首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Unconstrained point-to-point human arm movements are generally gently curved, a fact which has been used to assess the validity of models of trajectory formation. In this study we examined the relationship between curvature perception and movement curvature for planar sagittal and transverse arm movements. We found a significant correlation (P<0.0001, n=16) between the curvature perceived as straight and the curvature of actual arm movements. We suggest that subjects try to make straight-line movements, but that actual movements are curved because visual perceptual distortion makes the movements appear to be straighter than they really are. We conclude that perceptual distortion of curvature contributes to the curvature seen in human point-to-point arm movements and that this must be taken into account in the assessment of models of trajectory formation.  相似文献   

2.
There are several invariant features of pointto-point human arm movements: trajectories tend to be straight, smooth, and have bell-shaped velocity profiles. One approach to accounting for these data is via optimization theory; a movement is specified implicitly as the optimum of a cost function, e.g., integrated jerk or torque change. Optimization models of trajectory planning, as well as models not phrased in the optimization framework, generally fall into two main groups-those specified in kinematic coordinates and those specified in dynamic coordinates. To distinguish between these two possibilities we have studied the effects of artificial visual feedback on planar two-joint arm movements. During self-paced point-to-point arm movements the visual feedback of hand position was altered so as to increase the perceived curvature of the movement. The perturbation was zero at both ends of the movement and reached a maximum at the midpoint of the movement. Cost functions specified by hand coordinate kinematics predict adaptation to increased curvature so as to reduce the visual curvature, while dynamically specified cost functions predict no adaptation in the underlying trajectory planner, provided the final goal of the movement can still be achieved. We also studied the effects of reducing the perceived curvature in transverse movements, which are normally slightly curved. Adaptation should be seen in this condition only if the desired trajectory is both specified in kinematic coordinates and actually curved. Increasing the perceived curvature of normally straight sagittal movements led to significant (P<0.001) corrective adaptation in the curvature of the actual hand movement; the hand movement became curved, thereby reducing the visually perceived curvature. Increasing the curvature of the normally curved transverse movements produced a significant (P<0.01) corrective adaptation; the hand movement became straighter, thereby again reducing the visually perceived curvature. When the curvature of naturally curved transverse movements was reduced, there was no significant adaptation (P>0.05). The results of the curvature-increasing study suggest that trajectories are planned in visually based kinematic coordinates. The results of the curvature-reducing study suggest that the desired trajectory is straight in visual space. These results are incompatible with purely dynamicbased models such as the minimum torque change model. We suggest that spatial perception-as mediated by vision-plays a fundamental role in trajectory planning.  相似文献   

3.
Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. A number of invariant features of multijoint planar reaching movements have been observed in measured hand trajectories. These features include roughly straight hand paths and bell-shaped speed profiles where the trajectory curvatures between transverse and radial movements have been found to be different. For quantitative and statistical investigations, we obtained a large amount of trajectory data within a wide range of the workspace in the horizontal and sagittal planes (400 trajectories for each subject). A pair of movements within the horizontal and sagittal planes was set to be equivalent in the elbow and shoulder flexion/extension. The trajectory curvatures of the corresponding pair in these planes were almost the same. Moreover, these curvatures can be accurately reproduced with a linear regression from the summation of rotations in the elbow and shoulder joints. This means that trajectory curvatures systematically depend on the movement location and direction represented in the intrinsic body coordinates. We then examined the following four candidates as planning spaces and the four corresponding computational models for trajectory planning. The candidates were as follows: the minimum hand jerk model in an extrinsic-kinematic space, the minimum angle jerk model in an intrinsic-kinematic space, the minimum torque change model in an intrinsic-dynamic-mechanical space, and the minimum commanded torque change model in an intrinsic-dynamic-neural space. The minimum commanded torque change model, which is proposed here as a computable version of the minimum motor command change model, reproduced actual trajectories best for curvature, position, velocity, acceleration, and torque. The model's prediction that the longer the duration of the movement the larger the trajectory curvature was also confirmed. Movements passing through via-points in the horizontal plane were also measured, and they converged to those predicted by the minimum commanded torque change model with training. Our results indicated that the brain may plan, and learn to plan, the optimal trajectory in the intrinsic coordinates considering arm and muscle dynamics and using representations for motor commands controlling muscle tensions.  相似文献   

4.
It has been suggested that the spatial path of the hand is an important controlled feature of normal human arm movements and that the desired path is a straight line through external space. Recent experiments have suggested that distortions in visual perception of external space may lead to errors in its representation and thus influence the curvature of movements. The movements of blind and normal blind-folded subjects were therefore compared in a task requiring point-to-point hand movements in six directions across a horizontal worktop. Movement curvature varied with direction in both groups but was significantly higher for the blindfolded control subjects. Thus, the normals' distorted visual experience of straight lines in some orientations may lead them to make curved movement paths. The perception of curvature was also tested in the two groups in a task in which they traced the curved edge of a ruler. The blind group were slightly better at this task, although the difference was not significant. We conclude that visual experience influences point-to-point hand movements, leading to higher curvature for movements made in the fronto-parallel plane by sighted subjects due to visual distortions. These data therefore support the hypothesis that the spatial path followed by the hand is influenced by sensory inputs and is a controlled feature of human reaching movements. The data argue against the hypothesis that movement curvature is a result of optimising only the dynamics of the limb control.  相似文献   

5.
Through an experimental study of the stability properties of the human neuromuscular system while it performs simple point-to-point arm movements, this paper evaluates the concepts of equilibrium and virtual trajectories as a means of executing movement of the arm. Human subjects grasped the instrumented handle of a two-link robot manipulandum and performed specified point-to-point planar arm trajectories. Computer-controlled brakes were used to subtly change the movements by constraining the trajectory along an arc of radius equal to the length of one link of the manipulandum. Target points were arranged to lie along the arc so that the subject could complete the movement even when constrained. Three situations were tested: (1) unconstrained throughout the movement, (2) constrained through the entire movement, and (3) initially constrained and then released during movement. Experimental results showed that the constraint evoked significant forces strongly oriented so as to restore the hand to the unconstrained hand path. In addition, when released from the constraint, these forces caused a strong tendency to return the hand to the unconstrained path before the end of the movement was reached. Such strong positional stability properties of the arm reinforce the notion that a moving attractor point dominates the dynamics of the arm during movement. Additionally, bounds on the shape of the virtual trajectory were found which indicate that the equilibrium point remains close to the actual movement produced. These results, showing that a controlled equilibrium point may be used for planning and coordinating multijoint movements, are consistent with an equilibrium point hypothesis.  相似文献   

6.
This study compares the coordination patterns employed for the left and right arms during rapid targeted reaching movements. Six right-handed subjects reached to each of three targets, designed to elicit progressively greater amplitude interaction torques at the elbow joint. All targets required the same elbow excursion (20 degrees ), but different shoulder excursions (5, 10, and 15 degrees, respectively). Movements were restricted to the shoulder and elbow and supported on a horizontal plane by a frictionless air-jet system. Subjects received visual feedback only of the final hand position with respect to the start and target locations. For motivation, points were awarded based on final position accuracy for movements completed within an interval of 400-600 ms. For all subjects, the right and left hands showed a similar time course of improvement in final position accuracy over repeated trials. After task adaptation, final position accuracy was similar for both hands; however, the hand trajectories and joint coordination patterns during the movements were systematically different. Right hand paths showed medial to lateral curvatures that were consistent in magnitude for all target directions, whereas the left hand paths had lateral to medial curvatures that increased in magnitude across the three target directions. Inverse dynamic analysis revealed substantial differences in the coordination of muscle and intersegmental torques for the left and right arms. Although left elbow muscle torque contributed largely to elbow acceleration, right arm coordination was characterized by a proximal control strategy, in which movement of both joints was primarily driven by the effects of shoulder muscles. In addition, right hand path direction changes were independent of elbow interaction torque impulse, indicating skillful coordination of muscle actions with intersegmental dynamics. In contrast, left hand path direction changes varied directly with elbow interaction torque impulse. These findings strongly suggest that distinct neural control mechanisms are employed for dominant and non dominant arm movements. However, whether interlimb differences in neural strategies are a consequence of asymmetric use of the two arms, or vice versa, is not yet understood. The implications for neural organization of voluntary movement control are discussed.  相似文献   

7.
The aim of the present study was to show that planning and controlling the trajectory of a pointing movement is influenced not solely by physical constraints but also by visual constraints. Subjects were required to point towards different targets located at 20 degrees , 40 degrees , 60 degrees and 80 degrees of eccentricity. Movements were either constrained (i.e. two-dimensional movements) or unconstrained (i.e. three-dimensional movements). Furthermore, movements were carried out either under a direct or a remote visual control (use of a video system). Results revealed that trajectories of constrained movements were nearly straight whatever the eccentricity of the target and the type of visual control. A different pattern was revealed for unconstrained movements. Indeed, under direct vision the trajectory curvature increased as the eccentricity augmented, whereas under indirect vision, trajectories remained nearly straight whatever the eccentricity of the target. Thus, movements controlled through a remote visual feedback appear to be planned in extrinsic space as constrained movements.  相似文献   

8.
In point-to-point reaching movements, the trajectory of the fingertip along the horizontal plane is not completely straight but slightly curved sideward. The current paper examines whether this horizontal curvature is related to the height to which the finger is lifted. Previous research suggested that the height to which the hand is lifted might be a determinant of horizontal curvature. We asked participants to make point-to-point movements in three conditions: constrained movements (i.e., fingertip keeps contact with table top) over vertically curved surfaces that differed in height, constrained movements over a flat surface, and unconstrained movements (i.e., fingertip lifted from table top). In constrained movements, we found a strong relation between horizontal curvature and lifted height of the finger. Interestingly, for unconstrained movements, the relation between horizontal curvature and height to which the finger was lifted was weak. This demonstrates that the height to which the finger was lifted relates to horizontal curvature in some, but not in all conditions. This suggests that the height to which the hand is lifted should be included, in particular for constrained movements, when giving a full account of horizontal curvature in point-to-point movements.  相似文献   

9.
 This study examines whether the kinematics of pointing movements are altered by the sensory systems used to select spatial targets and to guide movement. Hand and joint paths of visually guided reaching movements of human subjects were compared with two non-visual conditions where only proprioception was available: (1) movements of the same subjects with blindfolds, and (2) movements by congenitally blind subjects. While hand-path curvatures were overall quite small, sighted subjects wearing a blindfold showed a statistical increase in hand-path curvature compared with their visually guided movements. Blindfolded subjects also showed greater hand-path curvature than blind subjects. These increases in hand-path curvature for blindfolded subjects did not always lead to a decrease in joint-path curvature. While there were differences between blind subjects and sighted subjects using vision for some movement directions, there was no systematic difference between these two groups. The magnitude of joint-path curvature showed much greater variation than hand-path curvature across the movement directions. We found variation in joint-path curvature to be correlated to two factors, one spatial and one geometrical. For all subject groups, joint-path curvature tended to be smaller for sagittal-plane movements than for transverse or diagonal movements. As well, we found that the magnitude of joint-path curvature was also related to the relative motion at each joint. Joint-path curvature tended to increase when movements predominantly involved changes in shoulder angle and was minimal when movements predominantly involved elbow motion. The consistently small curvatures of hand trajectory across blind and sighted subjects emphasize the powerful tendency of the motor system to generate goal-directed reaching movements with relatively straight hand trajectories, even when deprived of visual feedback from very early in life. Received: 16 July 1997 / Accepted: 20 May 1998  相似文献   

10.
The gently curved paths evident in point-to-point arm movements have been attributed to both an imperfect execution of a planned straight-hand path or as an emergent property of a control strategy in which an intrinsic cost, dependent on arm dynamics, is minimised. We used a virtual visual feedback system to test whether path curvature was mainly determined by the visually perceived or actual location of the moving limb. Hand paths were measured for movements between three pairs of targets under both veridical and uniformly translated visual feedback. This allowed us to decouple the actual and perceived hand location during movement. Under different conditions of visual feedback the curvature of the hand paths did not correlate with either the visually perceived location of the limb or the actual location but rather with the relative displacement between the actual and visually perceived limb locations. The results are consistent with the hypothesis that in planning a movement the internal estimate of intrinsic coordinates, such as joint angles, is at least partially derived from visual information. Received: 31 August 1998 / Accepted: 8 March 1999  相似文献   

11.
The 2/3 power law, the nonlinear relationship between tangential velocity and radius of curvature of the end-effector trajectory, is thought to be a fundamental constraint of the central nervous system in the formation of rhythmic endpoint trajectories. However, studies on the 2/3 power law have been confined largely to planar drawing patterns of relatively small size. With the hypothesis that this strategy overlooks nonlinear effects that are constitutive in movement generation, the present experiments tested the validity of the power law in elliptical patterns that were not confined to a planar surface and which were performed by the unconstrained 7-degrees of freedom (DOF) arm, with significant variations in pattern size and workspace orientation. Data were recorded from five human subjects where the seven joint angles and the endpoint trajectories were analyzed. Additionally, an anthropomorphic 7-DOF robot arm served as a "control subject" whose endpoint trajectories were generated on the basis of the human joint angle data, modeled as simple harmonic oscillations. Analyses of the endpoint trajectories demonstrate that the power law is systematically violated with increasing pattern size, in both exponent and the goodness of fit. The origins of these violations can be explained analytically based on smooth, rhythmic trajectory formation and the kinematic structure of the human arm. We conclude that, in unconstrained rhythmic movements, the power law seems to be a by-product of a movement system that favors smooth trajectories, and that it is unlikely to serve as a primary movement-generating principle. Our data rather suggest that subjects employed smooth oscillatory pattern generators in joint space to realize the required movement patterns.  相似文献   

12.
The main objective of the present study is to show that the visual context can influence the trajectory formation of grasping movements. We asked participants to reach and grasp a cylinder disposed at three different positions: -20 degrees , 0 degrees and 20 degrees of eccentricity with respect to the midsagittal axis. Grasping movements were performed in a direct and in an indirect visual feedback condition (i.e., controlled through a vertical video display). Results revealed that for grasping movements directed toward objects located at -20 degrees and 0 degrees , path curvatures of the wrist, the thumb and the index finger were significantly straighter in the indirect visual feedback condition. However, no significant difference concerning hand path curvature was observed when the movement was directed toward the object located at 20 degrees . This suggests that grasping movements controlled through a remote visual feedback tend to be planned in extrinsic space and that the effect of the visual context on movement planning appears to be not isotropic over the workspace.  相似文献   

13.
The goal of this study was to examine the characteristics of planar fingertip movements with respect to the hand. Ten subjects with no known neuromuscular impairments performed a series of point-to-point movements with their dominant index fingertips. Subjects were instructed to move between five pairs of targets within the workspace of the index finger in each direction, for a total of ten separate movement tasks. We hypothesized that the trajectories with respect to the hand of these movements would exhibit curved paths contrary to the findings of similar hand path studies. The ratio of the path taken to the straight-line distance between the two targets was dependent upon the movement task (P<0.01), as was the mean residual between the actual and straight-line paths (P<0.001). For selected pairs of targets, these values were significantly different for the two opposing movement directions between a given pair of targets. This directional dependence of the curvature of the chosen finger-only trajectory observed in the initial protocol is incompatible with motor planning based solely on kinematic constraints, instead mechanical properties of the finger are likely incorporated.  相似文献   

14.
The preceding study demonstrated that normal subjects compensate for the additional interaction torques generated when a reaching movement is made during voluntary trunk rotation. The present paper assesses the influence of trunk rotation on finger trajectories and on interjoint coordination and determines whether simultaneous turn-and-reach movements are most simply described relative to a trunk-based or an external reference frame. Subjects reached to targets requiring different extents of arm joint and trunk rotation at a natural pace and quickly in normal lighting and in total darkness. We first examined whether the larger interaction torques generated during rapid turn-and-reach movements perturb finger trajectories and interjoint coordination and whether visual feedback plays a role in compensating for these torques. These issues were addressed using generalized Procrustes analysis (GPA), which attempts to overlap a group of configurations (e.g., joint trajectories) through translations and rotations in multi-dimensional space. We first used GPA to identify the mean intrinsic patterns of finger and joint trajectories (i.e., their average shape irrespective of location and orientation variability in the external and joint workspaces) from turn-and-reach movements performed in each experimental condition and then calculated their curvatures. We then quantified the discrepancy between each finger or joint trajectory and the intrinsic pattern both after GPA was applied individually to trajectories from a pair of experimental conditions and after GPA was applied to the same trajectories pooled together. For several subjects, joint trajectories but not finger trajectories were more curved in fast than slow movements. The curvature of both joint and finger trajectories of turn-and-reach movements was relatively unaffected by the vision conditions. Pooling across speed conditions significantly increased the discrepancy between joint but not finger trajectories for most subjects, indicating that subjects used different patterns of interjoint coordination in slow and fast movements while nevertheless preserving the shape of their finger trajectory. Higher movement speeds did not disrupt the arm joint rotations despite the larger interaction torques generated. Rather, subjects used the redundant degrees of freedom of the arm/trunk system to achieve similar finger trajectories with differing joint configurations. We examined finger movement patterns and velocity profiles to determine the frame of reference in which turn-and-reach movements could be most simply described. Finger trajectories of turn-and-reach movements had much larger curvatures and their velocity profiles were less smooth and less bell-like in trunk-based coordinates than in external coordinates. Taken together, these results support the conclusion that turn-and-reach movements are controlled in an external frame of reference.  相似文献   

15.
Previous findings suggest the posterior parietal cortex (PPC) contributes to arm movement planning by transforming target and limb position signals into a desired reach vector. However, the neural mechanisms underlying this transformation remain unclear. In the present study we examined the responses of 109 PPC neurons as movements were planned and executed to visual targets presented over a large portion of the reaching workspace. In contrast to previous studies, movements were made without concurrent visual and somatic cues about the starting position of the hand. For comparison, a subset of neurons was also examined with concurrent visual and somatic hand position cues. We found that single cells integrated target and limb position information in a very consistent manner across the reaching workspace. Approximately two-thirds of the neurons with significantly tuned activity (42/61 and 30/46 for left and right workspaces, respectively) coded targets and initial hand positions separably, indicating no hand-centered encoding, whereas the remaining one-third coded targets and hand positions inseparably, in a manner more consistent with the influence of hand-centered coordinates. The responses of both types of neurons were largely invariant with respect to the presence or absence of visual hand position cues, suggesting their corresponding coordinate frames and gain effects were unaffected by cue integration. The results suggest that the PPC uses a consistent scheme for computing reach vectors in different parts of the workspace that is robust to changes in the availability of somatic and visual cues about hand position.  相似文献   

16.
This paper examines up to third-order geometric properties of wrist path and the first-order property of wrist trajectory (wrist speed) for spatial pointing movements. Previous studies report conflicting data regarding the time invariance of wrist-path shape, and most analyses are limited to the second-order geometric property (straightness, or strictly speaking, curvature). Subjects performed point-to-point reaching movements between targets whose locations ensured that the wrist paths spanned a range of lengths and lay in various portions of the arm’s spatial workspace. Movement kinematics were recorded using electromagnetic sensors located on the subject’s arm segments and thorax. Analysis revealed that wrist paths tend to lie in planes and to curve more as movement speed decreases. The orientation of the wrist-path plane depends on the reaching task but does not vary significantly with movement speed. The planarity of wrist paths indicates that the paths have close to zero torsion—a third-order geometric property. Wrist-speed profiles showed multiple peaks for sufficiently slow and long lasting movements, indicating deviation from the well-known, bell-shaped profile. These kinematic findings are discussed in light of various motor control theories.  相似文献   

17.
Previous findings from our laboratory support the idea that the dominant arm is more proficient than the non-dominant arm in coordinating intersegmental dynamics for specifying trajectory direction and shape during multijoint reaching movements. We also showed that adaptation of right and left arms to novel visuomotor rotations was equivalent, suggesting that this process occurs upstream to processes that distinguish dominant and non-dominant arm performance. Because of this, we speculate that such visuomotor adaptations might transfer to subsequent performance during adaptation with the other arm. We now examine whether opposite arm training to novel visuomotor rotations transfers to affect adaptation using the right and left arms. Two subject groups, RL and LR, each comprising seven right-handed subjects, adapted to a 30 degrees counterclockwise rotation in the visual display during a center-out reaching task performed in eight directions. Each group first adapted using either the right (RL) or left (LR) arm, followed by opposite arm adaptation. In order to assess transfer, we compared the same side arm movements (either right or left) following opposite arm adaptation to those performed prior to opposite arm adaptation. Our findings indicate unambiguous transfer of learning across the arms. Different features of movement transferred in different directions: Opposite arm training improved the initial direction of right arm movements under the rotated visual condition, whereas opposite arm training improved the final position accuracy, but not the direction of left arm movements. These findings confirm that transfer of training was not due to a general cognitive strategy, since such an effect should influence either hand equally. These findings support the hypothesis that each arm controller has access to information learned during opposite arm training. We suggest that each controller uses this information differently, depending on its proficiency for specifying particular features of movement. We discuss evidence that these two aspects of control are differentially mediated by the right and left cerebral hemispheres.  相似文献   

18.
The present study compared the contribution of visual information of hand and target position to the online control of goal-directed arm movements. Their respective contributions were assessed by examining how human subjects reacted to a change of the position of either their seen hand or the visual target near the onset of the reaching movement. Subjects, seated head-fixed in a dark room, were instructed to look at and reach with a pointer towards visual targets located in the fronto-parallel plane at different distances to the right of the starting position. LEDs mounted on the tip of the pointer were used to provide true or erroneous visual feedback about hand position. In some trials, either the target or the pointer LED that signalled the actual hand position was shifted 4.5 cm to the left or to the right during the ocular saccade towards the target. Because of saccadic suppression, subjects did not perceive these displacements, which occurred near arm movement onset. The results showed that modifications of arm movement amplitude appeared, on average, 150 ms earlier and reached a greater extent (mean difference=2.7 cm) when there was a change of target position than when a change of the seen hand position occurred. These findings highlight the weight of target position information to the online control of arm movements. Visual information relative to hand position may be less contributive because proprioception also provides information about limb position.  相似文献   

19.
Path constraints on point-to-point arm movements in three-dimensional space   总被引:2,自引:0,他引:2  
In this paper data are presented concerning the kinematic and dynamic characteristics of point-to-point arm movements which are inwardly or outwardly directed in three-dimensional space. Elbow and wrist position as well as elbow angle of extension were measured. From these data, other angles were computed trigonometrically and elbow and shoulder torques were calculated. Some of the angles describing arm and forearm motion were found to be linearly related for any given movement. Changes in shoulder and elbow torque were found to be similar to those described for movements restricted to one degree of freedom. Shoulder and elbow motions were not affected when it was required that the orientation of the hand in space remain constant. These observations were taken to indicate that shoulder and elbow motions are tightly coupled for movements in three-dimensional space and that wrist motion has no influence on this coupling. Linear relations between angles express such coupling. They are taken to result from functional constraints and may facilitate the mapping between extrinsic and intrinsic coordinate systems. Some of the observations pertaining to the torque lead to the hypothesis of a further constraint limiting the number of possible trajectories in a point-to-point movement.  相似文献   

20.
The aim of this study was to investigate how humans correct ongoing arm movements while standing. Specifically, we sought to understand whether the postural adjustments in the legs required for online corrections of arm movements are predictive or rely on feedback from the moving limb. To answer this question we measured online corrections in arm and leg muscles during pointing movements while standing. Nine healthy right-handed subjects reached with their dominant arm to a visual target in front of them and aligned with their midline. In some trials, the position of the target would switch from the central target to one of the other targets located 15°, 30°, or 45° to the right of the central (midline) target. For each target correction, we measured the time at which arm kinematics, ground reaction forces, and arm and leg muscle electromyogram significantly changed in response to the target displacement. Results show that postural adjustments in the left leg preceded kinematic corrections in the limb. The corrective postural muscle activity in the left leg consistently preceded the corrective reaching muscle activity in the right arm. Our results demonstrate that corrections of arm movements in response to target displacement during stance are preceded by postural adjustments in the leg contralateral to the direction of target shift. Furthermore, postural adjustments preceded both the hand trajectory correction and the arm-muscle activity responsible for it, which suggests that the central nervous system does not depend on feedback from the moving arm to modify body posture during voluntary movement. Instead, postural adjustments lead the online correction in the arm the same way they lead the initiation of voluntary arm movements. This suggests that forward models for voluntary movements executed during stance incorporate commands for posture that are produced on the basis of the required task demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号