首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The arrangement of the enteric ganglia and nerve fibre plexuses was examined in the submucous and mucous layers and around Peyer's patches of the porcine small intestine to clarify their organisation. Immunohistochemistry of vasoactive intestinal peptide (VIP) and neurofilament proteins in wholemounts, chopped or paraffin sections was used to locate the neural elements. The ganglia of the internal and external submucous plexuses were situated at 2 different topographic locations, being clearly demarcated by the submucosal vascular arcades and differing in neuronal composition. The internal submucous plexus was the only contributor to the plexus surrounding the follicles of Peyer's patches as a continuous mesh of 3 ganglionated nerve subplexuses. VIP-immunoreactive fibres from this mesh innervated the dome. The mucosal plexus, which was subdivided into 4 subunits — the outer proprial, inner proprial, pericryptal and villous plexuses — contained a few solitary neuronal perikarya. Labelling for neurofilament proteins revealed Dogiel types II, IV and VI neurons. The observations reveal several new features in the enteric nervous system of the pig and clarify its nomenclature.  相似文献   

4.
Intestinal infusion of nutrients, such as glucose and oleic acid, increase Fos-like immunoreactivity (Fos-LI) in both the enteric nervous system and neurons of the dorsal vagal complex (DVC) of the hindbrain. To test the hypothesis that increased Fos-LI in enteric neurons and the DVC, following intestinal nutrient infusions is mediated by cholecystokinin(1) receptors (CCK(1)), we counted enteric and DVC neurons that expressed Fos-LI following intestinal infusion of oleate or glucose, with and without pretreatment with the CCK(1) receptor antagonist, lorglumide. Both oleate and glucose infusions increased Fos-LI in the DVC. Oleate also increased Fos-LI in the myenteric and submucosal plexuses of the duodenum and the jejunum, but not the ileum, while glucose only increased Fos-LI in the submucosal plexus of the ileum. The CCK(1) receptor antagonist, lorglumide, abolished Fos-LI in the DVC following infusions of either oleate or glucose. In addition, lorglumide attenuated oleate-induced Fos-LI in the myenteric and submucosal plexuses of the duodenum and jejunum. However, lorglumide failed to attenuate glucose-induced Fos-LI in the submucosal plexus of the ileum. These data confirm previous reports indicating that CCK(1) receptors mediate increased DVC Fos-LI following intestinal infusion of oleate or glucose. CCK(1) receptors also contribute to increased Fos-LI in enteric neurons following intestinal oleate infusion. However, failure of lorglumide to attenuate the increase of Fos-LI in the ileal submucosal plexus following intestinal glucose suggests that some intestinal nutrients trigger Fos-LI induction via CCK(1) receptor-independent pathways.  相似文献   

5.
 The aim of this study was to determine locations and morphologies of enteric neurons innervating the small intestinal mucosa of the pig after application of the carbocyanine tracer DiI onto a single villus. The tissue was processed in two ways: incubation (1) of fixed material (postmortem tracing) for several months and (2) of living specimens within organotypic culture in vitro for several days (supravital tracing). In both procedures DiI-labelled neurons were found in the three ganglionated plexuses, the internal and external submucous plexus as well as the myenteric plexus. Postmortem tracing revealed different neuronal morphologies. Adendritic type II neurons were present in all three plexuses, type IV neurons with short, scarcely branched, polarly emerging dendrites were mainly found in the myenteric plexus and small dendritic neurons were mainly present in the internal submucous plexus. The latter may correspond to minineurons hitherto described only immunohistochemically. Tracing within tissue culture showed somata of neurons and, partly, proximal segments of processes to be labelled. Subsequent immunohistochemistry using general neuronal markers revealed some neurons to be adendritic type II neurons. Visualization of dendrites was less clear, hampering an accurate morphological classification of dendritic neurons. Our results suggest that neurons of all ganglionated enteric nerve plexuses of the pig participate in the innervation of the mucosa, and that postmortem tracing revealed enteric neuronal morphology more clearly than supravital tracing. Since the former method cannot be applied for deciphering the chemical coding of enteric neurons, combination of both methods will extend our knowledge of the morphological substrate for the intrinsic neuronal microcircuits in the gastrointestinal tract. Accepted: 15 July 1998  相似文献   

6.
本文报道用光镜半定量和显微光度计定量分析研究了豚鼠胃肠壁内神经丛神经元的几种酶的组织化学反应。结果表明,神经元的碱性磷酸酶(AlP)、酸性磷酸酶(AcP)、5′-核苷酸酶(5′-Nase)、硫胺素焦磷酸酶(TPPase)、非特异性酯酶(NsE)和胆碱乙酰转移酶(ChAT)反应强弱明显不等。消化道不同节段或不同部位神经元的单胺氧化酶(MAO)、氨基肽酸(AP)和乙酰胆碱酯酶(AChE)反应虽有差别,但却显阳性反应,同一神经节内各神经元的反应比较近似。胃肠各段壁内神经丛中50~66%神经元呈ChAT强阳性反应,这些细胞可能为胆碱能神经元。整个消化道粘膜下丛与肠肌丛神经元相比,除NsE外,另几种酶均有高度显著差异。粘膜下丛神经元AcP和AP反应较强,肠肌丛神经元AlP、5′-Nase、TPPase、MAO、ChAT和AChE反应较强,胃壁内神经丛不如肠道的发达。尤其是胃粘膜下丛只见少数单个散在的神经元,它们的各种酶组织化学反应均较弱。各段肠中,以十二指肠和近端结肠壁内神经丛神经元的各种酶组织化学反应较强。上述结果表明,消化道不同部位以及同一部位不同类型的神经元在代谢和功能上有明显的差别。  相似文献   

7.
The enteric nervous system (ENS) is a network of neurons and glia found in the gut wall and governs this gastrointestinal function independently from the central nervous system (CNS). ENS comprises the myenteric plexus (MP) and the submucous plexus (SP). In this study, we examined the expression profile of neurofilament heavy chain (NF-H), neuron-specific enolase (NSE), calcyclin (S100A6), vimentin and glial fibril acidic protein (GFAP) in ovine ileal enteric neurons and enteric glia cells (EGCs) during prenatal development using an immunohistochemical method. The material of the study consisted of 15 different fetal ileum tissues obtained between days 60 and 150 of pregnancy. NF-H was observed in the majority of ganglion cells in SP and MP throughout the fetal period. It was determined that there was no NF-H reaction in some ganglion cells in Peyer’s patches of internal submucosal plexus (ISPF). In the early stage of pregnancy (60–90 days), there was no expression of NSE and S1006 in ileum. After this period, NSE and S1006 were expressed in the ganglion cells of the plexus, indicating an increase in the amount of expression towards the end of pregnancy. In the early period, vimentin expression was only detected in intramuscular interstitial cells (ICs) (60–90 days), but later (90–150 days) it was also seen in the cells around the ganglion cells in the plexus. On days 60–90 of gestation, GFAP expression only occurred in MP, but in later stages, staining was also detected in SP. In the plexus, an immunoreactivity was present in EGCs forming a network around the ganglion cell. During the last period of gestation (120–150 days), the number of GFAP-positive plexus increased, with the majority of these stained cells being observed in MP. Interestingly, weak staining or reaction did not occur in ISPF, unlike other plexuses. In conclusion, this is the first study that demonstrated the expression of NF-H, vimentin, S100A6, NSE and glial fibril acidic protein (GFAP) in ovine ileal ENS in the prenatal period. In the last period of gestation (120–150 days), the expression profile of ENS was similar to that of adult animals. The expression of the used markers increased toward the end of pregnancy. Our results suggest that neurons and EGCs show heterogeneity, and GFAP and NF-H cannot be used as panenteric glial or panneuronal markers, respectively. We also demonstrated, for the first time, the prenatal expression of S100A6 in enteric neurons and the possibility of using this protein for the identification of enteric neurons.  相似文献   

8.
The expression of a tight junction (TJ) component protein, claudin-4, in the enteric neurons was investigated in the rat distal colon by immunohistochemistry and RT-PCR. Claudin-4 immunoreactivity was detected in almost all neurofilament-positive enteric neurons both of the submucosal and the myenteric plexuses, and both of the cell bodies and the neurofibers. The immunoreactivity of enteric neurons for claudin-4 was divided into two types: strongly and weakly positive neurons. Especially in the myenteric plexus, the stained neurons were classified by Dogiel's morphological classification of enteric neurons. The strongly stained claudin-4 positive neurons show Dogiel type II morphology, while the weakly stained claudin-4 positive neurons show Dogiel type I morphology. These immunohistochemical data were supported by mRNA expression in the muscle plus submucosa preparation containing the submucosal and myenteric plexuses, as well as mucosa preparation. The physiological function of claudin-4 expressed on enteric neurons is unclear up to now. It is however suggested that claudin-4 expressed on enteric neurons might play roles for the neural activity, for example as insulation between neurofibers. In conclusion, the present study clearly shows that claudin-4 is expressed by enteric neurons. This is the first evidence that the neuron itself expresses the TJ component protein, claudin-4, in the nervous system.  相似文献   

9.
Characterization of the enteric neurons is vital for understanding their physiological role. We have used single and dual label fluorescence and peroxidase-based immunohistochemistry in myenteric and submucosal whole mounts from the rat small intestine to evaluate the morphology and distribution of enteric neurons immunoreactive for the following phenotypic antigens: neuronal nitric oxide synthase (NOS), neurokinin-1 receptor (NK-1R), calretinin (Calr), calbindin (Cal), and neurofilament-M (NF-M). NOS-immunoreactive neurons had Dogiel type I morphology, were abundant in the myenteric plexus compared to the submucosal plexus, and never coexpressed NK-1R immunoreactivity. NK-1R- and Calr-immunoreactive neurons had Dogiel type II morphology and were distributed comparably in both plexuses. NK-1R and Calr-immunoreactivity were coexpressed in many of the same neurons. Calbindin-immunoreactive neurons exhibited four distinct morphologies: small and large Dogiel type II neurons, Dogiel type I neurons, and small elongated neurons. These neurons were significantly fewer in number in the myenteric plexus compared to the submucosal plexus. Neurofilament-M-immunoreactive neurons had three morphologies, Dogiel type II neurons, small Dogiel type II neurons, and a less common subpopulation of small, elongated, multipolar neurons. These neurons were also fewer in number in the myenteric plexus compared to the submucosal plexus. The distribution of these phenotypic markers may assist future work that elucidates the functional activities of these enteric neurons such as control of intestinal motility and adaptation to the entry of gastric contents.  相似文献   

10.
Changes in the distribution of 5-hydroxytryptamine-like immunoreactivity have been examined in enteric neurons at various times after microsurgical lesions of the enteric plexuses. In the myenteric plexus, varicose immunoreactive nerve fibres disappeared or were reduced in number in ganglia anal to an interruption of the myenteric plexus. Up to about 2 mm on the anal side, all varicose immunoreactive fibres disappeared from the ganglia. At about 14–16 mm below an interruption, there were about 50% of the normal number of fibres in the myenteric ganglia and at about 24 mm the innervation was normal. In the submucosa, fibres immunoreactive for 5-hydroxytryptamine were absent from an area on the anal side following interruption of the myenteric plexus. From consideration of the pattern of disappearance, it is deduced that some myenteric nerve cell bodies send immunoreactive axons in an anal direction to supply submucous ganglia. The axons run for about 8 mm in the myenteric plexus, enter the submucosa and then run for a further 4 mm approximately.Thus, varicose fibres immunoreactive for 5-hydroxytryptamine, which occur around the enteric ganglion cells of both plexuses arise from nerve cell bodies in the myenteric ganglia that send their axons in an anal direction.  相似文献   

11.
Enteric neurons are highly adaptive in their response to various pathological processes including inflammation, so the aim of this study was to describe the chemical coding of neurons in the ileal intramural ganglia in porcine proliferative enteropathy (PPE). Accordingly, juvenile Large White Polish pigs with clinically diagnosed Lawsonia intracellularis infection (PPE; n=3) and a group of uninfected controls (C; n=3) were studied. Ileal tissue from each animal was processed for dual-labelling immunofluorescence using antiserum specific for protein gene product 9.5 (PGP 9.5) in combination with antiserum to one of: vasoactive intestinal polypeptide (VIP), substance P (SP), calcitonin gene-related peptide (CGRP), somatostatin (SOM), neuropeptide Y (NPY) or galanin (GAL). In infected pigs, enteric neurons were found in ganglia located within three intramural plexuses: inner submucosal (ISP), outer submucosal (OSP) and myenteric (MP). Immunofluorescence labelling revealed increases in the number of neurons containing GAL, SOM, VIP and CGRP in pigs with PPE. Neuropeptides may therefore have an important role in the function of porcine enteric local nerve circuits under pathological conditions, when the nervous system is stressed, challenged or afflicted by disease such as PPE. However, further studies are required to determine the exact physiological relevance of the observed adaptive changes.  相似文献   

12.
Summary Somatostatin-like immunoreactive neurons are present in both the myenteric and the submucous plexuses of the small intestine of the guinea pig. Dense varicosities of immunopositive nerve fibres surround the ganglionic cells, some of which also display somatostatin-like immunoreactivity. Immunoelectron microscopy demonstrated axo-somatic synapse formation between the somatostatin immunoreactive neuronal elements. Nerve lesion experiments using argon laser irradiation showed that most of the somatostatin-like immunoreactive fibres of the myenteric plexus were directed anally, whereas those of the submucous plexus had no directional polarity.  相似文献   

13.
Immunofluorescence methods have been used to determine the detailed distribution of vasoactive intestinal polypeptide (VIP), substance-P and enkephalin nerve fibres in fixed cryostat sections from guinea-pig duodenum, jejunum, ileum, caecum at the site of the taenia coli, and proximal and distal colon. A novel method is used involving immunostaining of tissue culture preparations of both myenteric and submucous plexuses. These preparations allow each plexus to be studied in isolation from all axonal input for the first time, since they provide unequivocal extrinsic denervation together with severance of any intrinsic connections between the plexuses. In tissue sections the most prominent sites of VIP and substance-P immunoreactive fibres are the ganglia of the myenteric and submucous plexuses, the circular muscle layer and the longitudinal muscle of the taenia coli. In addition, VIP is prominent in the lamina propria of the submucosa except in the caecum. Enkephalin-immunopositive fibres are restricted to the ganglia of the myenteric plexus, the circular muscle layer and the longitudinal layer of the taenia coli. The culture preparations reveal that intrinsic ‘VIP neurons’ are common in the submucous plexus of the caecum and colon. They are also present, but in much lower numbers, in the myenteric plexus of the small intestine and colon but are not found in the myenteric plexus of the caecum. Intrinsic ‘substance-P neurons’ are present in the myenteric plexus from the small intestine, caecum and colon as well as in the submucous plexus of the colon; intrinsic ‘substance-P neurons’ are not found in the submucous plexus of the caecum. ‘Enkephalin neurons’ are numerous in the myenteric plexus of the small intestine, caecum and colon but are absent from the submucous plexus. Immunoreactivity is compared in the normal and denervated caecum by both the histochemical method and by radioimmunoassay of tissue extracts. In conjunction with the studies on tissue cultures, the results provide evidence for intrinsic reciprocal connections between the myenteric and submucous plexus of the caecum by neurons containing VIP and substance-P.An extensive comparison of these results with data from functional studies shows that the distribution of VIP, substance-P and enkephalin fibres in the gut is broadly in agreement with present knowledge of the action of these peptides on gut tissue, if it is assumed that they function as neurotransmitters or neuromodulators. In some instances, however, peptide-containing fibres and pathways are found which do not correlate with present knowledge obtained from functional studies. These observations provide new clues to the role of peptide neurons in gut function.  相似文献   

14.
A novel peptide, hippocampal cholinergic neurostimulating peptide (HCNP), originally purified from young rat hippocampus, affects the development of specific cholinergic neurons of the central nervous system in vitro. In this study, HCNP-like-immunoreactive nerve processes and nerve cell bodies were identified by electron microscopic immunocytochemistry in the rat small intestine. Labeled nerve processes were numerous in the circular muscle layer and around the submucosal blood vessels. In the submucosal and myenteric plexuses, some HCNP-like-immunopositive nerve cell bodies and nerve fibers were present. The reaction product was deposited on the membranes of various subcellular organelles, including the rough endoplasmic reticulum, Golgi saccules, ovoid electron-lucent synaptic vesicles in axon terminals associated with submucosal and myenteric plexuses, and the outer membranes of a few mitochondria. The synaptic vesicles of HCNP-like-positive terminals were 60–85 nm in diameter. The present data provide direct immunocytochemical evidence that HCNP-like-positive nerve cell bodies and nerve fibers are present in the submucosal and myenteric plexuses of the rat small intestine. An immunohistochemical light microscopic study using mirror-image sections revealed that in both the submucosal and myenteric ganglia, almost all choline acetyltransferase (ChAT)-immunoreactive neurons were also immunoreactive for HCNP. These observations suggest (i) that HCNP proper and/or HCNP precursor protein is a membrane-associated protein with a widespread subcellular distribution, (ii) that HCNP precursor protein may be biosynthesized within neurons localized in the rat enteric nervous system, and (iii) that HCNP proper and/or HCNP precursor protein are probably stored in axon terminals.  相似文献   

15.
In this study, we attempted to determine the proportion of type V neurons relative to the putative whole neuron population in the two submucosal plexuses of pigs identified by their neurofilament immunoreactivity. The total neuron number was estimated in cuprolinic blue (CB)/anti-Hu protein (HU) costained wholemounts as the sum of the number of CB+/HU+, CB+/HU- and CB-/HU+ neurons. In the external submucosal plexus (ESP), HU labelled 98.6% and CB 97.3% of neurons. In the internal submucosal plexus, HU labelled 98.3%, whereas CB only marked 92.5% of neurons. Furthermore, we investigated the chemical coding of submucosal type V neurons and searched for submucosal, non-type V neurons displaying the same chemical coding as the myenteric type V neurons described earlier, i.e. the colocalization of calcitonin gene-related peptide (CGRP) and somatostatin (SOM). In order to facilitate immunohistochemical detection of neuroactive peptides, ileal segments were pretreated with colchicine prior to fixation. Type V neurons in the ESP occurred either as single cells displaying one or few prominent dendrite(s) or within aggregates displaying a dendritic tangle. In this plexus, type V neurons amounted to between 0.9 and 1.6% of all CB-stained neurons. ESP type V neurons displayed immunoreactivities for choline acetyl transferase (95.8%) and leucine-enkephalin (73.9%). All type V neurons were negative for neuronal nitric oxide synthase. Fifty-eight percent of ESP CGRP/SOM co-immunoreactive neurons displayed type V morphology, whereas 42% were non-type V neurons. Thus, the chemical coding of ESP type V neurons is in principal similar to that of the myenteric type V neurons described earlier. In the internal submucosal plexus, we found no type V neurons. In this plexus, 0.2% of all neurons counterstained with HU displayed CGRP/SOM coreactivity. As had been observed earlier concerning the myenteric type V neurons, ESP type V neurons were also closely apposed by conspicuous accumulations of boutons reactive for the same markers as the neurons themselves. Although we cannot exclude that axons of CGRP/SOM-reactive enteric, non-type V or extrinsic neurons end synaptically on type V neurons, we suggest that the main synaptic input to type V neurons originates from other type V neurons. This presents an argument for an interneuronal role of type V neurons.  相似文献   

16.
OBJECTIVE: The bcl-2 protein has the functional role of blocking apoptosis, ie, programmed cell death. This protein is widely expressed in the developing central and peripheral nervous systems. The purpose of this study was to map bcl-2 expression in the human enteric nervous system, as this has not previously been done. METHODS: Rectal specimens were obtained at autopsy of 13 fetuses at 13 to 31 weeks of gestation. Normal colon was also obtained from 5 children and 2 adults, and, in addition, ganglionic and aganglionic bowel resected in 11 patients with Hirschsprung disease was examined. Specimens were fixed in formalin, embedded in paraffin, and analyzed with immunohistochemical methods, using antibodies raised against bcl-2 and neuron-specific enolase (NSE). RESULTS: The bcl-2 protein was expressed in myenteric and submucous ganglion cells in fetuses, children, and adults. Nerve fibers of the enteric plexuses that were bcl-2 immunoreactive were few compared with the number of NSE-immunoreactive nerve fibers. In aganglionic bowel no bcl-2-or NSE-immunoreactive ganglion cells were revealed. Results of NSE immunohistochemistry showed clearly stained hypertrophic nerve bundles, known to be of extrinsic origin, which were only weakly bcl-2 immunoreactive. CONCLUSION: Expression of bcl-2 in enteric ganglion cells of the myenteric and submucous plexuses is displayed in the fetus and during childhood and is also retained in adult bowel. Immunohistochemical analysis of bcl-2 provides a good marker for identification of ganglion cells in Hirschsprung disease and may also be valuable for the diagnosis of disorders characterized by hypoganglionosis or hyperganglionosis.  相似文献   

17.
本文研究了正常成年豚鼠胃肠壁内神经丛神经元(简称肠神经元)的镁激活的三磷酸腺苷酶(Mg~(++)-ATPase)、钙激活的三磷酸腺芏酶(Ca~(++)-ATPase)、细胞色素氧化酶(CCO)、琥珀酸脱氢酶(SDH)、乳酸脱氢酶(LDH)、葡萄糖-6-磷酸脱氢酶(G6 PDH)和葡萄糖-6-磷酸酶(G 6Pase),并对糖类、蛋白质、脂类和核酸做了观察。除光镜的半定量观察外,并用显微光度计对两种ATPase做了定量测量。光镜的半定量结果和显微光度计测得的数据经计算机做了统计学处理。本文的结果表明,肠神经元具有上述各种酶活性,提示神经元与这些酶有关的代谢活跃。但粘膜下丛与肠肌丛酶活性差异显著,前者SDH活性较强,后者LDH、G6 PDH和两种ATPase活性较强。据此推测,两神经丛神经元的主要糖代谢方式、能量代谢以及机能活跃程度有明显的差别。此外,胃肠各段肠肌丛酶活性强度不一,十二指肠和近端结肠各种酶活性最强,盲肠最弱。本文的结果表明,肠神经元的代谢和功能确有相当的差别,但酶活性的差异同神经元类型的关系如何,有待继续研究。  相似文献   

18.
采用免疫荧光组织化学技术及迷走神经切断术,探讨猪食管一氧化氮类及肽类神经支配的神经化学特性。在光学显微镜下可观察到肌间神经丛及粘膜下神经丛中有部分神经元呈nNOS、VIP、GAL、NPY、PACAP、L-ENK、SP、5-HT及CB免疫阳性,但未见CGRP及SOM阳性神经元。nNOS及CB免疫阳性产物主要分布于不同的神经元胞体内。将PGP9.5作为神经元胞体的标记物,并采用免疫荧光免疫组织化学双重染色方法,分别观察了PGP9.5与nNOS、VIP、SP的双标情况。结果如下:(1)nNOS免疫阳性神经元约占PGP9.5标记神经元总数的63%,而VIP免疫阳性神经元约占36%,SP免疫阳性神经元约占28%;(2)神经节内神经元的平均数量呈现吻尾方向的递增趋势,且食管腹段神经丛内神经节数量明显高于食管其他部位;(3)食管肌层内VIP/GAL/NPY免疫阳性纤维分布最广,其中部分阳性纤维同时呈nNOS或PACAP免疫阳性;SP和/或L-ENK免疫阳性纤维在粘膜肌层的分布明显多于平滑肌层。CGRP阳性纤维非常少见,这一点不同于对其他动物的观察结果;(4)经一侧迷走神经切断后,肌间神经丛内PACAP及5-HT免疫阳性纤维明显减少,提示这些纤维可能来源于迷走神经;而平滑肌中VIP/GAL/NPY和/或nNOS免疫阳性纤维数量未发现明显变化,可能为内源性来源。  相似文献   

19.
Summary A quantitative light microscopic study has been carried out on the myenteric and submucosal ganglia of the stomach, duodenum, ileum, proximal colon and rectum of the guinea-pig; the enteric ganglia of the ileum were studied also in the mouse, rabbit and sheep. The area of the profiles of nerve cells, of nerve cell nuclei and of glial nuclei, and the proportion of the area of ganglia occupied by neuropil were measured, and the relative numbers of neurons and glial cells were estimated. The myenteric ganglia were found to be firmly anchored to the stroma of the muscle coat; their shape and the shape of their component cells varied with contraction and distension of the musculature. The range of neuronal sizes in the myenteric ganglia was extremely wide. In the guinea-pig, the myenteric neurons were on average largest in the stomach and duodenum and smallest in the ileum, with intermediate values in the colon and rectum; the submucosal neurons showed little variation in average size along the length of the gut. The average size of ganglion neurons in the ileum was greatest in the sheep and smallest in the mouse, and had intermediate values in the guinea-pig and rabbit. The percentage volume of neuropil in the myenteric ganglia was 51% in the mouse, 65% in the guinea-pig, 70% in the rabbit, and 74% in the sheep. The number of glial cells relative to the number of neurons was also ranked in the same order. In all the species examined the submucosal ganglia, when compared with the corresponding myenteric ganglia, had a smaller percentage volume of neuropil, a much smaller number of glial cells and (except in the mouse ileum) neurons of smaller average size. In all the ganglia there was a positive correlation between size of neurons and size of glial cells. The results are discussed in the light of possible relations between body size (and length of the intestine), numerical density of ganglion neurons, average size of neurons, amount of musculature, average distance between neurons, and amount of neuropil.  相似文献   

20.
The presence of the growth-associated protein, B-50 (also known as GAP-43) was investigated in the adult mammalian enteric nervous system. The small intestine of rat, ferret and human was examined by immunohistochemistry. Dense B-50-like immunoreactivity was localized in nerves throughout the wall of the rat, ferret and human small intestine, notably in the myenteric and submucous plexuses, where in the ferret ileum it co-localized with vasoactive intestinal polypeptide-immunoreactive fibre groups. Material with the biochemical and immunological characteristics of rat B-50 was extracted from the rat ileum. In-situ hybridization demonstrated that enteric neurons express B-50. These findings are consistent with a role for B-50 in the documented plasticity of the adult enteric nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号