首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Antibodies in sera of 7 patients with neurologic manifestations of Lyme borreliosis and a monoclonal antibody (mAb H9724) to the flagellin of Borrelia burgdorferi have been shown to bind neural tissue. To identify the antibody binding site common to the B. burgdorferi flagellin and the neural tissue, we made recombinant fusion proteins expressing epitopes of flagellin. Antibodies in patients' sera and mAb H9724 bound within an 18-amino acid epitope (residues 208-225) in the central region of flagellin, whereas two other mAbs bound to epitopes mapping elsewhere in the protein. Antibodies in patients sera and mAb H9724 also bound to a human neuroblastoma cell line. Absorption of patients sera with a peptide, EGVQQEGAQQPA, corresponding to amino acids 213-224 of flagellin, inhibited binding to the neuroblastoma cell line. The data suggest that the immune response to a specific B-cell epitope within flagellin, shared by a human neuroblastoma cell line, may be involved in the pathogenesis of neuroborreliosis.  相似文献   

2.
Hepatitis C virus (HCV) infects more than 2% of the global population and is a leading cause of liver cirrhosis, hepatocellular carcinoma, and end-stage liver diseases. Circulating HCV is genetically diverse, and therefore a broadly effective vaccine must target conserved T- and B-cell epitopes of the virus. Human mAb HCV1 has broad neutralizing activity against HCV isolates from at least four major genotypes and protects in the chimpanzee model from primary HCV challenge. The antibody targets a conserved antigenic site (residues 412–423) on the virus E2 envelope glycoprotein. Two crystal structures of HCV1 Fab in complex with an epitope peptide at 1.8-Å resolution reveal that the epitope is a β-hairpin displaying a hydrophilic face and a hydrophobic face on opposing sides of the hairpin. The antibody predominantly interacts with E2 residues Leu413 and Trp420 on the hydrophobic face of the epitope, thus providing an explanation for how HCV isolates bearing mutations at Asn415 on the same binding face escape neutralization by this antibody. The results provide structural information for a neutralizing epitope on the HCV E2 glycoprotein and should help guide rational design of HCV immunogens to elicit similar broadly neutralizing antibodies through vaccination.  相似文献   

3.
Summary.  The nonstructural 5B (NS5B) protein of hepatitis C virus (HCV) is an RNA-dependent RNA polymerase (RdRp) with a key role in HCV replication. To characterize the functional roles of NS5B in HCV replication, we produced a panel of 10 monoclonal antibodies (mAbs) directed against NS5B protein from mice immunized with functionally active RdRp. The epitopes of eight mAbs are localized in the middle region (amino acid 240–263) of NS5B protein. On the other hand, the epitopes of two mAbs are mapped to amino acids 67–88 at the N-terminus of NS5B protein. To examine the effects of mAbs on HCV-RNA replication, we performed in vitro RdRp assay using either the 3'-untranslated region (UTR) or the full-length of HCV-RNA as a template in the presence of each mAb. mAbs specific for the middle region of NS5B had no effect on RdRp activity. Surprisingly, mAb recognizing the N-terminal region of NS5B inhibited RdRp activity in a dose-dependent manner. We have confirmed the same result using the other subclass of mAb, whose epitope is also localized to the same N-terminal region of NS5B. These data show that NS5B contains a B-cell epitope located between amino acid residues 67 and 88. Binding of this epitope with an antibody interferes with the enzymatic function of NS5B.  相似文献   

4.
Hepatitis C virus (HCV) infects ~2% of the world's population. It is estimated that there are more than 500,000 new infections annually in Egypt, the country with the highest HCV prevalence. An effective vaccine would help control this expanding global health burden. HCV is highly variable, and an effective vaccine should target conserved T- and B-cell epitopes of the virus. Conserved B-cell epitopes overlapping the CD81 receptor-binding site (CD81bs) on the E2 viral envelope glycoprotein have been reported previously and provide promising vaccine targets. In this study, we isolated 73 human mAbs recognizing five distinct antigenic regions on the virus envelope glycoprotein complex E1E2 from an HCV-immune phage-display antibody library by using an exhaustive-panning strategy. Many of these mAbs were broadly neutralizing. In particular, the mAb AR4A, recognizing a discontinuous epitope outside the CD81bs on the E1E2 complex, has an exceptionally broad neutralizing activity toward diverse HCV genotypes and protects against heterologous HCV challenge in a small animal model. The mAb panel will be useful for the design and development of vaccine candidates to elicit broadly neutralizing antibodies to HCV.  相似文献   

5.
Ando T  Latif R  Daniel S  Eguchi K  Davies TF 《Endocrinology》2004,145(11):5185-5193
The TSH receptor (TSHR) is the primary antigen in Graves' disease. In this condition, autoantibodies to the TSHR that have intrinsic thyroid-stimulating activity develop. We studied the epitopes on the native TSHR using polyclonal antisera and monoclonal antibodies (mAbs) derived from an Armenian hamster model of Graves' disease. Of 14 hamster mAbs analyzed, five were shown to bind to conformational epitopes including one mAb with potent thyroid-stimulating activity. Overlapping conformational epitopes were determined by cell-binding competition assays using fluorescently labeled mAbs. We identified two distinct conformational epitopes: epitope A for both stimulating and blocking mAbs and epitope B for only blocking mAbs. Examination of an additional three mouse-derived stimulating TSHR-mAbs also showed exclusive binding to epitope A. The remaining nine hamster-derived mAbs were neutral or low-affinity blocking antibodies that recognized linear epitopes within the TSHR cleaved region (residues 316-366) (epitope C). Serum from the immunized hamsters also recognized conformational epitopes A and B but, in addition, also contained high levels of TSHR-Abs interacting within the linear epitope C region. In summary, these studies indicated that the natively conformed TSHR had a restricted set of epitopes recognized by TSHR-mAbs and that the binding site for stimulating TSHR-Abs was highly conserved. However, high-affinity TSHR-blocking antibodies recognized two conformational epitopes, one of which was indistinguishable from the thyroid-stimulating epitope. Hence, TSHR-stimulating and blocking antibodies cannot be distinguished purely on the basis of their conformational epitope recognition.  相似文献   

6.
Please cite this paper as: Miyoshi‐Akiyama et al. (2012) Discrimination of influenza A subtype by antibodies recognizing host‐specific amino acids in the viral nucleoprotein. Influenza and Other Respiratory Viruses 6(6), 434–441. Background Nucleoprotein (NP) of influenza viruses is utilized to differentiate between the A, B, and C viral serotypes. The availability of influenza genome sequence data has allowed us to identify specific amino acids at particular positions in viral proteins, including NP, known as “signature residues,” which can be used to discriminate human influenza A viruses from H5N1 highly pathogenic avian influenza in human cases (HPAI) and pandemic H1N1(2009) (H1N1/2009) viruses. Methods Screening and epitope mapping of monoclonal antibodies (mAb) against NP of influenza A, which reacted differently with NP from human influenza A virus from HPAI and H1N1/2009 A virus. To identify the epitope(s) responsible for the discrimination of viral NP by mAbs, we prepared mutant NP proteins in the 293 cell expression system because some of the mAbs reacted with non‐linear epitopes. Results and Conclusions In the present study, we identified 3 mAbs. The results of epitope mapping showed that the epitopes were located at the signature residues. These results indicated that signature residues of NP could discriminate influenza A viruses from different origin.  相似文献   

7.
Rabies virus (RABV) causes fatal neurological encephalitis and results in approximately 6000 human death cases worldwide every year. The large (L) protein of RABV, possessing conserved domains, is considered as the target for detection. In this study, three monoclonal antibodies (mAbs), designated as 3F3, 3A6 and L-C, against L protein were generated by using the recombinant truncated L protein (aa 1431–1754) and the epitopes were also identified using a series of overlapping truncated polypeptides for testing the reactivity of mAbs with different RABV strains. The 1479EIFSIP1484, 1659RALSK1663 and 1724VFNSL1728 were identified as the minimal linear epitopes recognized by mAbs 3F3, 3A6 and L-C, respectively. Amino acid alignment showed epitope 1724VFNSL1728 recognized by mAb L-C is completely conserved among RABV strains, indicating that mAb L-C could be used to detect all of the RABV strains. Epitope 1479EIFSIP1484 is highly conserved among RABV strains except for a P1484S substitution in a China I sub-lineage strain of Asian lineage, which eliminated the reactivity of the epitope with mAb 3F3. However, the epitope 1659RALSK1663 was only completely conserved in the Africa-2 and Indian lineages, and a single A1660T substitution, mainly appeared in strains of the China I belonging to Asian lineage and a Cosmopolitan lineage strain, still retained the reactivity of the epitope with mAb 3A6. While both A1660T and K1663R substitutions in a China I lineage strain, single K1663R/Q substitution in some China II strains of Asian lineage and some Arctic-like lineage strains and R1659Q mutation in a strain of Africa-3 lineage eliminated the reactivity of the epitope with mAb 3A6, suggesting mAb 3A6 could be used for differentiation of variable epitopes of some strains in different lineages. Thus, variability and conservation of the three epitopes of L protein showed the reactive difference of mAbs among RABV strains of different lineages. These results may facilitate future studies in development of detection methods for RABV infection, the structure and function of RABV L protein.  相似文献   

8.
Human noroviruses are a common pathogen causing acute gastroenteritis worldwide. Among all norovirus genotypes, GII.3 is particularly prevalent in the pediatric population. Here we report the identification of two distinct blockade antibody epitopes on the GII.3 capsid. We generated a panel of monoclonal antibodies (mAbs) from mice immunized with virus-like particle (VLP) of a GII.3 cluster 3 strain. Two of these mAbs, namely 8C7 and 8D1, specifically bound the parental GII.3 VLP but not VLPs of GII.4, GII.17, or GI.1. In addition, 8C7 and 8D1 efficiently blocked GII.3 VLP binding with its ligand, histo-blood group antigens (HBGA). These data demonstrate that 8C7 and 8D1 are GII.3-specific blockade antibodies. By using a series of chimeric VLPs, we mapped the epitopes of 8C7 and 8D1 to residues 385–400 and 401–420 of the VP1 capsid protein, respectively. These two blockade antibody epitopes are highly conserved among GII.3 cluster 3 strains. Structural modeling shows that the 8C7 epitope partially overlaps with the HBGA binding site (HBS) while the 8D1 epitope is spatially adjacent to HBS. These findings may enhance our understanding of the immunology and evolution of GII.3 noroviruses.  相似文献   

9.
10.
Deoxyuridine 5′-triphosphate nucleotidohydrolase (dUTPase) of African swine fever virus (ASFV) is an essential enzyme required for efficient virus replication. Previous crystallography data have indicated that dUTPase (E165R) may serve as a therapeutic target for inhibiting ASFV replication; however, the specificity of the targeting site(s) in ASFV dUTPase remains unclear. In this study, 19 mouse monoclonal antibodies (mAbs) were produced, in which four mAbs showed inhibitory reactivity against E165R recombinant protein. Epitope mapping studies indicated that E165R has three major antigenic regions: 100–120 aa, 120–140 aa, and 140–165 aa. Three mAbs inhibited the dUTPase activity of E165R by binding to the highly conserved 149–RGEGRFGSTG–158 amino acid sequence. Interestingly, 8F6 mAb specifically recognized ASFV dUTPase but not Sus scrofa dUTPase, which may be due to structural differences in the amino acids of F151, R153, and F154 in the motif V region. In summary, we developed anti-E165R-specific mAbs, and identified an important antibody-binding antigenic epitope in the motif V of ASFV dUTPase. Our study provides a comprehensive analysis of mAbs that target the antigenic epitope of ASFV dUTPase, which may contribute to the development of novel antibody-based ASFV therapeutics.  相似文献   

11.
Classical swine fever virus (CSFV) shares high structural and antigenic homology with bovine viral diarrhea virus (BVDV) and border disease virus (BDV). Because all three viruses can infect swine and elicit cross-reactive antibodies, it is necessary to differentiate among them with regard to serological diagnosis of classical swine fever. To understand the mechanism of cross-reactivity, it is important to define common or specific epitopes of these viruses. For this purpose, epitope mapping of six monoclonal antibodies (mAbs) was performed using recombinant expressed antigenic domains of CSFV and BDV E2 proteins. One CSFV-specific conformational epitope and one CSFV and BDV common epitope within domain B/C of E2 were identified. Site-directed mutagenesis confirmed that residues G725 and V738/I738 of the CSFV-specific epitope and P709/L709 and E713 of the second epitope are important for mAbs binding. Infection of CSFV in porcine cells was significantly reduced after pre-incubation of the cells with the domain B/C of E2 or after pre-incubation of CSFV with the mAbs detecting domain B/C. 3D structural modeling suggested that both epitopes are exposed on the surface of E2. Based on this, the identified epitopes represent a potential target for virus neutralization and might be involved in the early steps of CSFV infection.  相似文献   

12.

Background

The single radial immunodiffusion (SRID) assay, the accepted method for determining potency of inactivated influenza vaccines, measures an immunogenic form of the influenza hemagglutinin. Nevertheless, alternative methods for measuring vaccine potency have been explored to address some of the weaknesses of the SRID assay, including limited sensitivity and the requirement for large amounts of standardized reagents. Monoclonal antibody (mAb)‐based potency assays also have the ability to detect and measure relevant immunogenic forms of HA.

Objectives

The objective of this study was to continue evaluation of mAb‐based alternative methods for measuring the potency of inactivated influenza vaccines, focusing on A(H7N9) pandemic influenza vaccines.

Methods

Several murine mAbs that recognize different epitopes on the H7 hemagglutinin (HA) were identified and characterized. These mAbs were evaluated in both a mAb‐capture ELISA and a mAb‐based biolayer interferometry (BLI) assay.

Results

Results indicated that potency of inactivated A(H7N9) vaccines, including vaccine samples that were stressed by heat treatment, measured by either alternative method correlated well with potency determined by the traditional SRID potency assay.

Conclusions

The availability of multiple H7 mAbs, directed to different HA epitopes, provides needed redundancy in the potency analysis as A(H7N9) viruses continue to evolve antigenically and suggests the importance of having a broad, well‐characterized panel of mAbs available for development of vaccines against influenza strains with pandemic potential. In addition, the results highlight the potential of mAb‐based platform such as ELISA and BLI for development as alternative methods for determining the potency of inactivated influenza vaccines.  相似文献   

13.
Abstract The antibody-dependent cell-mediated cytotoxicity (ADCC) mechanism involves both innate and adaptive immune systems. While a number of epitope mapping studies of neutralizing (Nt) antibodies and cytotoxic T lymphocyte (CTL) against a variety of HIV-1 clades have been reported, there has been a paucity of similar studies aimed at identifying epitopes of ADCC-inducing antibodies. Herein we screened 35 sera from HIV-1 CRF01_AE-infected blood donors for ADCC antibody activity against gp120 utilizing an EGFP-CEM-NK(r) flow cytometric assay. Eighteen sera with high ADCC antibody activity were then comprehensively examined for ADCC antibody epitopes using the HIV-1 subtype CRF01_AE TH023 gp120 peptide set consisting of 126 peptides of 15 amino acids in length, overlapping by 11 amino acids. This peptide set was divided into five pools (E1-E5). Each positive peptide pool was further investigated for fine epitope mapping of ADCC antibody activity using a 5 by 5 peptide matrix format. Interestingly, six and three peptides from peptide pools E1 and E2, respectively, responded to at least 33.33% of the tested sera. These nine common ADCC epitopes were localized to the C1 and V2 region of gp120. Furthermore, 5/9 epitopes were also shown to serve as full or partial Nt antibody targets for HIV-1 subtypes B and CRF01_AE. We submit these data on epitope mapping of ADCC or dual ADCC-Nt antibodies against HIV-1 gp120 that should be considered in the formulation of vaccines against HIV-1.  相似文献   

14.
Alterations in the structure and composition of sulfated proteoglycans are found in aging and osteoarthritic rabbits.Monoclonal antibodies (mAB) recognizing specific epitopes of rabbit cartilage proteoglycans would be useful in documenting proteoglycan changes during pathophysiological responses resulting in osteoarthritic pathology in rabbit synovial joints after partial medial meniscectomy.To this point, Balb/c mice were immunized with rabbit proteoglycan (fraction A 1 D 1 D 1) extracted from xiphoid process.Murine spleen cells were used to prepare hybridomas by fusion with the tumor cell line SP 2/0-Ag 14.Nine mAbs were found to bind to A1 D 1 D 1 in a solid phase radioimmunoassay.Binding curves, utilizing A 1 D 1 D 1 as ligand, resulted in the assignment of mAbs to 3 classes - high, moderate and poor binding mAbs.Binding avidity was independent of immunoglobulin subclass.A1D1D1 was digested with trypsin, chromatographed on DEAE-cellulose and tryptic peptides further resolved by dissociative CsCl density gradient centrifugation.The mAbs were studied in detail utilizing competitive inhibition assays of the resolved peptide fragments.Three types of antigenic fine specificity were observed; a mAb (2G2) which recognized a recurrent epitope on the native A 1 D 1 D 1, a mAb (2E9) which recognized a single protein epitope, in that it bound to a tryptic peptide that contained a high g1uNH2 : galNH2 and a mAb (6C9) which preferentially recognized a recurring epitope on heat-treated (50°C, 30 minutes) A1 D 1 D 1.In this analysis, the epitopes of these mAbs appear to be associated with the core protein since only one mAb (2C7) was competitively inhibited from binding to native A1 D 1 D 1 by glycosaminoglycans, hyaluronic acid and oligosaccharides of hyaluronic acid.Direct immunofluorescence staining of rabbit hip, shoulder and knee cartilage showed a differential staining patten of extracellular matrix with the various mAbs.FITC-2G2 stained the interterritorial matrix intensely; and also the perilacunae zones, whereas FITC-2E9 and FITC-6C9 appeared restricted to the perilacunae regions.  相似文献   

15.

Background

Highly pathogenic avian H5 influenza viruses have spread and diversified genetically and antigenically into multiple clades and subclades. Most isolates of currently circulating H5 viruses are in clade 2.3.2.1 or 2.3.4.4.

Methods

Panels of murine monoclonal antibodies (mAbs) were generated to the influenza hemagglutinin (HA) of H5 viruses from the clade 2.3.2.1 H5N1 vaccine virus A/duck/Bangladesh/19097/2013 and the clade 2.3.4.4 H5N8 vaccine virus A/gyrfalcon/Washington/41088-6/2014. Antibodies were selected and characterized for binding, neutralization, epitope recognition, cross-reactivity with other H5 viruses, and the ability to provide protection in passive transfer experiments.

Results

All mAbs bound homologous HA in an ELISA format; mAbs 5C2 and 6H6 were broadly binding for other H5 HAs. Potently neutralizing mAbs were identified in each panel, and all neutralizing mAbs provided protection in passive transfer experiments in mice challenged with a homologous clade influenza virus. Cross-reacting mAb 5C2 neutralized a wide variety of clade 2.3.2.1 viruses, as well as H5 viruses from other clades, and also provided protection against heterologous H5 clade influenza virus challenge. Epitope analysis indicated that the majority of mAbs recognized epitopes in the globular head of the HA. The mAb 5C2 appeared to recognize an epitope below the globular head but above the stalk region of HA.

Conclusions

The results suggested that these H5 mAbs would be useful for virus and vaccine characterization. The results confirmed the functional cross-reactivity of mAb 5C2, which appears to bind a novel epitope, and suggest the therapeutic potential for H5 infections in humans with further development.  相似文献   

16.
Several physicochemical characteristics of the repeated epitope of the major surface protein (P30) of Toxoplasma gondii were investigated with an anti-P30 mAb by two different methods: a one-site/inhibition assay that detects molecules containing single or multiple epitopes and a two-site/one antibody radiometric assay that is only effective with antigenic molecules containing two or more identical epitopes. Using both techniques, the repeated epitope within purified P30 was stable after 1 h at 63 degrees C, but labile at 100 degrees C. It was also resistant to successive freezing and thawing, and not affected after one year at -70 degrees C. Lyophilization and acidic or basic treatment had no effect. This epitope was also resistant to 20% trichloroacetic acid precipitation (activity recovered in the pellet) and to precipitation with cold acetone. To investigate the immunodominance of this repeated epitope during the humoral immune response against T. gondii, competition binding assays between anti-P30 mAb and polyclonal antibodies, from rabbits immunized with either purified P30 or total Toxoplasma extract and from patients with toxoplasmosis, have been used. We found that the mAb inhibited 50-95% of the binding of the IgG antibodies from both rabbits to purified P30. In addition, the binding of both human IgG and IgM antibodies to P30 was significantly inhibited by the mAb. It appears, therefore, that a single region of P30 contains most of the immunogenic activity.  相似文献   

17.
Summary Myosin isoform expression was analyzed in experimental rhabdomyosarcoma (RMS) using monoclonal antibodies (mAbs) and immunofluorescence techniques. Tumors induced by inoculating newborn rats with Moloney murine sarcoma virus (Mo-MSV) were examined 30–90 days after birth. Nine tumors and two lymph node metastases were studied by direct, indirect, and double immunofluorescence assays using a panel of five anti-myosin mAbs. The mAb BF-45 was specifically reactive with embryonic myosin heavy chain (MHC), mAb BF-34 was specific for a neonatal MHC epitope, mAb BF-B6 was directed against an epitope present in both embryonic and neonatal MHC, and mAbs BF-F3 and BF-32 detected epitopes present in adult MHC isoforms. Anti-desmin antibodies were also used for comparison. The results of this study show that: (1) the majority of neoplastic cells stained for desmin while only a minority of neoplastic cells were labeled by anti-myosin antibodies; (2) myosin positive tumor cells contained predominantly embryonic and neonatal MHC types but rare RMS cells reacted exclusively with anti-adult myosin antibodies; and (3) adult and embryonic MHC phenotypes were occasionally detected within the same tumor cell especially in RMS with the longest latencies. Together these results would suggest that the mechanism(s) regulating MHC gene expression in skeletal muscle cells can be altered by the transforming activity of Mo-MSV.Supported in part by grants from CNR (Special Project MPR, SP3, grant no. 83.02823.56; Special Project Oncology, grants no. 84.00495.44 and no. 85.02093.44), Ministero Pubblica Istruzione, and Associazione Italiana Ricerca Cancro  相似文献   

18.
Based on their mechanisms‐of‐action, CD20 monoclonal antibodies (mAbs) are grouped into Type I [complement‐dependent cytotoxicity (CDC) and antibody‐dependent cell‐mediated cytotoxicity (ADCC)] and Type II [programmed cell death (PCD) and ADCC] mAbs. We generated 17 new hybridomas producing CD20 mAbs of different isotypes and determined unique heavy and light chain sequence pairs for 13 of them. We studied their epitope binding, binding kinetics and structural properties and investigated their predictive value for effector functions, i.e. PCD, CDC and ADCC. Peptide mapping and CD20 mutant screens revealed that 10 out of these 11 new mAbs have an overlapping epitope with the prototypic Type I mAb rituximab, albeit that distinct amino acids of the CD20 molecule contributed differently. Binding kinetics did not correlate with the striking differences in CDC activity among the mIgG2c mAbs. Interestingly, chimerization of mAb m1 resulted in a mAb displaying both Type I and II characteristics. PCD induction was lost upon introduction of a mutation in the framework of the heavy chain affecting the elbow angle, supporting that structural changes within this region can affect functional activities of CD20 mAbs. Together, these new CD20 mAbs provide further insights in the properties dictating the functional efficacy of CD20 mAbs.  相似文献   

19.
Murine monoclonal antibodies (mAbs) were raised against human, polyclonal, anti-gp120 antibodies (Ab1) and were selected for binding to broadly neutralizing anti-gp120 antibodies in sera positive for human immunodeficiency virus (HIV). One anti-idiotype mAb (Ab2), 3C9, was found to be specific for human anti-gp120 antibodies directed against an epitope around the conserved CD4 attachment site of gp120. The 3C9 reactive human anti-gp120 antibodies (3C9+ Ab) neutralized MN, IIIB, RF, and four primary isolates of HIV type 1 (HIV-1). Cynomolgus monkeys were immunized with 3C9 in adjuvant to test whether this anti-idiotype mAb could induce neutralizing anti-gp120 antibodies. The results show that purified anti-anti-idiotype antibodies (Ab3) from 3C9 immune sera bind to an epitope around the CD4 attachment site of gp120SF and gp120IIIB. Furthermore, purified gp120-specific Ab3 neutralize MN, IIIB, and RF isolates. These results demonstrate that primates immunized with an anti-idiotype mAb produce broadly neutralizing anti-HIV-1 antibodies. Since this anti-idiotype mAb was selected by identifying a clonotypic marker, its biological activity can be explained as the results of clonotypic B-cell stimulation.  相似文献   

20.
Senecavirus A (SVA) is a member of the genus Senecavirus of the family Picornaviridae. SVA-associated vesicular disease (SAVD) outbreaks have been extensively reported since 2014–2015. Characteristic symptoms include vesicular lesions on the snout and feet as well as lameness in adult pigs and even death in piglets. The capsid protein VP3, a structural protein of SVA, is involved in viral replication and genome packaging. Here, we developed and characterized a mouse monoclonal antibody (mAb) 3E9 against VP3. A motif 192GWFSLHKLTK201 was identified as the linear B-cell epitope recognized by mAb 3E9 by using a panel of GFP-tagged epitope polypeptides. Sequence alignments show that 192GWFSLHKLTK201 was highly conserved in all SVA strains. Subsequently, alanine (A)-scanning mutagenesis indicated that W193, F194, L196, and H197 were the critical residues recognized by mAb 3E9. Further investigation with indirect immunofluorescence assay indicated that the VP3 protein was present in the cytoplasm during SVA replication. In addition, the mAb 3E9 specifically immunoprecipitated the VP3 protein from SVA-infected cells. Taken together, our results indicate that mAb 3E9 could be a powerful tool to work on the function of the VP3 protein during virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号