似文献   

14.
Oral candidosis is a common opportunistic infection in debilitated individuals and Candida glabrata is the second most frequently isolated species from this condition, after Candida albicans. Candidal adherence to various biological or non-biological surfaces is considered a prerequisite for colonization, and pathogenesis of candidal infections, and their relative cell surface hydrophobicity (CSH) is likely to be a possible contributory force involved in this process. Whereas a large body of data on the latter features of C. albicans is available, there is surprisingly little information on C. glabrata. As a comprehensive database on the relative adhesion and CSH of Candida spp. is instructive and useful, we investigated in vitro the latter attributes of 34 oral isolates of C. glabrata and 15 isolates of C albicans. There were remarkable intraspecies differences in both the CSH and the adhesive ability of C. glabrata strains (p < 0.001). Compared with C. albicans, C glabrata demonstrated a four-fold greater CSH value (30.63 +/- 11.20% vs 7.23+/-3.56%, p < 0.0001) and a two-fold greater tendency to adhere to denture acrylic surfaces (75.18 +/- 39.96 vs 30.36+/-9.21, p < 0.0001). A significant positive correlation between CSH and adhesion was also noted for both C. glabrata (r=0.674, p < 0.0001) and C. albicans ( r = 0.636, p < 0.05). When the effect of different incubation conditions on the relative CSH and adherence of C. glabrata was examined, CSH and the adherence to acrylic surfaces of four of six C. glabrata isolates were significantly affected by a reduction of the culture temperature (from 37 degrees C to 25 degrees C). A positive relationship also emerged when the temperature-induced variations in the adherence values were correlated with their relative CSH. These data provide hitherto unavailable archival information on important pathogenic attributes of the two most common oral Candida species that may help explain their predominance in this milieu.  相似文献   

15.
Although granulocytes are essential for the resistance against infections with Candida albicans, these cells do not kill the ingested yeast optimally. Various cytokines can enhance functional activities of granulocytes, but until now only interferon-gamma (IFN-gamma) has been applied more widely, namely in patients with chronic granulomatous disease. Since it is not certain whether IFN-gamma is able to enhance the candidacidal activity of granulocytes the present study was undertaken. Human granulocytes incubated with various concentrations of recombinant human IFN-gamma (rIFN-gamma) were studied for the phagocytosis and intracellular killing of C. albicans and their oxygen metabolism after stimulation with opsonized Candida. Results showed a small increase in the rate of phagocytosis and a dose-dependent increase of the intracellular killing of C. albicans and the production of H2O2. The increased candidacidal activity and H2O2 production by rIFN-gamma-stimulated granulocytes were inhibited by diphenylene iodonium (DPI). From these results it is concluded that the increased candidacidal activity of granulocytes activated by rIFN-gamma is caused by the increased production of reactive oxygen radicals.  相似文献   

16.
There is only scanty data on the effects of specific antibody, with or without complement, on Candida albicans or Candida krusei in cell-free systems in vitro, although previously published work has shown that specific antibody mediates anti- Candida immunity in vivo by inhibition of adherence to host cells or surfaces and by the promotion of phagocytosis and intra-phagocytic killing. The MTT (3-[4, 5-dimethyl-2-thiazolyl] -2, 5-diphenyl -2H- tetrazolium bromide)-reduction method as a test of the viability of fungi was used to investigate the effect of complement, normal serum and immune serum on these two species of Candida that are of increasing importance as opportunistic pathogens. We report that normal rabbit serum or strain-specific, polyclonal anti- Candida rabbit antibody, with or without guinea pig complement, did not cause the reduction of total cell-mass or of the viability of either C. albicans or C. krusei, in vitro as determined by the MTT-reduction test. Complement alone without specific antibody, also, had no such effect on these two Candida species.  相似文献   

17.
We have recently reported the in vivo modulation of resistance to experimental Candida albicans infection by cyclophosphamide (150 mg/kg intraperitoneally) in mice and have shown that increased resistance to the microbial challenge occurs 12 to 21 days after treatment with the drug (Bistoni et al., Infect. Immun. 40: 46-55, 1983). The event is accompanied by the appearance of a highly candidacidal cell population in the spleen and the activation of a subpopulation of natural cytotoxic effectors reactive in vitro against YAC-1 tumor cells. We now provide evidence that these anti-YAC-1 cytotoxic effectors are clearly distinct from the cyclophosphamide-induced candidacidal effectors, which seem to belong to a macrophage-monocyte lineage. The enhanced cytotoxic activity induced by cyclophosphamide was not restricted to C. albicans but was also exerted against a panel of Candida strains.  相似文献   

18.
Antibodies are believed to play a role in the protection against Candida albicans infections by a number of mechanisms, including the inhibition of adhesion or germ tube formation, opsonization, neutralization of virulence-related enzymes, and direct candidacidal activity. Although some of these biological activities have been demonstrated individually in monoclonal antibodies (MAbs), it is not clear if all these anti-C. albicans activities can be displayed by a single antibody. In this report, we characterized a monoclonal antibody raised against the main target of salivary secretory immunoglobulin A in the cell wall of C. albicans, which exerts three anti-C. albicans activities: (i) inhibition of adherence to HEp-2 cells, (ii) inhibition of germination, and (iii) direct candidacidal activity. MAb C7 reacted with a proteinic epitope from a mannoprotein with a molecular mass of >200 kDa predominantly expressed on the C. albicans germ tube cell wall surface as well as with a number of antigens from Candida lusitaniae, Cryptococcus neoformans, Aspergillus fumigatus, and Scedosporium prolificans. MAb C7 caused a 31.1% inhibition in the adhesion of C. albicans to HEp-2 monolayers and a 55.3% inhibition in the adhesion of C. albicans to buccal epithelial cells, produced a 38.5% decrease in the filamentation of C. albicans, and exhibited a potent fungicidal effect against C. albicans, C. lusitaniae, Cryptococcus neoformans, A. fumigatus, and S. prolificans, showing reductions in fungal growth ranging from 34.2 to 88.7%. The fungicidal activity showed by MAb C7 seems to be related to that reported by antibodies mimicking the activity of a killer toxin produced by the yeast Pichia anomala, since one of these MAbs also reacted with the C. albicans mannoprotein with a molecular mass of >200 kDa. Results presented in this study support the concept of a family of microbicidal antibodies that could be useful in the treatment of a wide range of microbial infections when used alone or in combination with current antimicrobial agents.  相似文献   

19.
In the present work we analyze the effects of thymosin alpha 1 treatment on the number and the candidacidal activity of murine polymorphonuclear leukocytes. The data we obtained showed that the treatment with thymosin alpha 1 (100 micrograms/Kg s.c.) 10, 8, 6, 4 and 2 days before the assay may result in a significant numerical augmentation of circulating polymorphonucleates in the peripheral blood, as well as of their candidacidal activity when measured in vitro in both a 4-h cytotoxicity assay and a CFU inhibition assay against Candida albicans microorganisms. On the other hand, a single dose of thymosin alpha 1 (500 micrograms/Kg s.c.) 3 days before the assay resulted in a significant decrease of the candidacidal activity of mouse polymorphonucleates. The data are discussed with regard to the immunomodulating capacity of thymosin alpha 1 and to our previously reported observations concerning the ability of the drug to modulate the resistance against systemic Candida albicans infection.  相似文献   

20.
Freshly isolated human monocytes ingested and killed Candida albicans, and generated O2- H2O2 and .OH efficiently. When monocytes were cultured in vitro, these cells transformed into macrophages. Cultured monocytes retained their ingestive activity but lost their candidacidal activity almost completely after day 3. The release of O2- by monocytes decreased slightly with culture and that of .OH was markedly decreased on day 3 of culture. The activity of myeloperoxidase in the monocytes decreased with culture. These results suggested that the loss of candidacidal activity is due to the decrease of .OH generation and myeloperoxidase activity in cultured monocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号