首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human genetic diseases and mouse knockouts illustrate that the maintenance of central nervous system myelin requires connexin expression by both astrocytes and oligodendrocytes. Because these cell types express nonoverlapping sets of connexins, the intercellular channels formed between them must be asymmetric with regard to connexin content, defined as heterotypic. Here, we show that oligodendrocyte Cx47 can form heterotypic channels with astrocyte Cx43 or Cx30 but not Cx26, whereas oligodendrocyte Cx32 can functionally interact with astrocyte Cx30 or Cx26 but not Cx43. Thus, as many as four types of intercellular channels could be formed between astrocytes and oligodendrocytes.  相似文献   

2.
Nagy JI  Ionescu AV  Lynn BD  Rash JE 《Glia》2003,44(3):205-218
Oligodendrocytes in vivo form heterologous gap junctions with astrocytes. These oligodendrocyte/astrocyte (A/O) gap junctions contain multiple connexins (Cx), including Cx26, Cx30, and Cx43 on the astrocyte side, and Cx32, Cx29, and Cx47 on the oligodendrocyte side. We investigated connexin associations at A/O gap junctions on oligodendrocytes in normal and Cx32 knockout (KO) mice. Immunoblotting and immunolabeling by several different antibodies indicated the presence of Cx32 in liver and brain of normal mice, but the absence of Cx32 in liver and brain of Cx32 KO mice, confirming the specificity and efficacy of the antibodies, as well as allowing the demonstration of Cx32 expression by oligodendrocytes. Oligodendrocytes throughout brain were decorated with numerous Cx30-positive puncta, which also were immunolabeled for both Cx32 and Cx43. In Cx32 KO mice, astrocytic Cx30 association with oligodendrocyte somata was nearly absent, Cx26 was partially reduced, and Cx43 was present in abundance. In normal and Cx32 KO mice, oligodendrocyte Cx29 was sparsely distributed, whereas Cx47-positive puncta were densely localized on oligodendrocyte somata. These results demonstrate that astrocyte Cx30 and oligodendrocyte Cx47 are widely present at A/O gap junctions. Immunolabeling patterns for these six connexins in Cx32 KO brain have implications for deciphering the organization of heterotypic connexin coupling partners at A/O junctions. The persistence and abundance of Cx43 and Cx47 at these junctions after Cx32 deletion, together with the paucity of Cx29 normally present at these junctions, suggests Cx43/Cx47 coupling at A/O junctions. Reductions in Cx30 and Cx26 after Cx32 deletion suggest that these astrocytic connexins likely form junctions with Cx32 and that their incorporation into A/O gap junctions is dependent on the presence of oligodendrocytic Cx32.  相似文献   

3.
Primary loss and dysfunction of astrocytes may trigger demyelination, as seen in neuromyelitis optica, an inflammatory disease of the central nervous system. In most patients affected by this disease, injury to astrocytes is initiated by the action of autoantibodies targeting aquaporin 4 (AQP-4), a water channel on astrocytes. We show here that damage of astrocytes and subsequent demyelination can also occur in the absence of autoantibody-mediated mechanisms. Following injection of lipopolysaccharide into the white matter initial microglia activation is followed by a functional disturbance of astrocytes, mainly reflected by retraction of astrocytic foot processes at the glia limitans and loss of AQP-4 and connexins, which are involved in the formation of gap junctions between astrocytes and oligodendrocytes. Demyelination and oligodendrocyte degeneration in this model follows astrocyte pathology. Similar structural abnormalities were also seen in a subset of active lesions in multiple sclerosis. Our studies suggest that astrocyte injury may be an important early step in the cascade of lesion formation in brain inflammation.  相似文献   

4.
According to previously published ultrastructural studies, oligodendrocytes in white matter exhibit gap junctions with astrocytes, but not among each other, while in vitro oligodendrocytes form functional gap junctions. We have studied functional coupling among oligodendrocytes in acute slices of postnatal mouse corpus callosum. By whole‐cell patch clamp we dialyzed oligodendrocytes with biocytin, a gap junction‐permeable tracer. On average 61 cells were positive for biocytin detected by labeling with streptavidin‐Cy3. About 77% of the coupled cells stained positively for the oligodendrocyte marker protein CNPase, 9% for the astrocyte marker GFAP and 14% were negative for both CNPase and GFAP. In the latter population, the majority expressed Olig2 and some NG2, markers for oligodendrocyte precursors. Oligodendrocytes are known to express Cx47, Cx32 and Cx29, astrocytes Cx43 and Cx30. In Cx47‐deficient mice, the number of coupled cells was reduced by 80%. Deletion of Cx32 or Cx29 alone did not significantly reduce the number of coupled cells, but coupling was absent in Cx32/Cx47‐double‐deficient mice. Cx47‐ablation completely abolished coupling of oligodendrocytes to astrocytes. In Cx43‐deficient animals, oligodendrocyte‐astrocyte coupling was still present, but coupling to oligodendrocyte precursors was not observed. In Cx43/Cx30‐double deficient mice, oligodendrocyte‐to‐astrocyte coupling was almost absent. Uncoupled oligodendrocytes showed a higher input resistance. We conclude that oligodendrocytes in white matter form a functional syncytium predominantly among each other dependent on Cx47 and Cx32 expression, while astrocytic connexins expression can promote the size of this network. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
The cellular localization, relation to other glial connexins (Cx30, Cx32, and Cx43), and developmental expression of Cx29 were investigated in the mouse central nervous system (CNS) with an anti-Cx29 antibody. Cx29 was enriched in subcellular fractions of myelin, and immunofluorescence for Cx29 was localized to oligodendrocytes and myelinated fibers throughout the brain and spinal cord. Oligodendrocyte somata displayed minute Cx29-immunopositive puncta around their periphery and intracellularly. In developing brain, Cx29 levels increased during the first few postnatal weeks and were highest in the adult brain. Immunofluorescence labeling for Cx29 in oligodendrocyte somata was intense at young ages and was dramatically shifted in localization primarily to myelinated fibers in mature CNS. Labeling for Cx32 also was localized to oligodendrocyte somata and myelin and absent in Cx32 knockout mice. Cx29 and Cx32 were minimally colocalized on oligodendrocytes somata and partly colocalized along myelinated fibers. At gap junctions on oligodendrocyte somata, Cx43/Cx32 and Cx30/Cx32 were strongly associated, but there was minimal association of Cx29 and Cx43. Cx32 was very sparsely associated with astrocytic connexins along myelinated fibers. With Cx26, Cx30, and Cx43 expressed in astrocytes and Cx29, Cx32, and Cx47 expressed in oligodendrocytes, the number of connexins localized to gap junctions of glial cells is increased to six. The results suggested that Cx29 in mature CNS contributes minimally to gap junctional intercellular communication in oligodendrocyte cell bodies but rather is targeted to myelin, where it, with Cx32, may contribute to connexin-mediated communication between adjacent layers of uncompacted myelin.  相似文献   

6.
Transient global ischemia causes delayed white matter injury to the brain with oligodendrocyte (OLG) death and myelin breakdown. There is increasing evidence that hypoxia may be involved in several diseases of the white matter, including multiple sclerosis, vascular dementia, and ischemia. Matrix metalloproteinases (MMPs) are increased in rat and mouse models of hypoxic hypoperfusion and have been associated with OLG death. However, whether the MMPs act on myelin or OLGs remains unresolved. We hypothesized that delayed expression of MMPs caused OLG death and myelin breakdown. To test the hypothesis, adult mice underwent hypoxic hypoperfusion with transient bilateral occlusion of the carotid arteries. After 3 days of reperfusion, ischemic white matter had increased reactivity of astrocytes and microglia, MMP‐2 localization in astrocytes, and increased protein expression and activity of MMP‐2. In addition, there was a significant loss of myelin basic protein (MBP) by Western blot and caspase‐3‐ mediated OLG death. Treatment with the broad‐spectrum MMP inhibitor, BB‐94, significantly decreased astrocyte reactivity and MMP‐2 activity. More importantly, it reduced MBP breakdown. However, MMP inhibition had no effect on OLG loss. Our results implicate MMPs released by reactive astrocytes in delayed myelin degradation, while OLG death occurs by an MMP‐independent mechanism. We propose that MMP‐mediated myelin loss is important in hypoxic injury to the white matter. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
We showed previously that mice deficient in astrocyte gap junctions Cx43 and Cx30 exhibit white matter vacuolation and hypomyelination. In this study we tested the hypothesis that loss of astrocytic gap junction proteins leads to exacerbation of the primary demyelinating diseases, using experimental autoimmune encephalomyelitis (EAE) as a model system. To test for this, Cx43 floxed mice were crossed with GFAP:Cre, Cx30 null mice to generate mice lacking astrocytic expression of both Cx43 and Cx30 (dKO). EAE was induced using myelin oligodendrocyte glycoprotein (MOG(35-55)) peptide, and mice were monitored for acute expression of disease. No statistically significant difference in clinical or pathological expression of EAE was observed. Lesion load and susceptibility of different areas of the CNS to inflammation were similar in all genotypes. Moreover, no differences were noted in blood-brain barrier (BBB) permeability, tissue wet weight, axonal pathology, gliosis or demyelination during acute disease. These data show that loss of the astrocytic connexins, Cx43 and Cx30, and the white matter pathology observed in these mice does not statistically affect clinical or pathological expression of EAE and show that astrocyte gap junctions do not regulate autoimmune inflammation and associated BBB disruption in acute EAE.  相似文献   

8.
Oligodendrocytes in CNS are linked to astrocytes by heterotypic gap junctions composed of Cx32 and Cx47 in oligodendrocytes and Cx30 and Cx43 in astrocytes. These gap junctions also harbour regulatory proteins, including ZO-1 and ZONAB. Here, we investigated the localization of multi-PDZ domain protein 1 (MUPP1) at these gap junctions and examined accessory proteins and connexins associated with oligodendrocytes in Cx47-knockout mice. In every CNS region tested, punctate immunolabelling for MUPP1 was found on all oligodendrocyte somata in wild-type mice. These MUPP1-positive puncta were colocalized with punctate labelling for oligodendrocytic Cx32 or Cx47, and with astrocytic Cx30 or Cx43 at oligodendrocyte-astrocyte (O/A) gap junctions, but were not found at astrocyte-astrocyte gap junctions. In Cx47-knockout mice, immunolabelling of MUPP1 and ZONAB was absent on oligodendrocytes, whereas some ZO-1-positive puncta remained. In Cx32-knockout mice, MUPP1 and ZONAB persisted at O/A gap junctions. The absence of Cx47 in Cx47-knockout mice was accompanied by a total loss of punctate labelling for Cx30, Cx32 and Cx43 on oligodendrocyte somata, and by a dramatic increase in immunolabelling for Cx32 along myelinated fibers. These results demonstrate MUPP1 at O/A gap junctions and Cx47-dependent targeting of connexins to the plasma membranes of oligodendrocyte somata. Further, it appears that deficits in myelination reported in Cx47-knockout mice may arise not only from a loss of Cx47 but also from the accompanied loss of gap junctions and their regulatory proteins at oligodendrocyte somata, and that loss of Cx47 may be partly compensated for by elevated levels of Cx32 along myelinated fibers.  相似文献   

9.
After traumatic spinal cord injury (SCI), there is an opportunity for preserving function by attenuating secondary cell loss. Astrocytes play crucial roles in the adult CNS and are responsible for the vast majority of glutamate buffering, potentially preventing excitotoxic loss of neurons and oligodendrocytes. We examined spatial and temporal changes in gene expression of the major astrocyte glutamate transporter GLT1 following moderate thoracic contusion SCI using transgenic BAC-GLT1-eGFP promoter reporter mice. In dorsal column white matter, total intensity of GLT1-eGFP expression per region was significantly reduced following SCI at both lesion epicenter and at rostral and caudal areas where no tissue loss occurred. This regional decrease in GLT1 expression was due to significant loss of GLT1-eGFP(+) cells, partially accounted for by apoptosis of eGFP(+) /GFAP(+) astrocytes in both white and gray matter. There were also decreased numbers of GLT1-eGFP-expressing cells in multiple gray matter regions following injury; nevertheless, there was sustained or even increased regional GLT1-eGFP expression in gray matter as a result of up-regulation in astrocytes that continued to express GLT1-eGFP. Although there were increased numbers of GFAP(+) cells both at the lesion site and in surrounding intact spinal cord following SCI, the majority of proliferating Ki67(+) /GFAP(+) astrocytes did not express GLT1-eGFP. These findings demonstrate that spatial and temporal alterations in GLT1 expression observed after SCI result from both astrocyte death and gene expression changes in surviving astrocytes. Results also suggest that following SCI a significant portion of astrocytes lacks GLT1 expression, possibly compromising the important role of astrocytes in glutamate homeostasis.  相似文献   

10.
Vanishing white matter (VWM) disease is a genetic leukoencephalopathy linked to mutations in the eukaryotic translation initiation factor 2B. It is a disease of infants, children, and adults who experience a slowly progressive neurologic deterioration with episodes of rapid clinical worsening triggered by stress and eventually leading to death. Characteristic neuropathologic findings include cystic degeneration of the white matter with scarce reactive gliosis, dysmorphic astrocytes, and paucity of myelin despite an increase in oligodendrocytic density. To assess whether a defective maturation of macroglia may be responsible for the feeble gliosis and lack of myelin, weinvestigated the maturation status of astrocytes and oligodendrocytes in the brains of 8 VWM patients, 4 patients with other white matter disorders and 6 age-matched controls with a combination of immunocytochemistry, histochemistry, scratch-wound assays, Western blot, and quantitative polymerase chain reaction. We observed increased proliferation and a defect in the maturation of VWM astrocytes. They show an anomalous composition of their intermediate filament network with predominance of the δ-isoform of the glial fibrillary acidic protein and an increase in the heat shock protein αB-crystallin, supporting the possibility that a deficiency in astrocyte function may contribute to the loss of white matter in VWM. We also demonstrated a significant increase in numbers of premyelinating oligodendrocyte progenitors in VWM, which may explain the coexistence of oligodendrocytosis and myelin paucity in the patients' white matter.  相似文献   

11.
Tumor necrosis factor (TNF) and its receptors TNFR1 and TNFR2 have pleiotropic effects in neurodegenerative disorders. For example, while TNFR1 mediates neurodegenerative effects in multiple sclerosis, TNFR2 is protective and contributes to remyelination. The exact mode of TNFR2 action, however, is poorly understood. Here, we show that TNFR2‐mediated activation of the PI3K‐PKB/Akt pathway in primary astrocytes increased the expression of neuroprotective genes, including that encoding the neurotrophic cytokine leukemia inhibitory factor (LIF). To investigate whether intercellular signaling between TNFR2‐stimulated astrocytes and oligodendrocytes plays a role in oligodendrocyte maturation, we established an astrocyte–oligodendrocyte coculture model, composed of primary astrocytes from huTNFR2‐transgenic (tgE1335) mice and oligodendrocyte progenitor cells (OPCs) from wild‐type mice, capable of differentiating into mature myelinating oligodendrocytes. In this model, selective stimulation of human TNFR2 on astrocytes, promoted differentiation of cocultured OPCs to myelin basic protein‐positive mature oligodendrocytes. Addition of LIF neutralizing antibodies inhibited oligodendrocyte differentiation, indicating a crucial role of TNFR2‐induced astrocyte derived LIF for oligodendrocyte maturation. GLIA 2014;62:272–283  相似文献   

12.
There is some controversy in the literature whether carbonic anhydrase occurs in astrocytes, as well as in oligodendrocytes and myelin, in the mammalian brain. In the present study this issue was addressed by double immunostaining for carbonic anhydrase and two astrocytic "markers" in the brains of normal mice and two dysmyelinating mutants, jimpy and shiverer. In the brains of young mice, carbonic anhydrase and glutamine synthetase were colocalized in astrocytes in the cortical gray matter. In gray matter of the adult mouse brain, it was possible to immunostain both carbonic anhydrase and glial fibrillary acidic protein (GFAP) in the same cells. However, in contrast to the findings in gray matter, in and near subcortical white matter carbonic anhydrase could be detected only in oligodendrocytes and myelinated fibers. In the brains of jimpy mice, virtually all the carbonic-anhydrase-positive cells were also GFAP positive, even in regions normally occupied by white matter. In the brains of young and adult shiverer mice, carbonic anhydrase was localized in astrocytes in the gray matter, but in and near the tracts normally occupied by white matter carbonic anhydrase could be detected only in oligodendrocytes and their abundant processes. The findings confirmed the oligodendrocyte-myelin unit to be the primary locus of carbonic anhydrase in the normal mouse brain and showed the astrocytes in gray matter normally to be a secondary locus of carbonic anhydrase. The immunostaining in the jimpy mouse brain suggested further that reactive astrocytes, in particular, might be rich in carbonic anhydrase.  相似文献   

13.
Glaucoma, a neurodegenerative disease affecting retinal ganglion cells (RGC), is a leading cause of blindness. Since gliosis is common in neurodegenerative disorders, it is important to describe the changes occurring in various glial populations in glaucoma animal models in relation to axon loss, as only changes that occur early are likely to be useful therapeutic targets. Here, we describe changes occurring in glia within the myelinated portion of the optic nerve (ON) in both DBA/2J mice and in a rat ocular hypertension model. In both glaucoma animal models, we found only a modest loss of oligodendrocytes that occurred after axons had already degenerated. In DBA/2J mice there was proliferation of oligodendrocyte precursor cells (OPCs) and new oligodendrocyte generation. Activation of microglia was detected only in highly degenerated DBA/2J ONs. In contrast, a large increase in astrocyte reactivity occurred early in both animal models. These results are consistent with astrocytes playing a prominent role in regulating axon loss in glaucoma. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Decreases in glial cell density and in GFAP mRNA in the anterior cingulate cortex have been reported in schizophrenia, bipolar disorder and major depressive disorder. Our study examines astrocyte and oligodendrocyte density in the white and grey matter of the subgenual cingulate cortex, and at the midline of the genu of the corpus callosum, in schizophrenia, bipolar disorder, depression and normal control cases. Serial coronal sections were stained with H and E for anatomical guidance, cresyl haematoxylin for oligodendrocyte identification and GFAP immunohistochemistry for astrocyte identification. Oligodendrocyte and astrocyte density was measured using systematic anatomical distinctions and randomised counting methods. A significant decrease in astrocyte density was observed in schizophrenia compared with normal controls in the cingulate grey matter, cingulate white matter and the midline of the corpus callosum (p = 0.025). Bipolar disorder and depression cases showed no significant changes in astrocyte density. Oligodendrocytes did not show any changes between diagnostic groups. In subgenual cingulate cortex, the ratio of oligodendrocytes to astrocytes was decreased between the controls and the three disease groups, suggesting a specific glial cell type specific change in schizophrenia.  相似文献   

15.
Neuromyelitis optica (NMO) is a chronic, mostly relapsing inflammatory demyelinating disease of the CNS characterized by serum anti-aquaporin 4 (AQP4) antibodies in the majority of patients. Anti-AQP4 antibodies derived from NMO patients target and deplete astrocytes in experimental models when co-injected with complement. However, the time course and mechanisms of oligodendrocyte loss and demyelination and the fate of oligodendrocyte precursor cells (OPC) have not been examined in detail. Also, no studies regarding astrocyte repopulation of experimental NMO lesions have been reported. We utilized two rat models using either systemic transfer or focal intracerebral injection of recombinant human anti-AQP4 antibodies to generate NMO-like lesions. Time-course experiments were performed to examine oligodendroglial and astroglial damage and repair. In addition, oligodendrocyte pathology was studied in early human NMO lesions. Apart from early complement-mediated astrocyte destruction, we observed a prominent, very early loss of oligodendrocytes and oligodendrocyte precursor cells (OPCs) as well as a delayed loss of myelin. Astrocyte repopulation of focal NMO lesions was already substantial after 1 week. Olig2-positive OPCs reappeared before NogoA-positive, mature oligodendrocytes. Thus, using two experimental models that closely mimic the human disease, our study demonstrates that oligodendrocyte and OPC loss is an extremely early feature in the formation of human and experimental NMO lesions and leads to subsequent, delayed demyelination, highlighting an important difference in the pathogenesis of MS and NMO.  相似文献   

16.
Glial Cell Lineages in the Rat Cerebral Cortex   总被引:9,自引:0,他引:9  
I have traced the fates of glial cell progenitors in the rat cerebral cortex marked with a recombinant retrovirus throughout most of the period of corticogenesis, from embryonic (E) day 14 to postnatal (P) day 14. Discrete clusters of clonally related glia were examined in serially cut sections, and their phenotypes identified using reliable light and electron microscopic criteria. Analysis of a large number of clones marked with retrovirus at various stages of embryonic life contained, with very few exceptions, either all astrocytes or all oligodendrocytes. This observation suggests that the ventricular zone contains separate progenitor cells for the two glial cell types. Oligodendrocyte clones were rarely seen in the cortices injected with retrovirus at the early stages of corticogenesis (E14-E16), suggesting that there is a very small number of oligodendrocyte progenitors in the ventricular zone at these early stages. Their frequency increased significantly at later embryonic ages. At these later stages, ventricular zone cells also give rise to progenitor cells that make up the subventricular zone in early postnatal life. Injections of retrovirus in this proliferative zone shortly after birth resulted in the generation of labeled astrocyte and oligodendrocyte clones in the cortical gray and white matter, with the astrocyte clones being in the majority. Injections at increasingly later stages resulted in the presence, predominantly in the white matter of both hemispheres and in the corpus callosum, of progressively more oligodendrocyte clones and fewer astrocyte clones. Injections at P14 generated only oligodendrocyte clones in the white matter of both hemispheres. A small number of clusters (<10%) generated after subventricular zone injections contained both astrocytes and oligodendrocytes, suggesting that single subventricular zone cells can differentiate into both glial cell types.  相似文献   

17.
Oligodendrocyte and astrocyte lineages were traced in rat forebrain sections using single- and double-label immunoperoxidase and indirect immunofluorescent techniques. Antibodies were directed against antigenic markers, the expressions of which overlapped in time: GD3 ganglioside in immature neuroectodermal cells; vimentin in radial glia; glial fibrillary acidic protein (GFAP) in astrocytes; and carbonic anhydrase (CA) and galactocerebroside (GC) in oligodendrocytes. A histochemical stain for iron was also used as a marker of oligodendrocytes. Small cells of the subventricular zone (SVZ) were stained with anti-GD3 but not with the other antibodies. By 16 d of gestation (E16), the SVZ generated large, round cells and thick, process-bearing cells that were GD3+/CA+/iron+. These cells then appeared in the cingulum and, with time, increased in numbers and extended thick processes as they filled the subcortical white matter. These cells eventually lost their reactivity to anti-GD3 but became GC+/CA+ with processes extending to myelin sheaths. At E15 radial glia were stained with the anti-vimentin antibody but were negative for GFAP. At birth, only the vimentin+ radial glia midline between the 2 ventricles were GFAP+, but with time more vimentin+ cells became GFAP+. By 7 d of postnatal age all the vimentin+ cells were GFAP+ and had converged predominately on the cingulum. With time these cells condensed and took on characteristic shapes of astrocytes. The embryonic separation of the oligodendrocyte and the astrocyte lineage is supported by four pieces of evidence: (1) GD3+ cells were double labeled with anti-CA, and then went on to become GC+; (2) vimentin+ and GFAP+ cells were not also GD3+; (3) ultrastructural localization of anti-GD3 was confined to cells with characteristics consistent with developing oligodendrocytes; and (4) the shapes of GD3+, CA+, GC+, or iron+ cells did not resemble those of the vimentin+ or GFAP+ cells.  相似文献   

18.
Oligodendrocyte cell migration is required for the development of the nervous system and the repopulation of demyelinated lesions in the adult central nervous system. We have investigated the role of the calcium-dependent adhesion molecules, the cadherins, in oligodendrocyte-astrocyte interaction and oligodendrocyte progenitor migration. Immunostaining demonstrated the expression of N-cadherin on the surfaces of both oligodendrocytes and astrocytes, and oligodendrocyte-like cells adhered to and spread on N-cadherin substrates. The blocking of cadherin function by antisera or specific peptides reduced adhesion of oligodendroglia to astrocyte monolayers, diminished contact time between oligodendrocyte processes and individual astrocytes, and significantly increased the migration of oligodendrocyte-like cells on astrocyte monolayers. Furthermore, a soluble cadherin molecule without adhesive properties increased oligodendroglial proliferation on various extracellular matrix substrates. These data suggest that cadherins are at least partially responsible for the poor migration-promoting properties of astrocytes and that decreasing cell-cell adhesion might effect repopulation of demyelinated multiple sclerosis lesions by oligodendrocyte progenitors.  相似文献   

19.
Oligodendrocytes of adult rodents express three different connexins: connexin29 (Cx29), Cx32, and Cx47. In this study, we show that Cx29 is localized to the inner membrane of small myelin sheaths, whereas Cx32 is localized on the outer membrane of large myelin sheaths; Cx29 does not colocalize with Cx32 in gap junction plaques. All oligodendrocytes appear to express Cx47, which is largely restricted to their perikarya. Cx32 and Cx47 are colocalized in many gap junction plaques on oligodendrocyte somata, particularly in gray matter. Cx45 is detected in the cerebral vasculature, but not in oligodendrocytes or myelin sheaths. This diversity of connexins in oligodendrocytes (in different populations of cells and in different subcellular compartments) likely reflects functional differences between these connexins and perhaps the oligodendrocytes themselves.  相似文献   

20.
The factors that regulate oligodendrogenesis have been studied extensively in optic nerve, where oligodendrocyte production and myelination quickly follow colonization of the nerve by progenitor cells. In contrast, oligodendrocyte production in the cerebral cortex begins approximately 1 week after progenitor cell colonization and continues for 3-4 weeks. This and other observations raise the possibility that oligodendrogenesis is regulated by different mechanisms in white and gray matter. The present study examined oligodendrocyte production in the developing cerebral cortex of jimpy (jp) and jimpy(msd) (msd) mice, which exhibit hypomyelination and oligodendrocyte death due to mutations in and toxic accumulations of proteolipid protein, the major structural protein of CNS myelin. Proliferation of oligodendrocyte progenitors and production of myelinating oligodendrocytes was reduced in jp cerebral cortex when compared to wild-type (wt) and msd mice. The incidence of oligodendrocyte cell death was similar in jp and msd cortex, but total dying oligodendrocytes were greater in msd. We confirm previous reports of increased oligodendrocyte production in white matter of both jp and msd mice. The jp mutation, therefore, reduces oligodendrocyte production in cerebral cortex but not in white matter. These data provide additional evidence that oligodendrogenesis is differentially regulated in white matter and gray matter and implicate PLP/DM20 as a modulator of these differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号