首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gaymes TJ  Mufti GJ  Rassool FV 《Cancer research》2002,62(10):2791-2797
Human myeloid leukemias are characterized by chromosomal abnormalities, including translocations, deletions, and allelic loss. These alterations are known to disrupt the function of genes that contribute to tumor initiation and progression. The mechanism underlying the appearance of these chromosomal alterations is poorly understood. Recent evidence suggests that altered nonhomologous end joining (NHEJ) is associated with the incidence of chromosome abnormalities in mutant rodent cells. This pathway is thought to provide a major mechanism for the repair of double-strand breaks (DSB) in higher eukaryotes. Here, we show that in an in vitro assay for DSB end ligation, nuclear extracts prepared from cultured and primary myeloid leukemia cells show a 2-7-fold increase in end-ligation efficiency as compared with mobilized peripheral CD34+ blood progenitor cells (CD34+) and interleukin-2-stimulated peripheral blood lymphocytes from normal healthy donors (P < 0.001). Furthermore, using an in vitro plasmid LacZ gene reactivation assay to determine DSB repair fidelity, nuclear extracts prepared from myeloid leukemia cells showed an increased frequency of misrepair compared with normal control cells (P < 0.001). Most importantly, this misrepair in myeloid leukemia cells is associated with large deletions (30-400 bp) within the test plasmids used in our assay. These deletions were not observed using normal hematopoietic cells (<28 bp). Strikingly, we show that the NHEJ proteins, Ku70 and 86, are required for the deletions in myeloid leukemias because preincubating nuclear extracts from leukemic cells with antisera against Ku86 and Ku70 inhibits plasmid reactivation and restores the frequency and size of deletions to control levels. Our findings suggest that an overactive NHEJ system and, specifically, aberrant Ku70/86 activity is a candidate mechanism for chromosomal instability in myeloid leukemias.  相似文献   

2.
The frequency of acute myeloid leukemia (AML) with balanced chromosomal translocations arising after anticancer therapy with DNA-damaging agents such as DNA topoisomerase II inhibitors has increased over the last two decades. However, factors that predispose to these therapy-related disorders are still poorly defined. It has been reported that DNA double-strand break (DSB) repair by the non-homologous end-joining (NHEJ) pathway is impaired in myeloid leukemia cells. This led us to hypothesize that therapy-related AML (t-AML) may result from individual differences in the repair of DSBs generated by the treatment. We show here that DSB repair is accurate, in vivo, in non-tumoral cells derived from patients who developed t-AML with t(9;11) or t(15;17) translocation after treatment for a first cancer with DNA topoisomerase II inhibitors. These results indicate that a major constitutive defect in the NHEJ pathway is unlikely to predispose to t-AML with balanced chromosomal translocations.  相似文献   

3.
Gaymes TJ  North PS  Brady N  Hickson ID  Mufti GJ  Rassool FV 《Oncogene》2002,21(16):2525-2533
BS is an inherited cancer predisposition disorder caused by inactivation of the RecQ family helicase, BLM. One of the defining features of cells from BS individuals is chromosomal instability, characterized by elevated sister chromatid exchanges (SCEs), as well as chromosomal breaks, deletions, and rearrangements. Although the basis for chromosomal instability is poorly understood, there is evidence that chromosomal abnormalities can arise through an alteration in the efficiency or fidelity of DNA double strand break (DSB) repair. Here, we show that BS cells demonstrate aberrant DSB repair mediated by the non-homologous end-joining (NHEJ) pathway for DNA repair, one of the two main pathways for the repair of DSBs in mammalian cells. Through a comparison of BS cell lines, and a derivative in which the BS phenotype has been reverted by expression of the BLM cDNA, we show that BS cells display aberrant end-joining of DSBs. Importantly, DNA end-joining in BS cells is highly error-prone and frequently results in DNA ligation at distant sites of microhomology, creating large DNA deletions. This aberrant repair is dependent upon the presence of the Ku70/86 heterodimer, a key component in the NHEJ pathway. We propose that aberrant NHEJ is a candidate mechanism for the generation of chromosomal instability in BS.  相似文献   

4.
5.
DNA double strand breaks (DSB) are considered the most lethal form of DNA damage for eukaryotic cells. DSB can either be properly repaired, restoring genomic integrity, or misrepaired resulting in drastic consequences, such as cell death, genomic instability, and cancer. It is well established that exposure to DSB-inducing agents is associated with chromosomal abnormalities and leukemogenesis. The non-homologous end joining (NHEJ) pathway is considered a major route for the repair DSB in mammalian cells. Although the mechanism(s) by which repair of DSB lead to leukemia are poorly understood, recent evidence is beginning to emerge that a poorly defined and error-prone branch of the NHEJ pathway plays a pivotal role in this process. This review discusses some of the ways in which error-prone NHEJ repair may be involved in the development of genomic instability and leukemia.  相似文献   

6.
The life and death of DNA-PK   总被引:32,自引:0,他引:32  
Double-strand breaks (DSBs) arise endogenously during normal cellular processes and exogenously by genotoxic agents such as ionizing radiation (IR). DSBs are one of the most severe types of DNA damage, which if left unrepaired are lethal to the cell. Several different DNA repair pathways combat DSBs, with nonhomologous end-joining (NHEJ) being one of the most important in mammalian cells. Competent NHEJ catalyses repair of DSBs by joining together and ligating two free DNA ends of little homology (microhomology) or DNA ends of no homology. The core components of mammalian NHEJ are the catalytic subunit of DNA protein kinase (DNA-PK(cs)), Ku subunits Ku70 and Ku80, Artemis, XRCC4 and DNA ligase IV. DNA-PK is a nuclear serine/threonine protein kinase that comprises a catalytic subunit (DNA-PK(cs)), with the Ku subunits acting as the regulatory element. It has been proposed that DNA-PK is a molecular sensor for DNA damage that enhances the signal via phosphorylation of many downstream targets. The crucial role of DNA-PK in the repair of DSBs is highlighted by the hypersensitivity of DNA-PK(-/-) mice to IR and the high levels of unrepaired DSBs after genotoxic insult. Recently, DNA-PK has emerged as a suitable genetic target for molecular therapeutics such as siRNA, antisense and novel inhibitory small molecules. This review encompasses the recent literature regarding the role of DNA-PK in the protection of genomic stability and focuses on how this knowledge has aided the development of specific DNA-PK inhibitors, via both small molecule and directed molecular targeting techniques. This review promotes the inhibition of DNA-PK as a valid approach to enhance the tumor-cell-killing effects of treatments such as IR.  相似文献   

7.
Zhu B  Deng X  Sun Y  Bai L  Xiahou Z  Cong Y  Xu X 《癌症》2012,31(8):392-398
DNA double-strand break(DSB) is the most severe form of DNA damage,which is repaired mainly through high-fidelity homologous recombination(HR) or error-prone non-homologous end joining(NHEJ).Defects in the DNA damage response lead to genomic instability and ultimately predispose organs to cancer.Nicotinamide phosphoribosyltransferase(Nampt),which is involved in nicotinamide adenine dinucleotide metabolism,is overexpressed in a variety of tumors.In this report,we found that Nampt physically associated with CtIP and DNA-PKcs/Ku80,which are key factors in HR and NHEJ,respectively.Depletion of Nampt by small interfering RNA(siRNA) led to defective NHEJ-mediated DSB repair and enhanced HR-mediated repair.Furthermore,the inhibition of Nampt expression promoted proliferation of cancer cells and normal human fibroblasts and decreased β-galactosidase staining,indicating a delay in the onset of cellular senescence in normal human fibroblasts.Taken together,our results suggest that Nampt is a suppressor of HR-mediated DSB repair and an enhancer of NHEJ-mediated DSB repair,contributing to the acceleration of cellular senescence.  相似文献   

8.
DNA-dependent protein kinase (DNA-PK), including Ku80, Ku70 and DNA-PK catalytic subunit (DNA-PKcs), is the key protein in non-homologous end-joining (NHEJ) after DNA double-strand breaks (DSBs) appear. In this study, small hairpin interfering RNAs (siRNAs) targeting Ku80 and DNA- PKcs were used both individually and in combination, to explore the effects of these DSB proteins on HeLa cell functional changes after X-ray irradiation. HeLa cells co-transfected with Ku80-siRNA and DNA-PKcs-siRNA were more radiosensitive than the ones transfected individually. HeLa in the absence of Ku80 and pretreated with LY294002, a chemically specific PI 3-kinase inhibitor, resulted in cells that were even more sensitive to X-rays than HeLa/Ku80-siRNA transfected with DNA- PKcs-siRNA. The cells inhibited by Ku80 either individually or in combination with DNA-PKcs showed cell accumulation in the G2/M phase 48 h post-irradiation, similarly to control cells. However, cells transfected with DNA-PKcs-siRNA or pretreated with LY294002 had a prolonged G2/M delay, suggesting the accumulation of significant un-repaired DNA damage following inhibition of DSB repair proteins. In conclusion, these data indicate that the role of Ku80 in DSB repair could be compensated by other DSB repair proteins; co-inhibition would be a suitable strategy to enhance the radiosensitivity of cancer cells.  相似文献   

9.
10.
Protein phosphatase 2A (PP2A) functions as a potent tumor suppressor, but its mechanism(s) remains enigmatic. Specific disruption of PP2A by either expression of SV40 small tumor antigen or depletion of endogenous PP2A/C by RNA interference inhibits Ku DNA binding and DNA-PK activities, which results in suppression of DNA double-strand break (DSB) repair and DNA end-joining in association with increased genetic instability (i.e., chromosomal and chromatid breaks). Overexpression of the PP2A catalytic subunit (PP2A/C) enhances Ku and DNA-PK activities with accelerated DSB repair. Camptothecin-induced DSBs promote PP2A to associate with Ku 70 and Ku 86. PP2A directly dephosphorylates Ku as well as the DNA-PK catalytic subunit (DNA-PKcs) in vitro and in vivo, which enhances the formation of a functional Ku/DNA-PKcs complex. Intriguingly, PP2A promotes DSB repair in wild type mouse embryonic fibroblast (MEF) cells but has no such effect in Ku-deficient MEF cells, suggesting that the Ku 70/86 heterodimer is required for PP2A promotion of DSB repair. Thus, PP2A promotion of DSB repair may occur in a novel mechanism by activating the nonhomologous end-joining pathway through direct dephosphorylation of Ku and DNA-PKcs, which may contribute to maintenance of genetic stability.  相似文献   

11.
DNA double-strand breaks (DSBs) can be induced by a number of endogenous and exogenous agents and are lethal events if left unrepaired. DNA DSBs can be repaired by homologous recombination (HR) and nonhomologous end joining (NHEJ). In mammals and higher eukaryotes, NHEJ is thought to be the primary pathway for repair, but the role for each pathway in DNA DSB repair has not been fully elucidated. To define the relative contributions of HR and NHEJ in mammalian DNA DSB repair, cells defective in both pathways were produced. Double-mutant cells were created by expressing a dominant mutant hRAD54 protein in a DNA-dependent protein kinase (DNA-PK)-deficient severe combined immunodeficient cell line. Double-mutant cells demonstrate an increase in ionizing radiation sensitivity and a decrease in DNA DSB repair as compared with either single mutant, whereas single-mutant hRAD54 cells exhibit a wild-type phenotype. Unexpectedly, DNA-PK-null cells were more resistant to mitomycin-C damage than were wild-type cells. Chromosome aberration analysis reveals numerous incomplete chromatid exchange aberrations in the majority of the double-mutant cells after ionizing radiation exposure. Our findings confirm a role for HR in DSB repair in higher eukaryotes, yet indicate that its role is not evident unless the primary repair pathway, NHEJ, is nonfunctional. Mitomycin-C resistance in DNA-PK-null cells compared with wild-type cells suggests that the HR pathway may be more efficient in cross-link repair in the absence of NHEJ. Lastly, the incorrectly repaired chromatid damage observed in double-mutant cells may result from failed recombination or another error-prone repair process that is apparent in the absence of the two primary repair pathways.  相似文献   

12.
Two major pathways for repairing DNA double-strand breaks (DSBs) have been identified in mammalian cells, nonhomologous end-joining (NHEJ) and homologous recombination (HR). Inactivation of NHEJ is known to lead to an elevated level of spontaneous and radiation-induced chromosomal rearrangements associated with an increased risk of tumorigenesis. This has raised the idea of a caretaker role for NHEJ. It is, however, not known whether NHEJ itself can also cause rearrangements. To investigate, on the DNA level, the influence of a defect in NHEJ on the formation of genomic rearrangements, we applied an assay based on Southern hybridization that allows the identification and quantification of incorrectly rejoined DSB ends produced by ionizing radiation. After 80 Gy of X-irradiation at a high dose rate (23 Gy/min), wild-type cells repaired 50% of the induced DSBs within 24 h by incorrect rejoining. This frequency of DSB misrejoining is considerably reduced in NHEJ-deficient cells. Low-dose-rate experiments, in which the cells were exposed to 80 Gy over a period of 14 days under repair conditions, led to no detectable misrejoining in wild-type cells but revealed a misrejoining frequency of 10% in NHEJ-deficient cells. This shows that in situations of separated breaks, NHEJ deficiency leads to genomic rearrangements, in agreement with chromosomal studies. However, if multiple DSBs coincide, even wild-type cells form genomic rearrangements frequently. These repair events are absent in Ku80-, DNA-PKcs-, and DNA ligase IV-deficient cells but are present in RAD54(-/-) cells. This strongly suggests that NHEJ has, in addition to its caretaker role, also the potential to effect genomic rearrangements. We propose that it serves as an efficient pathway for rejoining correct break ends in situations of separated breaks but generates genomic rearrangements if DSBs are close in time and space.  相似文献   

13.
Nishikawa T  Munshi A  Story MD  Ismail S  Stevens C  Chada S  Meyn RE 《Oncogene》2004,23(42):7125-7131
The melanoma differentiation-associated gene-7 (mda-7) was identified by virtue of its enhanced expression in human melanoma cells induced into terminal differentiation. Enforced expression of mda-7 in human cancer cell lines of diverse origins results in the suppression of growth and induction of apoptosis. We have shown that adenoviral-mediated mda-7 (Ad-mda7) radiosensitizes non-small-cell lung cancer (NSCLC) cells by enhancing the apoptotic pathway. To identify the mechanism of this radiosensitization, we examined the level of proteins involved in the nonhomologous end-joining (NHEJ) pathway of DNA double-strand break (DSB) repair. Western blot analysis indicated that the expression of NHEJ pathway components Ku70, XRCC4, and DNA ligase IV was downregulated in NSCLC cells--A549 with Ad-mda7 treatment. No such change was observed in normal human CCD16 fibroblasts previously shown not to be radiosensitized by Ad-mda7. The biological significance of these changes of expression of proteins critical for repair of radiation-induced DSBs was confirmed via the analysis of DSB rejoining kinetics using pulsed field gel electrophoresis and assessment of host cell reactivation capacity following Ad-mda7 treatment. Based on these results, we hypothesize that Ad-mda7 sensitizes NSCLC cells to ionizing radiation by suppressing the activity of NHEJ, a pathway essential for repair of radiation-induced DSBs.  相似文献   

14.
Disease progression in myeloid malignancies results from the accumulation of “mutations” in genes that control cellular growth and differentiation. Many types of genetic alterations have been identified in myeloid diseases. However, the mechanism(s) by which these cells acquire genetic alterations or “Genomic instability”, is less well understood. Increasing evidence suggests that the genetic changes in myeloid malignancies lead to increased production of endogenous sources of DNA damage, such as, reactive oxygen species (ROS). The fusion gene BCR–ABL in chronic myeloid leukemia (CML), FLT3/ITD in acute myeloid leukemia (AML), and RAS mutations in myelodysplastic syndromes (MDS)/myeloproliferative diseases (MPD) result in ROS production. Increased ROS can drive a cycle of genomic instability leading to DNA double strand breaks (DSBs) and altered repair that can lead to acquisition of genomic changes. Evidence is coming to light that defects in a main repair pathway for DSBs, non-homologous end-joining (NHEJ), lead to up-regulation of alternative or “back-up” repair that can create chromosomal deletions and translocations. This article will review evidence for activation of RAS/PI3K/STAT pathways, that lead to increased ROS, DNA damage and defective repair in myeloid diseases, a mechanism for acquisition of additional mutations that can drive disease progression.  相似文献   

15.
Fu YP  Yu JC  Cheng TC  Lou MA  Hsu GC  Wu CY  Chen ST  Wu HS  Wu PE  Shen CY 《Cancer research》2003,63(10):2440-2446
The role of the familial breast cancer susceptibility genes, BRCA1 and BRCA2, in the homologous recombination pathway for DNA double-strand break (DSB) repair suggests that the mechanisms involved in DNA DSB repair are of particular etiological importance during breast tumorigenesis. However, there is currently no evidence for an association between breast cancer and the other DSB repair pathway, the nonhomologous end-joining (NHEJ) pathway. It is possible that, because this DNA repair pathway is so crucial for mammalian cells to maintain genomic stability, any severe defects in it would result in serious outcomes, such as genomic instability and cell death, and block subsequent cell outgrowth and tumor formation. Thus, only subtle defects arising from low-penetrance alleles would escape lethality accumulating essential genetic changes and be associated with cancer formation, and the tumorigenic contribution of these alleles would become more obvious if individual putative high-risk genotypes of each NHEJ gene act jointly. Furthermore, this joint effect might be modified by specific environmental factors, and we hypothesized that estrogen exposure might be one such factor because estrogen is suggested to cause DNA DSBs, triggering breast tumorigenesis. Because single nucleotide polymorphisms (SNPs) are the most subtle genetic variation in the genome, to examine these hypotheses, we have genotyped 30 SNPs in all five NHEJ genes (Ku70, Ku80, DNA-PKcs, Ligase IV, and XRCC4) in 254 primary breast cancer patients and 379 healthy controls. Support for these hypotheses came from the observations that (a) two SNPs in Ku70 and XRCC4 were associated with breast cancer risk (P < 0.05); (b) a trend toward increased risk of developing breast cancer was found in women harboring a greater number of putative high-risk genotypes of NHEJ genes (an adjusted odds ratio of 1.46 for having one additional putative high-risk genotype; 95% confidence interval, 1.19-1.80); (c) this association between risk and the number of putative high-risk genotypes was stronger and more significant in women thought to be more susceptible to estrogen, i.e., those with no history of full-term pregnancy; and (d) the protective effect conferred by a history of full-term pregnancy was only significant in women with a lower number of putative high-risk genotypes of NHEJ genes. Based on comprehensive NHEJ gene profiles, this study provides new insights to suggest the role of the NHEJ pathway in breast cancer development and supports the possibility that breast cancer is initiated by estrogen exposure, which causes DNA DSBs.  相似文献   

16.
Muñoz P  Baus F  Piette J 《Oncogene》2001,20(16):1990-1999
Ku antigen is necessary for DNA double-strand break (DSB) repair through its ability to bind DNA ends with high affinity and to recruit the catalytic subunit of DNA-PK to the DSBs. Ku-deficient cells are hypersensitive to agents causing DSBs in DNA but also to the DNA topoisomerase II (topo II) inhibitor ICRF-193, which does not induce DSBs. This suggests a new role of Ku antigen, that is independent of DSB repair by DNA-PK. Here we characterize the basis for the hypersensitivity of Ku-deficient cells to ICRF-193. Chromosome condensation and segregation, which are dependent on topo II, but also the catalytic activity of topo II in late S-G2 were inhibited to a comparable extent when ICRF-193 was applied to Ku-deficient cells or wild-type cells. However, mutant cells arrested in G2 by ICRF-193 treatment were unable to progress into M phase upon drug removal, although drug-trapped topo II complexes were removed from DNA and the two isoforms of topo II recovered their catalytic activity as in wild-type cells. The reversibility of G2 arrest was recovered by complementation of mutant cells with a human Ku86 cDNA. Notably, chromosome condensation was abnormal in Ku-deficient cells after suppression of the G2 arrest by caffeine, even in the absence of ICRF-193. These results reflect the involvement of Ku-antigen in the cellular response to topo II inhibition, more particularly in relieving G2 arrest caused by topo II inhibition in late S/G2 and the subsequent recovery of chromosome condensation.  相似文献   

17.
DNA double-strand breaks (DSBs), the most hazardous DNA lesions, may result in genomic instability, a hallmark of cancer cells. The main DSB repair pathways are non-homologous end joining (NHEJ) and homologous recombination (HR). In mammalian cells, NHEJ, which can lead to inaccurate repair, predominates. HR repair (HRR) is considered accurate and is restricted to S, G2 and M phases of the cell cycle. Despite its importance, many aspects regarding HRR remain unknown. Here, we developed a novel inducible on/off switch cell system that enables, for the first time, to induce a DSB in a rapid and reversible manner in human cells. By limiting the duration of DSB induction, we found that non-persistent endonuclease-induced DSBs are rarely repaired by HR, whereas persistent DSBs result in the published HRR frequencies (non-significant HR frequency versus frequency of ~10%, respectively). We demonstrate that these DSBs are repaired by an accurate repair mechanism, which is distinguished from HRR (most likely, error-free NHEJ). Notably, our data reveal that HRR frequencies of endonuclease-induced DSBs in human cells are >10-fold lower than what was previously estimated by prevailing methods, which resulted in recurrent DSB formation. Our findings suggest a role for HRR mainly in repairing challenging DSBs, in contrast to uncomplicated lesions that are frequently repaired by NHEJ. Preventing HR from repairing DSBs in the complex and repetitive human genome probably has an essential role in maintaining genomic stability.  相似文献   

18.
5-Fluorouracil and cisplatin-based induction chemotherapy (IC) is commonly used to treat locally advanced head and neck squamous cell carcinoma (HNSCC). The role of nonhomologous end joining (NHEJ) genes (Ku70, Ku80 and DNA-PKcs) in double-strand break (DSB) repair, genomic instability and apoptosis suggest a possible impact on tumor response to radiotherapy, 5-fluorouracil or cisplatin, as these agents are direct or indirect inductors of DSBs. We evaluated the relationship between Ku80, Ku70 or DNA PKcs mRNA expression in pretreatment tumor biopsies, and tumor response to IC or local recurrence, in 50 patients with HNSCC. Additionally, in an independent cohort of 75 patients with HNSCC, we evaluated the relationship between tumor Ku70 protein expression and the same clinical outcomes or patient survival. Tumors in the responder group had significantly higher mRNA levels for Ku70, Ku80 and DNA-PKcs than those in the nonresponder group. Ku70 mRNA was the marker most significantly associated with response to IC. Moreover, high tumor Ku70 mRNA expression was associated with significantly longer local recurrence-free survival (LRFS). Ku70 protein expression was also significantly related to response, and patients with higher percentage of tumor cells expressing Ku70 had longer LRFS. In addition, the percentage of Ku70 positive cells, tumor localization and node involvement were significantly associated with overall survival of patient. Therefore, Ku70 expression is a candidate predictive marker that could distinguish patients who are likely to benefit from chemoradiotherapy or radiotherapy after the induction chemotherapy treatment, suggesting a contribution of the NHEJ system in HNSCC clinical outcome.  相似文献   

19.
Ogiwara H  Ui A  Otsuka A  Satoh H  Yokomi I  Nakajima S  Yasui A  Yokota J  Kohno T 《Oncogene》2011,30(18):2135-2146
Non-homologous end joining (NHEJ) is a major repair pathway for DNA double-strand breaks (DSBs) generated by ionizing radiation (IR) and anti-cancer drugs. Therefore, inhibiting the activity of proteins involved in this pathway is a promising way of sensitizing cancer cells to both radiotherapy and chemotherapy. In this study, we developed an assay for evaluating NHEJ activity against DSBs in chromosomal DNA in human cells to identify the chromatin modification/remodeling proteins involved in NHEJ. We showed that ablating the activity of the homologous histone acetyltransferases, CBP and p300, using inhibitors or small interfering RNAs-suppressed NHEJ. Ablation of CBP or p300 impaired IR-induced DSB repair and sensitized lung cancer cells to IR and the anti-cancer drug, etoposide, which induces DSBs that are repaired by NHEJ. The CBP/p300 proteins were recruited to sites of DSBs and their ablation suppressed acetylation of lysine 18 within histone H3, and lysines 5, 8, 12, and 16 within histone H4, at the DSB sites. This then suppressed the recruitment of KU70 and KU80, both key proteins for NHEJ, to the DSB sites. Ablation of CBP/p300 also impaired the recruitment of BRM, a catalytic subunit of the SWI/SNF complex involved in chromatin remodeling at DSB sites. These results indicate that CBP and p300 function as histone H3 and H4 acetyltransferases at DSB sites in NHEJ and facilitate chromatin relaxation. Therefore, inhibition CBP and p300 activity may sensitize cancer cells to radiotherapy and chemotherapy.  相似文献   

20.
Double-strand breaks (DSBs) inducing agents influence the fidelity of DNA repair in both normal cells and leukemic cells, causing major genomic instability. In eukaryotic cells, non-homologous end joining pathway (NHEJ) is the major mechanism for DSB repair. Human X-ray repair cross-complementing 5 (XRCC5) gene encodes for the protein KU86, an important component of NHEJ pathway. Variable number of tandem repeats (VNTR) polymorphism (rs 6147172) in the promoter region of XRCC5 gene was shown to have effect on gene expression and was found to be associated with the development of several cancers. We analyzed VNTR polymorphism of XRCC5 gene in 461 chronic myeloid leukemia (CML) cases and 408 controls by polymerase chain reaction. Our results showed that frequency of 0R/0R genotype was significantly elevated in CML cases compared to that of controls (p?=?0.05). Significant difference in the genotype distribution was observed between cases and controls (p?=?0.02). The risk of CML development was found to be elevated for individuals carrying lower repeats (1R p?=?0.03; 0R p?=?0.007). Elevated 0R/0R genotype frequency was found to be significantly associated with early age at onset (≤30 years) and slightly elevated in chronic phase and poor hematologic response to imatinib mesylate. The influence of zero repeat on enhanced expression of XRCC5 might confer risk to error-prone repair leading to genomic instability and CML. Hence, the VNTR polymorphism in the promoter region of XRCC5 gene could serve as an important prognostic marker in CML development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号