首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease (AD) is a complex disorder for which various in vivo models exist. The TgCRND8 mouse, transgenic for the human amyloid precursor protein, is an aggressive early onset model of brain amyloid deposition. Preliminary studies revealed that when the transgene is expressed on an A/J genetic background, these mice not only survive longer but also deposit less parenchymal amyloid-beta (Abeta) peptides as compared to those on a C57BL/6 background. We performed a genome-wide study of an F2 intercross between TgCRND8 on an A/J background and C57BL/6 mice, to identify genetic modulators of amyloid accumulation and deposition. We identified four highly significant QTLs that together account for 55% of the phenotypic variance in the number of plaques (Thioflavin S). QTLs were found on the distal part of chromosome 4 with an LOD score of 8.1 at D4Mit251, on chromosome 11 with an LOD score of 5.5 at D11Mit242, on chromosome 9 with an LOD score of 5.0 at D9Mit336 and on the proximal part of chromosome 8 with an LOD score of 4.5 at D8Mit223. A/J alleles at these loci are protective and all decreased the amount of Abeta deposition. Interestingly, the QTL on chromosome 11 is also significantly linked to the levels of brain Abeta(42) and Abeta(40). Although these QTLs do not control the levels of plasmatic Abeta, other regions on chromosomes 1 and 6 show significant linkage. Further characterization of these QTL regions may lead to the identification of genes involved in the pathogenesis of AD.  相似文献   

2.
Novel plaque-like "AMY" lesions were recently described in the brains of patients with Alzheimer's disease (AD). Using three Abeta antibodies, we now document the co-occurrence of AMY immunoreactivity (IR) with amyloid beta-peptide (Abeta) in the large majority of plaques in AD brain. AMY IR was detected in many compacted plaques, whereas its co-localization with early, diffuse Abeta deposits was rare. AMY IR overlapped considerably or fully with Abeta and, in more severely affected AD brains, decorated the periphery of some plaques. In a temporal series of 29 Down syndrome (DS) brains from patients aged 12 to 73 years, the earliest AMY IR was detected in some plaques at age 15, following the earliest appearance of Abeta plaques (age 12 years), and then accrued within a subset of Abeta deposits, namely, the more spherical, compacted plaques. Brains from DS patients 29 years and older showed AMY staining in many Abeta plaques, as seen in AD. Brains from eight monkeys aged 17 to 34 years and thirty APP transgenic mice aged 8 to 20 months showed Abeta IR but no AMY IR. We conclude that AMY IR represents an amyloid-associated antigen that co-deposits in most but not all Abeta plaques in AD and DS and that accumulation of the AMY antigen follows Abeta deposition in plaques.  相似文献   

3.
Reports suggest that Alzheimer's disease (AD) patients show a high life-time prevalence of seizure-like disorders. The transgenic CRND8 (TgCRDN8) is a mouse model of AD-like amyloid pathogenesis that expresses a double-mutant form of human amyloid precursor protein 695 (K670N/M671L and V717F). We have previously reported that post-plaque TgCRND8 mice exhibited a lower threshold to seizure with a more severe seizure type when challenged with pentylenetetrazole (PTZ) intravenously. Here, we now report that pre-plaque TgCRND8 mice also demonstrate an increased sensitivity to PTZ-induced seizures with a more severe seizure type over age-matched littermate controls. A lower threshold and more severe seizure type in TgCRND8 mice prior to and after plaque deposition suggest that this genotype difference may be due to beta-amyloid (Abeta) toxicity rather than plaque formation. Thus, the TgCRND8 mice are not only a model for Abeta production and plaque deposition, but may also be useful for AD associated seizure.  相似文献   

4.
The TgCRND8 mouse model of Alzheimer's disease exhibits progressive cortical and hippocampal β-amyloid accumulation, resulting in plaque pathology and spatial memory impairment by 3 months of age. We tested whether TgCRND8 cognitive function is disrupted prior to the appearance of macroscopic plaques in an object recognition task. We found profound deficits in 8-week-old mice. Animals this age were not impaired on the Morris water maze task. TgCRND8 and littermate controls did not differ in their duration of object exploration or optokinetic responses. Thus, visual and motor dysfunction did not confound the phenotype. Object memory deficits point to the frontal cortex and hippocampus as early targets of functional disruption. Indeed, we observed altered levels of brain-derived neurotrophic factor (BDNF) messenger ribonucleic acid (mRNA) in these brain regions of preplaque TgCRND8 mice. Our findings suggest that object recognition provides an early index of cognitive impairment associated with amyloid exposure and reduced brain-derived neurotrophic factor expression in the TgCRND8 mouse.  相似文献   

5.
6.
We and others have previously reported that lactoferrin (LF), which acts as both an iron-binding protein and an inflammatory modulator, is strongly up-regulated in the brains of patients with Alzheimer's disease (AD). We have also studied the expression and localization of LF mRNA in the brain cortices of patients with AD. In this study, we investigated immunohistochemically the localization of LF in the brains of APP-transgenic mice, representing a model of AD. No LF immunoreactivity was detected in the brains of the wild-type mice. In the transgenic AD mice, LF deposition was detected in the brains. Double-immunofluorescence staining with antibodies directed against the amyloid-β peptide (Aβ) and LF localized the LF depositions to amyloid deposits (senile plaques) and regions of amyloid angiopathy. Senile plaque formation precedes LF deposition in AD. In the transgenic mice aged <18 months, most of senile plaques were negative for LF. LF deposits appeared weakly at about 18 months of age in these mice. Both the intensity and number of LF-positive depositions in the transgenic mice increased with age. Double-staining for LF and thioflavin-S revealed that LF accumulated in thioflavin-S-positive, fibrillar-type senile plaques. The up-regulation of LF in the brains of both AD patients and the transgenic mouse model of AD provides evidence of an important role for LF in AD-affected brain tissues.  相似文献   

7.
To clarify the relationship between amyloid formation and amyloid precursor protein (APP), the brain sections from eight patients with Alzheimer''s disease (AD) and four with Gerstmann-Sträussler Syndrome (GSS) were investigated immunohistochemically by the double-immunostaining method. In AD, most APP-positive senile plaques belong to classical plaques or primitive plaques, whereas in diffuse plaques, APP-positive neuritic components are rarely observed. The authors documented that anti-APP-labeled degenerative neurites surrounding kuru plaques in all four GSS patients. These kuru plaques were verified by double immunostaining using anti-prion protein and anti-APP. The APP-positive structures in kuru plaques were almost identical with those seen in the classical plaques in AD. The authors concluded that APP-positive degenerative neurites are not an early event in the amyloid formation of senile plaques. It is therefore postulated that depositions of beta/A4 and prion proteins are primary events that may involve the surrounding microenvironment and result in the secondary formation of APP-positive degenerative neurites, not specific to AD.  相似文献   

8.
Alzheimer's disease (AD) is characterized by deposition of beta-amyloid (Abeta) in diffuse and senile plaques, and variably in vessels. Mutations in the Abeta-encoding region of the amyloid precursor protein (APP) gene are frequently associated with very severe forms of vascular Abeta deposition, sometimes also accompanied by AD pathology. We earlier described a Flemish APP (A692G) mutation causing a form of early-onset AD with a prominent cerebral amyloid angiopathy and unusually large senile plaque cores. The pathogenic basis of Flemish AD is unknown. By image and mass spectrometric Abeta analyses, we demonstrated that in contrast to other familial AD cases with predominant brain Abeta42, Flemish AD patients predominantly deposit Abeta40. On serial histological section analysis we further showed that the neuritic senile plaques in APP692 brains were centered on vessels. Of a total of 2400 senile plaque cores studied from various brain regions from three patients, 68% enclosed a vessel, whereas the remainder were associated with vascular walls. These observations were confirmed by electron microscopy coupled with examination of serial semi-thin plastic sections, as well as three-dimensional observations by confocal microscopy. Diffuse plaques did not associate with vessels, or with neuritic or inflammatory pathology. Together with earlier in vitro data on APP692, our analyses suggest that the altered biological properties of the Flemish APP and Abeta facilitate progressive Abeta deposition in vascular walls that in addition to causing strokes, initiates formation of dense-core senile plaques in the Flemish variant of AD.  相似文献   

9.
Hypertension and sporadic Alzheimer's disease (AD) have been associated but clear pathophysiological links have not yet been demonstrated. Hypertension and AD share inflammation as a pathophysiological trait. Thus, we explored if modulating neuroinflammation could influence hypertension-induced β-amyloid (Aβ) deposition.Possible interactions among hypertension, inflammation and Aβ-deposition were studied in hypertensive mice with transverse aortic coarctation (TAC). Given that brain Aβ deposits are detectable as early as 4 weeks after TAC, brain pathology was analyzed in 3-week TAC mice, before Aβ deposition, and at a later time (8-week TAC mice).Microglial activation and interleukin (IL)-1β upregulation were already found in 3-week TAC mice. At a later time, along with evident Aβ deposition, microglia was still activated. Finally, immune system stimulation (LPS) or inhibition (ibuprofen), strategies described to positively or negatively modulate neuroinflammation, differently affected Aβ deposition.We demonstrate that hypertension per se triggers neuroinflammation before Aβ deposition. The finding that only immune system activation, but not its inhibition, strongly reduced amyloid burden suggests that stimulating inflammation in the appropriate time window may represent a promising strategy to limit vascular-triggered AD-pathology.  相似文献   

10.
Previous studies have described altered expression of metallothioneins (MTs) in neurodegenerative diseases like multiple sclerosis (MS), Down syndrome, and Alzheimer's disease (AD). In order to gain insight into the possible role of MTs in neurodegenerative processes and especially in human diseases, the use of animal models is a valuable tool. Several transgenic mouse models of AD amyloid deposits are currently available. These models express human beta-amyloid precursor protein (AbetaPP) carrying different mutations that subsequently result in a varied pattern of beta-amyloid (Abeta) deposition within the brain. We have evaluated the expression of MT-I and MT-III mRNA by in situ hybridization in three different transgenic mice models of AD: Tg2576 (carrying AbetaPP harboring the Swedish K670N/M671L mutations), TgCRND8 (Swedish and the Indiana V717F mutations), and Tg-SwDI (Swedish and Dutch/Iowa E693Q/D694N mutations). MT-I mRNA levels were induced in all transgenic lines studied, although the pattern of induction differed between the models. In the Tg2576 mice MT-I was weakly upregulated in cells surrounding Congo Red-positive plaques in the cortex and hippocampus. A more potent induction of MT-I was observed in the cortex and hippocampus of the TgCRND8 mice, likely reflecting their higher amyloid plaques content. MT-I upregulation was also more significant in Tg-SwDI mice, especially in the subiculum and hippocampus CA1 area. Immunofluorescence stainings demonstrate that astrocytes and microglia/macrophages surrounding the plaques express MT-I&II. In general, MT-I regulation follows a similar but less potent response than glial fibrillary acidic protein (GFAP) expression. In contrast to MT-I, MT-III mRNA expression was not significantly altered in any of the models examined suggesting that the various MT isoforms may have different roles in these experimental systems, and perhaps also in human AD.  相似文献   

11.
Alzheimer's disease is characterized in part by extracellular aggregation of the amyloid-β peptide in the form of diffuse and fibrillar plaques in the brain. Electron microscopy (EM) has made an important contribution in understanding of the structure of amyloid plaques in humans. Classical EM studies have revealed the architecture of the fibrillar core, characterized the progression of neuritic changes, and have identified the neurofibrillary tangles formed by paired helical filaments (PHF) in degenerating neurons. Clinical data has strongly correlated cognitive impairment in AD with the substantial synapse loss observed in these early ultrastructural studies. Animal models of AD-type brain amyloidosis have provided excellent opportunities to study amyloid and neuritic pathology in detail and establish the role of neurons and glia in plaque formation. Transgenic mice overexpressing mutant amyloid precursor protein (APP) alone with or without mutant presenilin 1 (PS1), have shown that brain amyloid plaque development and structure grossly recapitulate classical findings in humans. Transgenic APP/PS1 mice expressing human apolioprotein E isoforms also develop amyloid plaque deposition. However no ultrastructural data has been reported for these animals. Here we show results from detailed EM analysis of amyloid plaques in APP/PS1 mice expressing human isoforms of ApoE and compare these findings with EM data in other transgenic models and in human AD. Our results show that similar to other transgenic animals, APP/PS1 mice expressing human ApoE isoforms share all major cellular and subcellular degenerative features and highlight the identity of the cellular elements involved in Aβ deposition and neuronal degeneration.  相似文献   

12.
Thrombin was detected immunohistochemically in brain tissue of Alzheimer's disease (AD) patients and age-matched controls. Positive staining was restricted to vessels and residual plasma in controls but was also present in senile plaques, some diffuse amyloid deposits and neurofibrillary tangles in AD. Positive staining was abolished by absorption of antibody with purified human thrombin but not by absorption with prothrombin. The data suggest that thrombin formation from prothrombin probably takes place in AD brain.  相似文献   

13.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that has been characterized by gross cortical atrophy, cellular neurodegeneration, reactive gliosis, and the presence of microscopic extracellular amyloid plaques and intracellular neurofibrillary tangles. Earlier diagnoses of AD would be in the best interest of managing the patient and would allow for earlier therapeutic intervention. By measuring the apparent diffusion coefficient (ADC) using diffusion-weighted imaging (DWI), a type of magnetic resonance imaging (MRI), one can quantify alterations in water diffusivity resulting from microscopic structural changes in the cell at early stages that are associated with pathophysiological processes of brain injury and/or disease progression. Whether or not this methodology is useful for AD is a question under examination. For example, DWI in suspected AD patients has shown increases in mean ADC values in the hippocampus and diminished diffusion anisotropy in the posterior white matter. However, in some cases, hippocampal ADC values appear not to change in AD patients. Moreover, to our knowledge, all DWI studies in suspected AD patients to date are technically incomplete in experimental design, because corresponding histological sections demonstrating actual plaque deposition are lacking and so it is not clear that ADC changes actually correspond to plaque deposition. In our study, we used DWI in the TgCRND8 transgenic model of Alzheimer’s disease in conjunction with histological techniques and found robust plaque deposition in the transgenic strain in older animals (12–16 months old). However, we did not find statistically significant changes (p > 0.05) in ADC values (although ADC values in TgCRND8 mice did decrease in all regions examined) in mice 12–16 months old. Collectively, recent results from human studies and in rodent AD transgenic models support our findings and suggest that amyloid beta plaque load is not likely the major or primary component contributing to diffusional changes, if they occur.  相似文献   

14.
We have recently identified, in the brain tissue of patients afflicted with Alzheimer's disease (AD), the non-A beta component of AD amyloid (NAC) as a new constituent of amyloid. NAC is derived from a larger precursor, NACP, a presynaptic protein. To better understand the role of NACP/NAC in the pathogenesis of AD, we used semiquantitative immunoblotting and combined double-immunocytochemistry/laser scanning confocal microscopy to study the concentration and distribution of NACP/NAC in human brain, and compared them to the concentration and distribution of the presynaptic marker synaptophysin and the amyloid marker A beta. The semiquantitative immunoblotting demonstrated that the NACP concentration is slightly increased in the AD frontal cortex without statistical significance, whereas synaptophysin was reduced in its levels in AD. Consequently the proportion of NACP/synaptophysin was more than double in the AD frontal cortex as compared with controls. In the AD neocortex, NACP was colocalized with approximately 80% of the synaptophysin-immunoreactive structures (presumably the presynaptic terminals) and with the dystrophic neuritic component of the plaques. Computer-aided analysis showed that numbers of NACP-immunoreactive structures along synaptophysin-immunoreactive structures were significantly diminished (30 to 40%) in AD. Although the overall numbers of NACP-positive structures were decreased, there was a significant increase in the intensity of NACP-immunoreactivity per structure in AD. This increased intensity of NACP immunoreactivity per structure in AD was not observed with anti-synaptophysin, consistent with immunoblotting-based quantification. Antibodies against NAC immunoreacted with amyloid in 35% of the diffuse plaques and 55% of the mature plaques. Normal aged control brains containing small groups of diffuse plaques were negative with anti-NAC. Double-immunolabeling studies with A beta antibodies showed that NAC immunoreactivity is more abundant in the center portion of amyloid rather than in the periphery. These studies suggest that there is a connection between metabolism of presynaptic proteins and amyloid formation, and that NAC might follow diffuse A beta accumulation resulting in the formation of compact amyloid and mature plaques.  相似文献   

15.
The morphology and neurochemistry of beta-amyloid (A beta) plaque-associated dystrophic neurites present in TgCRND8 and Tg2576 mice was demonstrated to be strikingly similar to that observed in pathologically aged human cases, but not in Alzheimer's disease (AD) cases. Specifically, pathologically aged cases and both transgenic mouse lines exhibited alpha-internexin- and neurofilament-triplet-labelled ring- and bulb-like dystrophic neurites, but no classical hyperphosphorylated-tau dystrophic neurite pathology. In contrast, AD cases demonstrated abundant classical hyperphosphorylated-tau-labelled dystrophic neurites, but no neurofilament-triplet-labelled ring-like dystrophic neurites. Importantly, quantitation demonstrated that the A beta plaques in TgCRND8 mice were highly axonopathic, and localised displacement or clipping of apical dendrite segments was also associated with A beta plaques in both transgenic mouse models. These results suggest that neuronal pathology in these mice represent an accurate and valuable model for understanding, and developing treatments for, the early brain changes of AD.  相似文献   

16.
Alzheimer disease (AD) involves glial inflammation associated with amyloid plaques. The role of the microglial cells in the AD brain is controversial, as it remains unclear if the microglia form the amyloid fibrils of plaques or react to them in a macrophage-phagocytic role. Also, it is not known why microglia are preferentially associated with some amyloid plaque types. This review will provide substantial evidence to support the phagocytic role of microglia in the brain as well as explain why microglia are generally associated with specific plaque types that may be explained through their unique mechanisms of formation. In summary, the data presented suggests that plaque associated microglial activation is typically subsequent to specific amyloid plaque formations in the AD brain.  相似文献   

17.
Microglia are a key component of the inflammatory response in the brain and are associated with senile plaques in Alzheimer's disease (AD). Although there is evidence that microglial activation is important for the pathogenesis of AD, the role of microglia in cerebral amyloidosis remains obscure. The present study was undertaken to investigate the relationship between beta-amyloid deposition and microglia activation in APP23 transgenic mice which express human mutated amyloid-beta precursor protein (betaPP) under the control of a neuron-specific promoter element. Light microscopic analysis revealed that the majority of the amyloid plaques in neocortex and hippocampus of 14- to 18- month-old APP23 mice are congophilic and associated with clusters of hypertrophic microglia with intensely stained Mac-1- and phosphotyrosine-positive processes. No association of such activated microglia was observed with diffuse plaques. In young APP23 mice, early amyloid deposits were already of dense core nature and were associated with a strong microglial response. Ultrastructurally, bundles of amyloid fibrils, sometimes surrounded by an incomplete membrane, were observed within the microglial cytoplasm. However, microglia with the typical characteristics of phagocytosis were associated more frequently with dystrophic neurites than with amyloid fibrils. Although the present observations cannot unequivocally determine whether microglia are causal, contributory, or consequential to cerebral amyloidosis, our results suggest that microglia are involved in cerebral amyloidosis either by participating in the processing of neuron-derived betaPP into amyloid fibrils and/or by ingesting amyloid fibrils via an uncommon phagocytotic mechanism. In any case, our observations demonstrate that neuron-derived betaPP is sufficient to induce not only amyloid plaque formation but also amyloid-associated microglial activation similar to that reported in AD. Moreover, our results are consistent with the idea that microglia activation may be important for the amyloid-associated neuron loss previously reported in these mice.  相似文献   

18.
It is well established that the extracellular deposition of amyloid beta (Abeta) peptide plays a central role in the development of Alzheimer's disease (AD). Therefore, either preventing the accumulation of Abeta peptide in the brain or accelerating its clearance may slow the rate of AD onset. Neprilysin (NEP) is the dominant Abeta peptide-degrading enzyme in the brain; NEP becomes inactivated and down-regulated during both the early stages of AD and aging. In this study, we investigated the effect of human (h)NEP gene transfer to the brain in a mouse model of AD before the development of amyloid plaques, and assessed how this treatment modality affected the accumulation of Abeta peptide and associated pathogenetic changes (eg, inflammation, oxidative stress, and memory impairment). Overexpression of hNEP for 4 months in young APP/DeltaPS1 double-transgenic mice resulted in reduction in Abeta peptide levels, attenuation of amyloid load, oxidative stress, and inflammation, and improved spatial orientation. Moreover, the overall reduction in amyloidosis and associated pathogenetic changes in the brain resulted in decreased memory impairment by approximately 50%. These data suggest that restoring NEP levels in the brain at the early stages of AD is an effective strategy to prevent or attenuate disease progression.  相似文献   

19.
Amyloid beta-peptide (Abeta) is a major constituent of senile plaques in Alzheimer's disease (AD). Neurotoxicity results from the conformational transition of Abeta from random-coil to beta-sheet and its oligomerization. Among a series of ionic compounds able to interact with soluble Abeta, Tramiprosate (3-amino-1-propanesulfonic acid; 3APS; Alzhemedtrade mark) was found to maintain Abeta in a non-fibrillar form, to decrease Abeta(42)-induced cell death in neuronal cell cultures, and to inhibit amyloid deposition. Tramiprosate crosses the murine blood-brain barrier (BBB) to exert its activity. Treatment of TgCRND8 mice with Tramiprosate resulted in significant reduction (approximately 30%) in the brain amyloid plaque load and a significant decrease in the cerebral levels of soluble and insoluble Abeta(40) and Abeta(42) (approximately 20-30%). A dose-dependent reduction (up to 60%) of plasma Abeta levels was also observed, suggesting that Tramiprosate influences the central pool of Abeta, changing either its efflux or its metabolism in the brain. We propose that Tramiprosate, which targets soluble Abeta, represents a new and promising therapeutic class of drugs for the treatment of AD.  相似文献   

20.
Amyloidogenic processing of the amyloid precursor protein (APP) with deposition in brain of the 42 amino acid long amyloid beta-peptide (A beta(42)) is considered central to Alzheimer's disease (AD) pathology. However, it is generally believed that nonfibrillar pre-amyloid A beta(42) deposits have to mature in the presence of A beta(40) into fibrillar amyloid plaques to cause neurodegeneration. Here, we describe an aggressive form of AD caused by a novel missense mutation in APP (T714I) directly involving gamma-secretase cleavages of APP. The mutation had the most drastic effect on A beta(42)/A beta(40) ratio in vitro of approximately 11-fold, simultaneously increasing A beta(42) and decreasing A beta(40) secretion, as measured by matrix-assisted laser disorption ionization time-of-flight mass spectrometry. This coincided in brain with deposition of abundant and predominant nonfibrillar pre-amyloid plaques composed primarily of N-truncated A beta(42) in complete absence of A beta(40). These data indicate that N-truncated A beta(42) as diffuse nonfibrillar plaques has an essential but undermined role in AD pathology. Importantly, inhibiting secretion of full-length A beta(42 )by therapeutic targeting of APP processing should not result in secretion of an equally toxic N-truncated A beta(42).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号