首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peripheral nerve transection or crush induces expression of class 3 semaphorins by epineurial and perineurial cells at the injury site and of the neuropilins neuropilin-1 and neuropilin-2 by Schwann and perineurial cells in the nerve segment distal to the injury. Neuropilin-dependent class 3 semaphorin signaling guides axons during neural development, but the significance of this signaling system for regeneration of adult peripheral nerves is not known. To test the hypothesis that neuropilin-2 facilitates peripheral-nerve axonal regeneration, we crushed sciatic nerves of adult neuropilin-2-deficient and littermate control mice. Axonal regeneration through the crush site and into the distal nerve segment, repression by the regenerating axons of Schwann cell p75 neurotrophin receptor expression, remyelination of the regenerating axons, and recovery of normal gait were all significantly slower in the neuropilin-2-deficient mice than in the control mice. Thus, neuropilin-2 facilitates peripheral-nerve axonal regeneration.  相似文献   

2.
Antegrade, target-directed axonal regeneration is the explicit goal of nerve repair. However, aberrant and dysfunctional regrowth is commonly observed as well. At the site of surgical nerve coaptation, axonal sprouts encounter fibrotic connective tissue rich in growth-inhibiting chondroitin sulfate proteoglycan that may contribute to misdirection of axonal regrowth. In the present study, we tested the hypothesis that degradation of chondroitin sulfate proteoglycan by application of chondroitinase at the site of nerve repair can decrease aberrant axonal growth. Adult rats received bilateral sciatic nerve transection and end-to-end repair. One nerve was injected with chondroitinase ABC and the contralateral nerve treated with vehicle alone. After 28 weeks, retrograde axonal regeneration was assessed proximal to the repair by scoring neurofilament-immunopositive axons within the nerve (intrafascicular) and outside the nerve proper (extrafascicular). Intrafascicular retrograde axonal growth was equivalent in both control and chondroitinase treatment conditions. In contrast, chondroitinase treatment caused a pronounced (93%) reduction in extrafascicular retrograde axonal growth. The decrease in axon egress from the nerve was coincident with an increase in antegrade regeneration and improved recovery of motor function. Based on these findings, we conclude that chondroitinase applied at the site of nerve transection repair averts dysfunctional extrafascicular retrograde axonal growth.  相似文献   

3.
Peripheral nerves and spinal cords of axolotls were maintained in organ culture for periods of up to 2 weeks. Sensory axons in peripheral nerves and the dorsal funiculus of the spinal cord showed regeneration through the crush site within about 2 days. Axonal regeneration also occurred in peripheral nerves after cutting but was dependent on close contact between proximal and distal stumps of nerve. When cells in the distal stump of nerve were killed by freezing, axonal regeneration was inhibited.  相似文献   

4.
We have previously demonstrated that enzymatic digestion of chondroitin sulfate proteoglycan (CSPG) at the scar promotes the axonal regrowth of Clarke's nucleus (CN) neurons into an implanted peripheral nerve graft after hemisection of the spinal cord. The present study examined whether degradation of CSPG using chondroitinase ABC promoted the regeneration of CN neurons through the scar into the rostral spinal cord in neonatal and adult rats. Following hemisection of the spinal cord at T11, either vehicle or chondroitinase ABC was applied onto the lesion site. The postoperative survival periods were 2 and 4 weeks. The regenerated CN neurons were retrogradely labeled by Fluoro-Gold injected at spinal cord level C7. In the sham group, there was no regeneration of injured CN neurons in both neonatal and adult rats. Treatment with 2.5 unit/ml chondroitinase ABC in neonates resulted in 11.8 and 8.3% of the injured CN neurons regenerated into the rostral spinal cord at 2 and 4 weeks, respectively. In adults, 9.4 and 12.3%, at 2 and 4 weeks, respectively, of the injured CN neurons regenerated their axons to the rostral spinal cord. The immunoreactivity for the carbohydrate epitope of CSPG was dramatically decreased around the lesion site after treatment with chondroitinase ABC compared to sham control in both neonatal and adult animals. Our results show that axonal regeneration in the spinal cord can be promoted by degradation of CSPG with chondroitinase ABC. This result further suggests that CSPG is inhibitory to the regeneration of neurons in the spinal cord after traumatic injury.  相似文献   

5.
Extracellular matrix changes are thought to be essential to the regeneration of peripheral nerves. The production of this matrix is believed to be regulated by interactions between axons and their supporting cells. In this study matrix production and cell proliferation were studied during rat sciatic nerve regeneration after a crush injury, and compared to that after rat sciatic nerve transection. Expression of proalpha1(I) and proalpha1(III) collagen and laminin beta1 mRNAs was followed in isolated endoneuria by Northern and in situ hybridization both proximally and distally to the site of either a crush injury or transection of rat sciatic nerve up to 18 weeks. Changes in the Schwann cell and fibroblast populations were monitored by morphometric analysis of endoneurial cross-sections immunostained for S-100 protein. The process of axonal regeneration was followed by Bielschowsky's silver staining. A crush injury initially resulted in increased expression of all mRNAs studied in the endoneurial cells. However, with progressing axonal regeneration the amount of collagen mRNAs returned to control levels, whereas the amount of laminin beta1 mRNA in the distal site of the crush remained elevated throughout the study period. The expression of type I collagen mRNA was enhanced after nerve transection injury compared to that after the crush injury. The epineurial fibroblasts actively expressed both type I and III collagen mRNAs after the injury. The proliferation of Schwann cells and the expression of collagen mRNAs are not, at least directly, related to the axonal regeneration. However, the long-lasting and strong expression of laminin beta1 mRNA after a nerve crush injury may be related to good axonal regeneration. The expression of type I collagen in the epineurium may lead to clinically well-recognized epineurial scarring and thus impede axonal regeneration.  相似文献   

6.
Regenerating axons in crushed peripheral nerves grow through their distal nerve segments even in the absence of Schwann cell support, but their elongation rate is reduced by 30%. We examined whether prior exposure of sensory neurons to trophic factors achieved either by collateral sprouting or regeneration after conditioning lesion could enhance subsequent regeneration of their axons after crush, and compensate for loss of cell support. Collateral sprouting of the peroneal cutaneous sensory axons in the rat was evoked by transection of adjacent peripheral nerves in the hind leg. The segment of the peroneal nerve distal to the crush was made acellular by repeated freezing. Sensory axon elongation rate during regeneration was measured by the nerve pinch test. Prior axonal sprouting for two weeks increased the elongation rate of sensory axons through the acellular distal nerve segment back to normal value observed in control crushed nerves. The number of axons in the acellular distal segment at a fixed distance from the crush site was about 50% greater in sprouting than in control non-sprouting nerves. However, prior sprouting caused no further increase of axon elongation rate in control crushed nerves. Prior collateral sprouting, therefore, could in some respect compensate for loss of cell support in the distal nerve segment after crush lesion. This suggests that loss of cell-produced trophic factors is probably responsible for slower elongation rate through the acellular distal nerve segment. Surprisingly, prior conditioning lesion caused no enhancement of elongation rate of the sensory axons regenerating in the absence of cell support.  相似文献   

7.
Misdirection of regenerating axons is one of the factors that can explain the poor results often found after nerve injury and repair. In this study, we quantified the degree of misdirection and the effect on recovery of function after different types of nerve injury and repair in the rat sciatic nerve model; crush injury, direct coaptation, and autograft repair. Sequential tracing with retrograde labeling of the peroneal nerve before and 8 weeks after nerve injury and repair was performed to quantify the accuracy of motor axon regeneration. Digital video analysis of ankle motion was used to investigate the recovery of function. In addition, serial compound action potential recordings and nerve and muscle morphometry were performed. In our study, accuracy of motor axon regeneration was found to be limited; only 71% (± 4.9%) of the peroneal motoneurons were correctly directed 2 months after sciatic crush injury, 42% (± 4.2%) after direct coaptation, and 25% (± 6.6%) after autograft repair. Recovery of ankle motion was incomplete after all types of nerve injury and repair and demonstrated a disturbed balance of ankle plantar and dorsiflexion. The number of motoneurons from which axons had regenerated was not significantly different from normal. The number of myelinated axons was significantly increased distal to the site of injury. Misdirection of regenerating motor axons is a major factor in the poor recovery of nerves that innervate different muscles. The results of this study can be used as basis for developing new nerve repair techniques that may improve the accuracy of regeneration.  相似文献   

8.
Netrin-1 and peripheral nerve regeneration in the adult rat   总被引:8,自引:0,他引:8  
Axonal guidance during development of the nervous system is thought to be highly regulated through interactions of axons with attractive, repulsive, and trophic cues. Similar mechanisms regulate axonal regeneration after injury. The netrins have been shown to influence the guidance of several classes of developing axons. Although netrins have been implicated as axonal guidance cues in the developing peripheral nervous system, there has been no direct evidence of netrin-1 expression in either developing or adult peripheral nerve. The present study utilized competitive PCR and immunohistochemistry to demonstrate the localization of netrin-1 within adult rat sciatic nerve. The expression of netrin-1 mRNA and protein was compared for normal or regenerated sciatic nerve 2 weeks following either a crush or a transection and repair injury. The PCR data show that netrin-1 mRNA is normally expressed at low levels in peripheral nerve, and similar low levels are found 2 weeks following a crush injury. However, 2 weeks following nerve transection and repair there is approximately a 40-fold increase in netrin-1 mRNA levels. Immunohistochemistry data show that Schwann cells are the major source of netrin-1 protein in peripheral nerve. Our results suggest that netrin-1 mRNA levels are profoundly affected during peripheral nerve injury and regeneration. The localization of netrin-1 to Schwann cells suggests that this protein is strategically situated to influence axon regeneration in adult peripheral nerve.  相似文献   

9.
Chondroitin sulfate proteoglycans (CSPG) within the glial scar formed after central nervous system (CNS) injury are thought to play a crucial role in regenerative failure. We previously showed that delivery of the CSPG-digesting enzyme chondroitinase ABC (ChABC) via an osmotic minipump allowed axonal regeneration and functional recovery in a peripheral nerve graft (PNG)-bridging model. In this study, we sought to overcome the technical limitations associated with minipumps by microinjecting ChABC directly into the distal lesion site in the PN bridging model. Microinjection of ChABC immediately rostral and caudal to an injury site resulted in extensive CSPG digestion. We also demonstrate that this delivery technique is relatively atraumatic and does not result in a noticeable inflammatory response. Importantly, microinjections of ChABC into the lesion site permitted more regenerating axons to exit a PNG and reenter spinal cord tissue than saline injections. These results are similar to our previous findings when ChABC was delivered via a minipump and suggest that microinjecting ChABC is an effective method of delivering the potentially therapeutic enzyme directly to an injury site.  相似文献   

10.
The axonal transport and distribution of the fast phase of [3H]leucine-labeled proteins were used to monitor the outgrowth delay and regeneration rate in rabbit hypoglossal nerves 5–21 days after crush or transection. The transected nerves were repaired with mesothelial chambers or epineurial sutures. Radiolabeled proteins were transported into regenerating axons in the distal nerve segment after an initial delay of 2.5 days for crushed nerves and after a delay (initial and scar delays) of 4.8 and 5.7 days for sutured and mesothelial chamber-reconnected nerves, respectively. Regeneration rate was 3.5 mm/day after a crush and 2 mm/day after a transection with either type of repair. Total radioactivity was greateer in both crushed and repaired nerves than in their contralateral controls. Transported radioactivity accumulated at the site of the lesions. This accumulation was greater and persisted longer in repaired nerves than in crushed ones. The difference in regenerative response after different types of trauma with respect to changes in axonal transport is emphasized.  相似文献   

11.
Chondroitin sulfate increases around a lesion site after central nervous system injury and is believed to be an impediment to axonal regeneration, because administration of chondroitinase ABC, a chondroitin sulfate-degrading enzyme, promotes axonal regeneration of central neurons. To examine the physiological role of chondroitin sulfate up-regulation after injury, the nigrostriatal dopaminergic axons were unilaterally transected in mice, and chondroitinase ABC was then injected into the lesion site. In mice transected only, tyrosine hydroxylase-immunoreactive axons did not extend across the lesion at 1 or 2 weeks after the transection. Immunoreactivities of chondroitin sulfate side chains and core protein of NG2 proteoglycan increased in and around the lesion site, and a fibrotic scar containing type IV collagen deposits developed in the lesion center. In contrast, in mice transected and treated with chondroitinase ABC, numerous tyrosine hydroxylase-immunoreactive axons were regenerated across the lesion at 1 and 2 weeks after the transection. In these animals, chondroitin sulfate immunoreactivity remarkably decreased, and immunoreactivity of 2B6 antibody, which recognizes the stub of degraded chondroitin sulfate side chains, was enhanced. Furthermore, the formation of a fibrotic scar and a glia limitans that surrounds the former was completely prevented, although type IV collagen immunoreactivity remained in newly formed blood capillaries around the lesion site. We discuss the question of whether the chondroitin sulfate is acting as a direct inhibitor of axonal regeneration or whether the observed changes are due to a prevention of the fibrotic scar formation and a rearrangement of astrocytic membranes.  相似文献   

12.
There are indications that specific factors are present in the distal stump of transected nerves which preferentially attract axons of the corresponding proximal stump into the distal nerve stumps. However, the impact of these factors is unclear, since there is abundant evidence that numerous regenerating motor and sensory axons are topographically misdirected after nerve transection and repair. Topographic reinnervation is improved after fascicular repair of fasciculated nerves, and quite precise after nerve crush. The latter may not be true, however, for non-myelinated axons, which show a high degree of aberrant growth even after crush. In contrast, regenerative outgrowth appears to be topographically specific after neonatal nerve transection. Reinnervation of muscle fibers appears to be unspecific in adult mammals, but specific after neonatal injury under certain circumstances. Some preference for reinnervation of the appropriate sensory receptors seems to exist although this preference does not preclude reinnervation of receptors by 'foreign' sensory fibers. In conclusion, incorrect topographic and target reinnervation commonly occurs after peripheral regeneration in adult mammals, and most certainly explains some of the functional disturbances after peripheral nerve lesions. Topographic regeneration appears to be better after nerve injury in developing mammals indicating that mechanisms from the developmental period may persist and aid in accurate regenerative outgrowth.  相似文献   

13.
Regeneration of axons in the peripheral nervous system is enhanced by the removal of glycosaminoglycan side chains (GAGs) of chondroitin sulfate proteoglycans. However, some axons regenerate poorly despite such treatment, suggesting the existence of additional inhibitors. We compared the effects of enzymatic removal of GAGs from chondroitin sulfate proteoglycans versus two other proteoglycan species, heparan sulfate and keratan sulfate proteoglycans, on the regeneration of peripheral axons. Common fibular (CF) nerves of thy-1-YFP-H mice were cut and repaired using short segments of CF nerves harvested from wild-type littermates and pre-treated with a GAG-degrading enzyme for 1 h prior to nerve repair. Axonal regeneration was assayed by measuring the lengths of profiles of YFP+ axons in optical sections of the grafted nerves 1 week later. Except for grafts treated with keratanase, more and longer axon profiles were encountered in enzyme-treated grafts than in control grafts. Heparinase III treatments induced the greatest number of axons to enter into the graft. The proportions of axon profiles longer than 1000 microm were greater in grafts treated with chondroitinase ABC or heparinase I, but not with either keratanase or heparinase III. More regenerative sprouts were observed after treatment with heparinase I than any other enzymes. Treatment with a mixture of all four enzymes resulted in an enhancement of axon regeneration which was greater than that observed after treatment with any of the enzymes individually. The effects of chondroitinase ABC and heparinase III were correlated with specific GAG degradation. We believe that enzymatic removal of GAGs is especially effective in promoting the ability of regenerating axons to select their pathway in the distal stump (or nerve graft) and, in the case of chondroitinase ABC or heparinase I, it may also promote growth within that pathway.  相似文献   

14.
Acellular nerve allografts have been explored as an alternative to nerve autografting. It has long been recognized that there is a distinct limit to the effective length of conventional acellular nerve grafts, which must be overcome for many grafting applications. In rodent models nerve regeneration fails in acellular nerve grafts greater than 2 cm in length. In previous studies we found that nerve regeneration is markedly enhanced with acellular nerve grafts in which growth-inhibiting chondroitin sulfate proteoglycan was degraded by pretreatment with chondroitinase ABC (ChABC). Here, we tested if nerve regeneration can be achieved through 4-cm acellular nerve grafts pretreated with ChABC. Adult rats received bilateral sciatic nerve segmental resection and repair with a 4 cm, thermally acellularized, nerve graft treated with ChABC (ChABC graft) or vehicle-treated acellularized graft (Control graft). Nerve regeneration was examined 12 weeks after implantation. Our findings confirm that functional axonal regeneration fails in conventional long acellular grafts. In this condition we found very few axons in the distal host nerve, and there were marginal signs of sciatic nerve reinnervation in few (2/9) rats. This was accompanied by extensive structural disintegration of the distal graft and abundant retrograde axonal regeneration in the proximal nerve. In contrast, most (8/9) animals receiving nerve repair with ChABC grafts showed sciatic nerve reinnervation by direct nerve pinch testing. Histological examination revealed much better structural preservation and axonal growth throughout the ChABC grafts. Numerous axons were found in all but one (8/9) of the host distal nerves and many of these regenerated axons were myelinated. In addition, the amount of aberrant retrograde axonal growth (originating near the proximal suture line) was markedly reduced by repair with ChABC grafts. Based on these results we conclude that ChABC treatment substantially increases the effective length of acellular nerve grafts.  相似文献   

15.
Patterns of expression of the extracellular matrix molecule thrombospondin (TSP) were examined during peripheral nerve regeneration following sciatic nerve crush or transection. In noninjured nerve, was present in the axoplasm, Schwann cells, endoneurium, and perineurium of the adult mouse sciatic nerve. Following nerve crush or nerve transection, levels of TSP rapidly increased distal to the trauma site. Elevated levels of TSP were present distal to regenerating axons, while expression gradually returned to normal proximal to the regenerating axons. When reinnervation was blocked, TSP levels remained high in the endoneurium in excess of 30 days, but TSP was absent by 60 days. Following reanastomosis of the proximal and distal segments after 60 days of denervation, TSP was re-expressed in the distal nerve stump. These results indicate that TSP, which is involved in neuronal migrations in the embryo and neurite outgrowth in vitro, appears to play a role in axonal regeneration in the adult peripheral nervous system.  相似文献   

16.
Regeneration of myelinated and unmyelinated sensory nerve fibres after a crush lesion of the rat sciatic nerve was investigated by means of retrograde labelling. The advantage of this method is that the degree of regeneration is estimated on the basis of sensory somata rather than the number of axons. Axonal counts do not reflect the number of regenerated neurons because of axonal branching and because myelinated axons form unmyelinated sprouts. Two days to 10 weeks after crushing, the distal sural or peroneal nerves were cut and exposed to fluoro-dextran. Large and small dorsal root ganglion cells that had been labelled, i.e., that had regenerated axons towards or beyond the injection site, were counted in serial sections. Large and small neurons with presumably myelinated and unmyelinated axons, respectively, were classified by immunostaining for neurofilaments. The axonal growth rate was 3.7 mm/day with no obvious differences between myelinated and unmyelinated axons. This contrasted with previous claims of two to three times faster regeneration rates of unmyelinated as compared to myelinated fibres. The initial delay was 0.55 days. Fewer small neurons were labelled relative to large neurons after crush and regeneration than in controls, indicating that regeneration of small neurons was less complete than that of large ones. This contrasted with the fact that unmyelinated axons in the regenerated sural nerve after 74 days were only slightly reduced.  相似文献   

17.
The depolarizing action of gamma-aminobutyric acid (GABA), or the GABAA receptor agonist muscimol, on rat dorsal root (L4 and L5) fibers is attenuated following transection, but not crush, of the sciatic nerve. Following discrete nerve crush, axons actively regenerate and contact both the distal nerve segment and the peripheral target tissues. The aim of the present study was to distinguish between these two regions as possible sources of trophic support for retrograde maintenance of dorsal root GABA receptor sensitivity. A surgical procedure was employed to permit a delimited segment of axonal regeneration while prohibiting reestablishment of end organ innervation; the sciatic nerve was crushed and a ligature was placed 3 cm distal to the crush site. Under these conditions, the injury-induced decrement in the dorsal root GABA response, observed between 12 and 21 postoperative days, was significantly attenuated relative to that of ligated nerves, in which regeneration into the distal stump does not occur. The data suggest that nerve transection by ligation restricts trophic support for maintenance of GABA receptor expression in dorsal root ganglion (DRG) neurons. Furthermore, during regeneration the denervated distal nerve segment assumes a neurotrophic role in the maintenance of dorsal root GABA sensitivity, consistent with the hypothesis that growth factors derived from reactive Schwann cells may positively regulate the expression of receptors on axotomized sensory neurons.  相似文献   

18.
The contribution of chondroitin sulfate proteoglycan (CSPG) in the suppression of axonal growth in rat spinal cord has been examined by means of anin vitrobioassay in which regenerating neurons are grown on tissue section substrata. Dissociated embryonic chick dorsal root ganglionic neurons were grown on normal and injured adult spinal cord tissue sections treated with chondroitinases. Neuritic growth on normal spinal cord tissue was meager. However, both the percentage of neurons with neurites and the average neurite length were substantially greater on sections treated with chondroitinase ABC. Enzymes that specifically degraded dermatan sulfate or hyaluronan were ineffective. Neuritic growth was significantly greater on injured (compared to normal) spinal cord and a further dramatic increase resulted from chondroitinase ABC treatment. Neurites grew equally within white and gray matter regions after chondroitinase treatment. Observed increases in neurite outgrowth on chondroitinase-treated tissues were largely inhibited in the presence of function-blocking laminin antibodies. These findings indicate that inhibitory CSPG is widely distributed and predominant in both normal and injured spinal cord tissues. Additionally, inhibitory CSPG is implicated in negating the potential stimulatory effects of laminin that might otherwise support spinal cord regeneration.  相似文献   

19.
This study is concerned with numerical parameters of axonal regeneration in peripheral nerves. Our first finding is that the number of axons that regenerate into the distal stump of a somatic nerve at a particular time after transection is partially dependent on the type of lesion used to interrupt the axons. The second question concerns the proportion of axons that regenerate into the distal stump of a parent nerve compared to the proportions that regenerate into tributary nerves that arise from the parent. The proportions of regenerated myelinated axons in the nerve to the medial gastrocnemius muscle and myelinated and unmyelinated axons in the sural nerve are the same as the proportions of myelinated and unmyelinated axons that regenerate into the distal stump of the sciatic nerve for the crush, 0 and 4 mm gap transections. Proportionally fewer axons regenerate into the tributary nerves following the 8 mm gap transection, however. This implies that the length of the gap has an influence on whether or not axons in tributary nerves regenerate in concert with axons in the distal stump of the parent nerve. The unmyelinated fibers in the nerve to the medial gastrocnemius muscle are different because they do not regenerate in proportion to those in the distal stump of the sciatic nerve. We also provide evidence to indicate that myelinated axons branch whereas unmyelinated fibers end blindly when they enter the distal stump after crossing a sciatic nerve transection. Finally the normal arrangement of perineurial cells seems to be disrupted after the sciatic nerve regenerates across a gap.  相似文献   

20.
In order to test the regenerative capacity of atrophic axons, a constricting ligature was placed around the proximal tibial nerve of the rabbit, and the nerve crushed at the ankle one week later. Axonal atrophy with altered g ratios was subsequently confirmed in fibres distal to the site of ligature and proximal to the site of crush. In nerves with tight proximal ligatures the reinnervation of plantar muscles and the subsequent recovery of distal motor latency were delayed, indicating impaired regeneration. This result may be relevant to the "double-crush" theory of nerve damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号