首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨一氧化氮(NO)对肝硬化门静脉高压大鼠肠黏膜通透性的影响.方法:10只正常大鼠为对照组腹腔注射生理盐水2周,腹腔注射硫代乙酰胺(TAA)制成大鼠肝硬化模型30只,随机分为3组,分别给予腹腔注射生理盐水(NS组),左旋精氨酸(L-Arg)(L-Arg组)、左硝基精氨酸甲基酯(L-NAME)(L-NAME组)各10只,各2周.测定门静脉压力(PVP)、血浆NO、二胺氧化酶(DAO)、D-乳酸(D-LA)和内毒素(ETX)含量,观察回肠膜病理改变.结果:NS组大鼠肠黏膜损伤指数、PVP、NO、DAO、D-LA和ETX较对照组显著增高(P<0.05),L-Arg组上述指标较NS组显著升高(P<0.05),L-NAME组上述指标较NS组显著下降(P<0.05),各指标存在正相关关系.结论:门静脉压力升高是导致肝硬化大鼠肠道通透性升高的直接因素,而ETX和NO的升高维持了门静脉的高动力循环,降低NO水平可改善高动力循环,对肠黏膜通透性有一定的保护作用.  相似文献   

2.
The effects of nitric oxide (NO) donors NOC5 [3-(2-hydroxy-1-(methylethyl)-2-nitrosohydrazino)-1-propanamine ] and NOC12 [N-ethyl-2-(1-ethyl-hydroxy-2-nitrosohydrazino)-ethanamine] on the permeability of 5(6)-carboxyfluorescein (CF) across the intestinal membrane were examined by an in vitro Ussing chamber method. The NO donors significantly increased the intestinal permeability of CF and their absorption-enhancing effects were concentration-dependent over the range of 0.01 to 0.1 mM. Regional differences in the absorption-enhancing effects of the NO donors were observed (colon > jejunum). The absorption-enhancing effect of NOC12 reduced as the molecular weights of compounds increased. Therefore, the degree of absorption-enhancing effect of NOC12 was dependent on the molecular weights of compounds. In the pretreatment studies with NOC12 and lactate dehydrogenase release studies, the absorption-enhancing effect of 0.1 mM NOC12 was reversible and less toxic to the colonic membrane. On the other hand, the absorption-enhancing effect of NOC12 was inhibited by the coadministration of 2-(4-carboxyphenyl) 4,4,5, 5-tetramethylimidazole-1-oxyl 3-oxide sodium salt, an NO scavenger, suggesting that NO can regulate the permeability of water-soluble drugs in the gut. Furthermore, NOC12 (0.1 and 1 mM) significantly decreased the transepithelial electrical resistance value of the colonic membrane, suggesting that the absorption-enhancing mechanism of NOC12 may be partly related to the dilation of the tight junction in the epithelium via a paracellular route. These findings suggest that NO donors may be useful to enhance the intestinal absorption of poorly absorbable drugs.  相似文献   

3.
Paracrine and autocrine effects of nitric oxide on myocardial function   总被引:27,自引:0,他引:27  
Complex paracrine interactions exist between endothelial cells and cardiac myocytes in the heart. Cardiac endothelial cells release (or metabolize) several diffusible agents (e.g., nitric oxide [NO], endothelin-1, angiotensin II, adenylpurines) that exert direct effects on myocyte function, independent of changes in coronary flow. Some of these mediators are also generated by cardiac myocytes, often under pathological conditions. This review focuses on the role of NO in this paracrine/autocrine pathway. NO modulates several aspects of "physiological" myocardial function (e.g., excitation-contraction coupling; myocardial relaxation; diastolic function; the Frank-Starling response; heart rate; beta-adrenergic inotropic response; and myocardial energetics and substrate metabolism). The effects of NO are influenced by its cellular and enzymatic source, the amount generated, the presence of reactive oxygen species, interactions with neurohumoral and other stimuli, and the relative activation of cyclic GMP-dependent and -independent signal transduction pathways. The relative physiological importance of endothelium- and myocyte-derived NO remains to be established. In pathological situations (e.g., ischemia-reperfusion, left ventricular hypertrophy, heart failure, transplant vasculopathy and rejection, myocarditis), NO can potentially exert beneficial or deleterious effects. Beneficial effects of NO can result from endothelial-type nitric oxide synthase-derived NO or from spatially and temporally restricted expression of the inducible isoform, inducible-type nitric oxide synthase. Deleterious effects may result from (1) deficiency of NO or (2) excessive production, often inducible-type nitric oxide synthase-derived and usually with concurrent reactive oxygen species production and peroxynitrite formation. The balance between beneficial and deleterious effects of NO is of key importance with respect to its pathophysiological role.  相似文献   

4.

Introduction

This study analyzed the systemic and microvascular hemodynamic changes related to increased nitric oxide (NO) availability during the early phase of hemorrhagic shock. Hemodynamic responses to hemorrhagic shock were studied in the hamster window chamber.

Materials and Methods

Exogenous NO was administered in the form of nitrosothiols (nitrosylated glutathione, GSNO) and was given prior the onset of hemorrhage. Moderate hemorrhage was induced by arterial controlled bleeding of 50% of the blood volume, and the hypovolemic shock was followed over 90 min.

Results

Animals pre-treated with GSNO maintained systemic and microvascular conditions during hypovolemic hemorrhagic shock, when compared to animal treated with glutathione (GSH) or the Sham group. Low concentrations of NO released during the early phase of hypovolemic shock from GSNO mitigated arteriolar vasoconstriction, increased capillary perfusion and venous return, and improved cardiac function (recovered of blood pressure and stabilized heart rate). GSNO's effect on resistance vessels influenced intravascular pressure redistribution and blood flow, preventing tissue ischemia.

Discussion

Increases in NO availability during the early phase of hypovolemic shock could preserve cardiac function and microvascular perfusion, sustaining organ function. Direct translation into a clinical scenario may be limited, although the pathophysiological importance of NO in the early phase of hypovolemia is clearly highlighted here.  相似文献   

5.
6.
The identification of human inflammatory cells that express inducible nitric oxide synthase and the clarification of the role of inducible nitric oxide synthase in human infectious or inflammatory processes have been elusive. In neutrophil-enriched fractions from urine, we demonstrate a 43-fold increase in nitric oxide synthase activity in patients with urinary tract infections compared with that in neutrophil-enriched fractions from noninfected controls. Partially purified inducible nitric oxide synthase is primarily membrane associated, calcium independent, and inhibited by arginine analogues with a rank order consistent with that of purified human inducible nitric oxide synthase. Molecular, biochemical, and immunocytochemical evidence unequivocally identifies inducible nitric oxide synthase as the major nitric oxide synthase isoform found in neutrophils isolated from urine during urinary tract infections. Elevated inducible nitric oxide synthase activity and elevated nitric oxide synthase protein measured in patients with urinary tract infections and treated with antibiotics does not decrease until 6-10 d of antibiotic treatment. The extended elevation of neutrophil inducible nitric oxide synthase during urinary tract infections may have both antimicrobial and proinflammatory functions.  相似文献   

7.
Preculture of thioglycollate-elicited C3HeB/FeJ mouse peritoneal macrophages in vitro with subthreshold stimulatory concentrations of lipopolysaccharide (LPS) can induce hyporesponsiveness (desensitization) to both tumor necrosis factor alpha (TNF-alpha) and nitric oxide (NO) production when these cells are subsequently stimulated with 100 ng/ml of LPS. We have established, however, that the primary dose of LPS required for inducing downregulation of NO production is significantly lower than that required for inducing downregulation of TNF-alpha production. Further, when LPS-pretreated macrophages become refractory to subsequent LPS stimulation for NO production, the secondary LPS-stimulated TNF-alpha production is markedly enhanced, and vice versa. These results indicate that LPS- induced TNF-alpha and NO production by macrophages are differentially regulated, and that the observed desensitization process may not reflect a state in which macrophages are totally refractory to subsequent LPS stimulation. Rather, our data suggest that LPS- pretreated macrophages become selectively primed for differential responses to LPS. The LPS-induced selective priming effects are not restricted to LPS stimulation, but extend as well to stimuli such as zymosan, Staphylococcus aureus, and heat-killed Listeria monocytogenes.  相似文献   

8.
Xu C  Yi C  Wang H  Bruce IC  Xia Q 《Shock (Augusta, Ga.)》2012,37(1):110-115
The aim of this study was to determine whether mitochondrial nitric oxide (NO) synthase (NOS) is involved in septic shock myocardial depression. The cecal ligation and puncture (CLP) method was used to induce septic shock. There was a significant depression of hemodynamic parameters recorded in the septic shock stage. After using nonselective NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME), inducible NOS inhibitor aminoguanidine (AMG), and neuronal NOS inhibitor 7-nitroindazole (7-NI), depression of the parameters was partly attenuated. Nitric oxide production in isolated cardiac mitochondria increased obviously in the CLP-septic shock stage, L-NAME and 7-NI both decreased NO production significantly. Nitrite/nitrate (NOx) production in the septic shock stage was much greater than those in the corresponding sham groups, and NOx production in the cytosol by inducible NOS was greater. Treatment with AMG suppressed NOx production in the cytosol by iNOS, whereas treatment with 7-NI decreased NOx production in the mitochondria. Mitochondrial NOS expression increased significantly in the septic shock stage, and its overexpression was attenuated using 7-NI. There was no significant decrease in the mitochondrial permeability transition pore measurement in the CLP-septic shock group, whereas a significant decrease was observed in those treated with L-NAME or 7-NI. These results indicate that overexpression of mitochondrial NOS is involved in myocardial depression.  相似文献   

9.
We investigated the pathogenic mechanism(s) of small intestinal injury during acidosis in relation to circulating nitric oxide (NO) in an experimental rat model. Rats were anesthetized, paralyzed, and mechanically ventilated with room air. Hydrochloric acid (0.16 mmol bolus followed by 0.132 mmol/kg/h) was infused through the jugular vein for 5 hours. Control rats received a saline infusion. Arterial blood gases, blood pressure, and blood pH were measured every 30 minutes. The involvement of NO in this acidosis model was assessed by measuring plasma concentration of nitrite/nitrate (NOx) and by evaluating inducible NO synthase (iNOS) expression in small intestinal mucosa. Intestinal injury was assessed by measuring myeloperoxidase (MPO) activity, thiobarbituric acid reactants (TBARS), and histologic scores. HCl infusion was associated with hypotension, decreased blood pH, increased plasma concentration of NOx, augmented intestinal mucosal iNOS expression, MPO activity, TBARS, and histopathologic injury scores. Pretreatment with an iNOS inhibitor, aminoguanidine (AG, 50 mg/kg), reversed HCl-induced hypotension without a change in blood pH. HCl-induced lesions, MPO activity, TBARS, and plasma NOx production were decreased by AG. Our data show that the pathogenic mechanisms of acidosis-induced small intestinal lesions involve up-regulation of NO production by increased expression of iNOS and augmentation of superoxide radicals and MPO activity.  相似文献   

10.
Acute lung injury following intestinal I/R depends on neutrophil-endothelial cell interactions and on cytokines drained from the gut through the lymph. Among the mediators generated during I/R, increased serum levels of IL-6 and NO are also found and might be involved in acute lung injury. Once intestinal ischemia itself may be a factor of tissue injury, in this study, we investigated the presence of IL-6 in lymph after intestinal ischemia and its effects on human umbilical vein endothelial cells (HUVECs) detachment. The involvement of NO on the increase of lung and intestinal microvascular permeability and the lymph effects on HUVEC detachment were also studied. Upon anesthesia, male Wistar rats were subjected to occlusion of the superior mesenteric artery during 45 min, followed by 2-h intestinal reperfusion. Rats were treated with the nonselective NO synthase (NOS) inhibitor L-NAME (N(omega)-nitro-L-arginine methyl ester) or with the selective inhibitor of iNOS aminoguanidine 1 h before superior mesenteric artery occlusion. Whereas treatment with L-NAME during ischemia increased both IL-6 levels in lymph and lung microvascular permeability, aminoguanidine restored the augmented intestinal plasma extravasation due to ischemia and did not induce IL-6 in lymph. On the other hand, IL-6 and lymph of intestinal I/R detached the HUVECs, whereas lymph of ischemic rats upon L-NAME treatment when incubated with anti-IL-6 prevented HUVEC detachment. It is shown that the intestinal ischemia itself is sufficient to increase intestinal microvascular permeability with involvement of iNOS activation. Intestinal ischemia and absence of constitutive NOS activity leading to additional intestinal stress both cause release of IL-6 and increase of lung microvascular permeability. Because anti-IL-6 prevented the endothelial cell injury caused by lymph at the ischemia period, the lymph-borne IL-6 might be involved with endothelial cell activation. At the reperfusion period, this cytokine does not seem to be modulated by NO.  相似文献   

11.
OBJECTIVE: To examine the role of constitutive and inducible nitric oxide synthases (cNOS and iNOS) in platelet-activating factor (PAF)-induced shock and intestinal injury. DESIGN: Prospective, randomized, controlled experimental study. SETTING: Hospital research laboratory. SUBJECTS: Young adult male Sprague-Dawley rats were anesthetized and studied. INTERVENTIONS: Rats were injected with PAF, either alone or after the following pretreatments: a) selective iNOS inhibitors aminoguanidine or S-methylisothiourea; b) 3-morpholinosydnonimine, a NO donor; c) S-methylisothiourea + 3-morpholinosydnonimine; and d) antineutrophil antibody (to deplete neutrophils). MEASUREMENTS AND MAIN RESULTS: Blood pressure, hematocrit, white blood cell counts, intestinal injury, and intestinal cNOS and iNOS activities were assessed. We found that: a) cNOS is the predominant NOS in the intestine and its activity is inversely correlated to the level of tissue injury; b) there is a time-dependent increase in cNOS activity in sham-operated animals, which was abolished by PAF; c) Western blotting and immunohistochemistry showed iNOS present in the normal intestine, localizing mainly in crypt cells; d) iNOS inhibitors attenuated PAF-induced injury in animals with high cNOS activity, but had no protective effect in animals with low cNOS activity; e) 3-morpholinosydnonimine, alone or together with S-methylisothiourea, alleviated PAF-induced injury; and f) neutrophil depletion blocked the suppressive effect of PAF on cNOS and prevented injury. CONCLUSIONS: We conclude that cNOS and iNOS play different roles in PAF-induced intestinal injury. Caution should be exerted concerning potential therapeutic uses of iNOS inhibitors.  相似文献   

12.
OBJECTIVE: Incubation of enterocytic monolayers with interferon (IFN)-gamma increases nitric oxide (NO) production and permeability, but NO synthesis inhibitors ameliorate the development of IFN-gamma-induced hyperpermeability. Induction of inducible nitric oxide synthase (iNOS), an isoform of the enzyme responsible for NO biosynthesis, is often enhanced by the synergistic effects of multiple cytokines. Moreover, many of the cytopathic effects of NO are mediated by peroxynitrite, which is produced by the reaction of NO with superoxide radical anion. In the present study, we sought to determine whether combinations of several proinflammatory cytokines, including IFN-gamma, interleukin-1beta, and tumor necrosis factor-alpha, have synergistic effects on the induction of iNOS expression and/or hyperpermeability to hydrophilic solutes in cultured enterocytic monolayers. We also assessed the effects of aminoguanidine (a relatively selective iNOS inhibitor), L-N(G)-monomethyl arginine (an isoform-nonselective NO synthase inhibitor), and Tiron (a superoxide radical anion scavenger) on the development of cytokine-induced hyperpermeability. DESIGN: Caco-2 monolayers were incubated under control conditions or with IFN-gamma, interleukin-1beta, or tumor necrosis factor-alpha alone, pairwise combinations of these cytokines, or all three cytokines together (cytomix; CM). iNOS messenger RNA (mRNA) expression was assessed using Northern blot analysis. The permeability of Caco-2 monolayers growing on permeable supports in bicameral chambers was assessed by measuring the apical-to-basolateral flux of fluorescein disulfonic acid. The concentration of nitrate plus nitrite in culture supernatants, an indirect measure of NO production, was determined using the Griess reaction. RESULTS: After 24 hrs of incubation, up-regulation of iNOS mRNA expression was evident only in cells exposed to IFN-gamma-containing formulations. Expression of iNOS mRNA was far greater in cells incubated with CM than in cells treated with IFN-gamma alone or either of the two-component IFN-gamma-containing cytokine combinations. Compared with IFN-gamma, CM resulted in a higher rate of NO production over 48 hrs of incubation. The permeability of Caco-2 monolayers increased by approximately six-fold and approximately 20-fold after incubation for 48 hrs with IFN-gamma alone and CM, respectively. The increase in permeability induced by incubation with CM was significantly ameliorated by the addition of aminoguanidine, L-N(G)-monomethyl arginine, or Tiron. CONCLUSIONS: IFN-gamma-containing combinations of cytokines are potent inducers of iNOS in cultured enterocytic monolayers. Peroxynitrite may be an important mediator of cytokine-induced gut epithelial hyperpermeability.  相似文献   

13.
An estimated two billion persons are latently infected with Mycobacterium tuberculosis. The host factors that initiate and maintain this latent state and the mechanisms by which M. tuberculosis survives within latent lesions are compelling but unanswered questions. One such host factor may be nitric oxide (NO), a product of activated macrophages that exhibits antimycobacterial properties. Evidence for the possible significance of NO comes from murine models of tuberculosis showing progressive infection in animals unable to produce the inducible isoform of NO synthase and in animals treated with a NO synthase inhibitor. Here, we show that O2 and low, nontoxic concentrations of NO competitively modulate the expression of a 48-gene regulon, which is expressed in vivo and prepares bacilli for survival during long periods of in vitro dormancy. NO was found to reversibly inhibit aerobic respiration and growth. A heme-containing enzyme, possibly the terminal oxidase in the respiratory pathway, likely senses and integrates NO and O2 levels and signals the regulon. These data lead to a model postulating that, within granulomas, inhibition of respiration by NO production and O2 limitation constrains M. tuberculosis replication rates in persons with latent tuberculosis.  相似文献   

14.
Splanchnic ischemia/reperfusion (I/R) induces a systemic inflammatory response with acute lung injury. Impaired production of endothelial nitric oxide (NO) plays a key role in this process. We evaluated the effects of early treatment with inhaled NO (iNO) on lung microcirculatory inflammatory changes during splanchnic I/R. I/R was induced in rats by occlusion of the superior mesenteric artery (SMA; 40 min) and reperfusion (90 min). Four groups were studied: Control, anesthesia only; Sham, all surgical procedures without I/R, ventilated with air; Air, SMA I/R, ventilation with air; and NO, SMA I/R, ventilation with NO (20 ppm) starting 10 min before reperfusion. Intravital video microscopy was used to monitor pulmonary macromolecular flux and capillary flow velocity (CFV). Leukocyte infiltration was determined by morphometry. SMA I/R decreased mean arterial blood pressure, capillary CFV (P < 0.01), and shear rate (P < 0.01), and increased pulmonary macromolecular leak by 138% +/- 8% (P < 0.001). iNO markedly attenuated the increase in macromolecular leak (P < 0.01), blunted the decrease in capillary CFV (P < 0.05) and shear rate (P < 0.05), and prevented the increase in leukocyte infiltration of the lungs after SMA I/R (P < 0.05). The direct, real-time, in vivo data suggest that early institution of low-dose iNO therapy effectively ameliorates the acute remote pulmonary inflammatory response after splanchnic I/R.  相似文献   

15.

Introduction  

Microvascular dysfunction causing intravascular leakage of fluid and protein contributes to hypotension and shock in sepsis. We tested the hypothesis that abrogation of inducible nitric oxide synthase (iNOS) activation would decrease leukocyte rolling, leukocyte adhesion, and microvascular leakage in sepsis. We compared wild-type mice made septic by cecal ligation and puncture with mice deficient in iNOS.  相似文献   

16.
A number of diseases are due to lysosomal destabilization, which results in damaging cell loss. To investigate the mechanisms of lysosomal cell death, we characterized the cytotoxic action of two widely used quinolone antibiotics: ciprofloxacin (CPX) or norfloxacin (NFX). CPX or NFX plus UV light (NFX*) induce lysosomal membrane permeabilization (LMP), as detected by the release of cathepsins from lysosomes. Inhibition of the lysosomal accumulation of CPX or NFX suppresses their capacity to induce LMP and to kill cells. CPX- or NFX-triggered LMP results in caspase-independent cell death, with hallmarks of apoptosis such as chromatin condensation and phosphatidylserine exposure on the plasma membrane. LMP triggers mitochondrial membrane permeabilization (MMP), as detected by the release of cytochrome c. Both CPX and NFX* cause Bax and Bak to adopt their apoptotic conformation and to insert into mitochondrial membranes. Bax-/- Bak-/- double knockout cells fail to undergo MMP and cell death in response to CPX- or NFX-induced LMP. The single knockout of Bax or Bak (but not Bid) or the transfection-enforced expression of mitochondrion-targeted (but not endoplasmic reticulum-targeted) Bcl-2 conferred protection against CPX (but not NFX*)-induced MMP and death. Altogether, our data indicate that mitochondria are indispensable for cell death initiated by lysosomal destabilization.  相似文献   

17.
A controlled study was performed to assess the involvement of the nitric oxide pathway in migraine pathophysiology. Thirteen patients with migraine without aura and seven clinically healthy subjects (C) were selected. All of the migraine patients were studied both before, during an asymptomatic phase (t 0), and 1 h after the administration of 5 mg isosorbide dinitrate, a nitric oxide donor able to induce an experimental migraine attack (t 1). The nitric oxide levels were analyzed as nitrite accumulation in serum samples, in peripheral blood mononuclear cell extracts, and culture supernatants. Basal nitrite levels in serum samples and peripheral blood mononuclear cell culture supernatants of migraine patients and healthy subjects indicated that migraine patients possess an activated nitric oxide synthesis pathway (t 0 vs. C F=8.16,P<0.01 and F=16.2,P<0.01, respectively). As expected, in the migraine patients treated with the nitric oxide donor, a marked increase of nitrite levels was observed in sera (t 1 vs.t 0 P<0.05,t=3.05). In contrast, during the nitric oxide donor-induced migraine attacks a statistically significant decrease of nitrite levels in peripheral blood mononuclear cell culture supernatants was observed (t 1 vs.t 0 P<0.01,t=−4.03), whereas a significant increase of nitrite in total cell extracts was detected (t 1 vs.t 0 P<0.001,t=−6.89). These preliminary data suggest that nitric oxide could be involved in the neurovascular modifications leading to a migraine attack.  相似文献   

18.
Small intestinal permeability in dermatological disease   总被引:1,自引:0,他引:1  
Passive small intestinal permeability was investigated in 62 patients with atopic eczema, 29 with psoriasis and 18 with dermatitis herpetiformis, using the cellobiose/mannitol differential sugar absorption test. Urinary recovery of cellobiose and mannitol in patients with both psoriasis and eczema were similar to values in a control population, and were not affected by the extent or activity of skin disease. The cellobiose/mannitol recovery ratio was abnormally high in seven patients with eczema, six of whom underwent jejunal biopsy. Jejunal mucosal morphology was normal in five, and one patient was found to have coeliac disease. Cellobiose/mannitol recovery ratio was also abnormal in seven patients with psoriasis, and in 11 with dermatitis herpetiformis, seven of whom had a normal jejunal biopsy. These findings demonstrate that the passive permeability of the small intestine is normal in the majority of patients with atopic eczema and psoriasis. Increased absorption of macromolecules from the gut lumen cannot be ascribed to defective intestinal integrity, and is unlikely to be relevant to the pathogenesis of eczema. Abnormal intestinal permeability may be a more sensitive manifestation of gluten-sensitive enteropathy than jejunal biopsy in dermatitis herpetiformis.  相似文献   

19.
ObjectivesTo determine reference values for serum nitric oxide metabolites (nitrite + nitrate = NOx) concentrations in adult subjects.Design and methodsSerum NOx concentration was measured, using the Griess method, in 694 non-smoking apparently healthy subjects, randomly selected from a population-based study. The International Federation of Clinical Chemistry guidelines and the robust method were used for determining reference values.ResultsThe 95% reference values for serum NOx concentration and serum NOx/creatinine ratio were 11.5 to 76.4 μmol/L and 0.111 to 0.729 in men and 10.1 to 65.6 μmol/L and 0.121 to 0.777 in women, respectively. With increasing body mass index, upper limits of serum NOx and the NOx/creatinine ratio increased in women and decreased in men. Serum NOx levels above upper limits predicted both diabetes and metabolic syndrome in women.ConclusionsThis study reports the first set of reference values for serum NOx concentration and NOx/creatinine ratio in a relatively large healthy non-smoking population.  相似文献   

20.
BACKGROUND: The toxicity of dietary nitrate (NO3-) is controversial. One reason is nitrate metabolism in the intestine is so complicated that it is far from fully understood. There is no study measuring breath nitric oxide (NO) and nitrous oxide (N2O) after ingesting vegetables and high-nitrate food at the same time. METHODS: Breath samples from 10 healthy young and 10 healthy old subjects were collected at 15-min intervals for 5 h after ingestion of 100 g of lettuce and during fasting (control). Breath NO and N2O were analyzed by a chemiluminescence and an IR-PAS analyzer respectively. RESULTS: N2O maximum concentration and excretions increased significantly after ingesting lettuce in each group [303 (30) vs. 750 (81) ppb, 771 (72) vs. 1668 (146) microg in young; 442 (52) vs. 1092 (109) ppb, 1088 (125) vs. 2100 (183) microg in old subjects; mean (SE), P<0.01], while NO did not. In addition, breath NO was strongly influenced by ambient NO, which varied greatly. N2O maximum level in old subjects after ingesting lettuce was higher than that of young subjects (750 vs. 1092 ppb, P<0.05), and significantly higher N2O concentration levels were seen at 30, 45, 60, and 105 min in old subjects. CONCLUSIONS: A large amount of N2O produced in the intestine and normal nitrate intake do not influence the breath NO concentration, probably due to its relatively small production. Higher maximum N2O concentration after ingesting lettuce in old subject is probably because more bacteria, which rapidly reduce dietary nitrate in the upper intestinal tract, inhabit the gut in old age. Our results suggested that breath N2O is a useful noninvasive maker to estimate dietary nitrate reduction in the intestinal tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号