首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many Prader-Willi syndrome (PWS) and Angelman syndrome (AS) patients have a cytogenetic deletion of 15q11q13. While AS and PWS share a similar cytogenetic anomaly, they have very different clinical phenotypes. DNAs from 4 AS patients were examined using 5 chromosome 15q11q13-specific cloned DNA segments. With the present level of resolution, the molecular deletions between AS and those previously reported for PWS did not appear to differ. However, in contrast to the paternal inheritance of the deleted chromosome 15 observed in the majority of PWS patients, maternal inheritance of the deleted chromosome 15 was demonstrated in the AS patients by restriction fragment length polymorphisms (RFLPs).  相似文献   

2.
Restriction fragment length polymorphisms (RFLPs) are described in detail for 6 DNA probes (D15S9-13, D15S18) that localize to the proximal long arm of human chromosome 15 (15q11-15q13: this report and Tantravahi et al., Am. J. Med. Genet. 33:78-87. Multiple RFLPs are detected by the probe that identifies locus D15S13, and these RFLPs are shown by genomic mapping to result from a nearby insertion or deletion of 1.8 kilobases (kb) of DNA. This set of RFLPs detected by proximal 15q probes can be used for studies on the Prader-Willi syndrome (PWS) and on mentally retarded individuals with a supernumerary inv dup(15) chromosome. Five of the polymorphic loci (D15S9-13) map to the region implicated in the cause of the PWS (15q11.2-15q12). Each of 4 families tested with these probes, as well as an additional "PWS-like" patient, was informative by RFLP analysis. The two PWS deletions studied, which occurred de novo, were inherited from the chromosome 15 provided by the father. By contrast, the 2 inv dup(15) chromosomes analyzed were of maternal origin. The use of RFLPs can also simplify the molecular determination of copy number in chromosomal aneuploidy, as exemplified by analysis of individuals with the PWS and a deletion, patients with an inv dup(15), and one patient with a more complex rearrangement involving chromosome 15. Our studies demonstrate the application of DNA probes for both molecular cytogenetic studies on this chromosome region and the development of diagnostic molecular markers to aid early clinical diagnosis of the PWS.  相似文献   

3.
The development of probes containing segments of DNA from chromosome region 15q11-q13 provides the opportunity to confirm the diagnosis of Prader-Willi syndrome (PWS) and Angelman syndrome (AS) by fluorescence in situ hybridization (FISH). We have evaluated FISH studies and high resolution chromosome banding studies in 14 patients referred to confirm or rule out PWS and five patients referred to confirm or rule out AS. In four patients (three from the PWS category and 1 from the AS group) chromosome analysis suggested that a deletion was present but FISH failed to confirm the finding. In one AS group patient, FISH identified a deletion not detectable by high resolution banding. Review of the clinical findings in the discrepant cases suggested that the FISH results were correct and high resolution findings were erroneous. Studies with a chromosome 15 alpha satellite probe (D15Z) on both normal and abnormal individuals suggested that incorrect interpretation of chromosome banding may occasionally be attributable to alpha satellite polymorphism but other variation of 15q11-q13 chromosome bands also contributes to misinterpretation. We conclude that patients who have been reported to have a cytogenetic deletion of 15q11-q13 and who have clinical findings inconsistent with PWS and AS should be reevaluated by molecular genetic techniques. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Prader–Willi syndrome (PWS), is a complex genetic disease affecting 1/15,000 individuals, characterized by lack of expression of genes on the paternal chromosome 15q11‐q13 region. Clinical features include central hypotonia, poor suck, learning and behavior problems, growth hormone deficiency with short stature, hyperphagia, and morbid obesity. Despite significant advances in genetic testing, the mean age for diagnosis in PWS continues to lag behind. Our goal was to perform a pilot feasibility study to confirm the diagnosis utilizing different genetic technologies in a cohort of 34 individuals with genetically confirmed PWS and 16 healthy controls from blood samples spotted and stored on newborn screening (NBS) filter paper cards. DNA was isolated from NBS cards, and PWS testing performed using DNA methylation‐specific PCR (mPCR) and the methylation specific‐multiplex ligation dependent probe amplification (MS‐MLPA) chromosome 15 probe kit followed by DNA fragment analysis for methylation and copy number status. DNA extraction was successful in 30 of 34 PWS patients and 16 controls. PWS methylation testing was able to correctly identify all PWS patients and MS‐MLPA was able to differentiate between 15q11‐q13 deletion and non‐deletion status and correctly identify deletion subtype (i.e., larger Type I or smaller Type II). mPCR can be used to diagnose PWS and MS‐MLPA testing to determine both methylation status as well as the type of deletion or non‐deletion status from DNA extracted from NBS filter paper. We propose that PWS testing in newborns is possible and could be included in the Recommended Uniform Screening Panel after establishing a validated cost‐effective method.  相似文献   

5.
The clearest example of genomic Imprinting in humans comes fromstudies of the Angelman (AS) and Prader—Wil (PWS) syndromes.Although these are clinically distinct disorders, both typicallyresult from a loss of the same chromosomal region, 15q11 - q13.AS usually results from either a maternal deletion of this region,or paternal uniparental disomy (UPD; both chromosomes 15 Inheritedfrom the father). PWS results from paternal deletion of 15q11- q13 or maternal UPD of chromosome 15. We have recently describeda parent-specific DNA methylation imprint in a gene at the D15S9locus (new gene symbol, ZNF 127), within the 15q11 - q13 region,that identifies AS and PWS patients with either a deletion orUPD. Here we describe an AS sibship and three PWS patients inwhich chromosome 15 rearrangements alter the methylation stateat ZNF127, even though this locus is not directly involved inthe rearrangement. Parent-specific DNA methylation imprintsare also altered at ZNF127 and D15S63 (another locus with aparent-specific methylation imprint) in an AS sibship whichhave no detectable deletion or UPD of chromosome 15. These uniquepatients may provide insight into the imprinting process thatoccurs in proximal chromosome 15 in humans.  相似文献   

6.
Six persons with the classical Angelman syndrome (AS) phenotype and de novo deletions of chromosome 15q11-q13 were studied to determine the parental origin of the chromosome deletion. Four of the 6 patients had informative cytogenetic studies and all demonstrated maternal inheritance of the deletion. These findings, together with other reported cases of the origin of the chromosome 15 deletion in AS, suggest that deletion of the maternally contributed chromosome leads to the AS phenotype. This contrasts with the Prader-Willi syndrome (PWS) in which a similar deletion of the paternally contributed chromosome 15 is observed. In deletion cases, a parental gamete effect such as genomic imprinting may be the best model to explain why apparently identical 15q11-q13 deletions may develop the different phenotypes of AS or PWS.  相似文献   

7.
Six persons with the classical Angelman syndrome (AS) phenotype and de novo deletions of chromosome 15q11-q13 were studied to determine the parental origin of the chromosome deletion. Four of the 6 patients had informative cytogenetic studies and all demonstrated maternal inheritance of the deletion. These findings, together with other reported cases of the origin of the chromosome 15 deletion in AS, suggest that deletion of the maternally contributed chromosome leads to the AS phenotype. This contrasts with the Prader-Willi syndrome (PWS) in which a similar deletion of the paternally contributed chromosome 15 is observed. In deletion cases, a parental gamete effect such as genomic imprinting may be the best model to explain why apparently identical 15q11-q13 deletions may develop the different phenotypes of AS or PWS.  相似文献   

8.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with a loss of function of imprinted genes in the 15q11-q13 region mostly due to deletions or uniparental disomies (UPD). These anomalies usually occur de novo with a very low recurrence risk. However, in rare cases, familial translocations are observed, giving rise to a high recurrence risk. We report on the difficulties of genetic counseling and prenatal diagnosis in a family segregating for a translocation (14;15)(q11;q13) where two consanguineous parents carry the same familial translocation in this chromosome 15 imprinting region. Both children of the couple inherited a chromosomal anomaly leading to PWS. However, a paternal 15q11-q13 deletion was responsible for PWS in the first child, whereas prenatal diagnosis demonstrated that PWS was associated with a maternal 15q11-q13 UPD in the fetus. This report demonstrates that both conventional and molecular cytogenetic parental analyses have to be performed when a deletion is responsible for PWS or AS in order not to overlook a familial translocation and to insure reliable diagnosis and genetic counseling.  相似文献   

9.
Ten genomic DNA probes, subcloned from inserts derived from a phage library constructed from the DNA of flow-sorted chromosomes, have now been mapped to locations within 15q11-15q13. By dosage blotting and densitometry, 5 of these probes map to the 15q11.2-15q12 segment missing in one 15 chromosome of a Prader-Willi syndrome (PWS) patient with a prominent cytological deletion. A sixth probe most likely maps to the same region. The other 4 probes map outside of this segment but within 15q11-15q13. Several of the 15q11.2-15q12 probes, and a cDNA probe homologous to one, have been used to test the DNA from 8 patients exhibiting a wide range of the clinical manifestations expected for PWS patients. DNA deletion was observed in all 3 patients with cytological 15q1 deletions as well as in a patient with an unbalanced (Y;15) translocation. DNA from 1 PWS patient with an unbalanced (5;15) translocation and an inverted duplication of the short arm and proximal long arm of 15 showed at least 1 and possibly 2 extra copies of each genomic probe tested. In the other 3 patients with no cytological deletions, no DNA deletions were found. Thus, the molecular probes described can be used in most PWS patients to analyze the region of proximal 15q implicated in this syndrome.  相似文献   

10.
We describe a 17-year-old girl with mild Prader-Willi syndrome (PWS) due to 15q11-q13 deletion. The deletion occurred on a paternal chromosome 15 already involved in a translocation, t(Y;15)(q12;p11), the latter being present in five other, phenotypically normal individuals in three generations. This appears to be the first case of PWS in which the causative 15q11-q13 deletion occurred on a chromosome involved in a familial translocation, but with breakpoints considerably distal to those of the familial rearrangement. The translocation could predispose to additional rearrangements occurring during meiosis and/or mitosis or, alternatively, the association of two cytogenetic anomalies on the same chromosome could be fortuitous. Am. J. Med. Genet. 70: 222–228, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
The Prader-Willi (PWS) and Angelman syndromes (AS) share the same apparent cytogenetic and molecular lesions of 15q11-13 and yet exhibit distinct clinical phenotypes. The etiology of PWS or AS appears to depend on the parental origin of the aberrant chromosome 15. Substantial clinical overlap has not been reported between deletion-positive PWS and AS patients. In the present study, we report the clinical, cytogenetic, and molecular findings in three AS patients. The first patient is a mentally retarded woman with a visible deletion of 15q11-13 with typical craniofacial, behavioral, and neurologic changes of AS. This patient is hyperphagic, and she is moderately obese for her height. Her hands and feet are small. These manifestations are more characteristic of PWS and not of AS. The molecular studies showed deletions of maternal origin for five distal PWCR loci. The most proximal locus, D15S18, was not deleted. These findings are identical to those found in our third AS patient who does not have any PWS features. To the best of our knowledge, this is the first report of concurrence of hyperphagia with consequent obesity and the AS phenotype in a patient with a del 15(q11-13) of maternal origin. These clinical findings suggest that overlap in the symptoms of PWS and AS can occur. Our second AS patient presents with atypical molecular findings in that he cannot be classed into any of the three proposed sub-groups of AS patients and may be representative of a fourth sub-group of AS patients.  相似文献   

12.
We report on a case of Prader-Willi syndrome (PWS) with a true reciprocal unbalanced translocation, 45,XX,-15,der(11)t(11;15)pat. The proposita was diagnosed clinically as having severe PWS. Molecular studies revealed loss of the paternal methylation pattern at locus D15S63 and a deletion encompassing the loci from at least D15S10 to D15S97 of paternal chromosome 15. FISH studies confirmed the deletion of 15q11-q13 region and the presence of two telomeres on all chromosomes. The proposita's father, the father's sister and their mother are all carriers of the same balanced translocation t(11;15)(q25;q13). By genomic imprinting we would expect that if the father's sister were to give birth to a child with the same unbalanced translocation as the proband, it would be affected by Angelman syndrome.
To date, a similar familial unbalanced translocation due to loss of the small chromosome 15 derivative has not been described.  相似文献   

13.
The Prader-Willi (PWS) and Angelman syndromes (AS) share the same apparent cytogenetic and molecular lesions of 15q11-13 and yet exhibit distinct clinical phenotypes. The etiology of PWS or AS appears to depend on the parental origin of the aberrant chromosome 15. Substantial clinical overlap has not been reported between deletion-positive PWS and AS patients. In the present study, we report the clinical, cytogenetic, and molecular findings in three AS patients. The first patient is a mentally retarded woman with a visible deletion of 15q11-13 with typical craniofacial, behavioral, and neurologic changes of AS. This patient is hyperphagic, and she is moderately obese for her height. Her hands and feet are small. These manifestations are more characteristic of PWS and not of AS. The molecular studies showed deletions of maternal origin for five distal PWCR loci. The most proximal locus, D15S18, was not deleted. These findings are identical to those found in our third AS patient who does not have any PWS features. To the best of our knowledge, this is the first report of concurrence of hyperphagia with consequent obesity and the AS phenotype in a patient with a del 15(q11-13) of maternal origin. These clinical findings suggest that overlap in the symptoms of PWS and AS can occur. Our second AS patient presents with atypical molecular findings in that he cannot be classed into any of the three proposed sub-groups of AS patients and may be representative of a fourth sub-group of AS patients.  相似文献   

14.
We have evaluated fluorescence in situ hybridization (FISH) analysis for the clinical laboratory detection of the 15q11-q13 deletion seen in Prader-Willi syndrome (PWS) and Angelman syndrome (AS) using probes for loci D15S11, SNRPN, D15S10, and GABRB3. In a series of 118 samples from patients referred for PWS or AS, 29 had deletions by FISH analysis. These included two brothers with a paternally transmitted deletion detectable with the probe for SNRPN only. G-banding analysis was less sensitive for deletion detection but useful in demonstrating other cytogenetic alterations in four cases. Methylation and CA-repeat analyses of 15q11-q13 were used to validate the FISH results. Clinical findings of patients with deletions were variable, ranging from newborns with hypotonia as the only presenting feature to children who were classically affected. We conclude that FISH analysis is a rapid and reliable method for detection of deletions within 15q11-q13 and whenever a deletion is found, FISH analysis of parental chromosomes should also be considered. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Fluorescence in situ hybridisation (FISH) and conventional chromosome analysis were performed on a series of 52 patients with classical Williams-Beuren syndrome (WBS), suspected WBS, or supravalvular aortic stenosis (SVAS). In the classical WBS group, 22/23 (96%) had a submicroscopic deletion of the elastin locus on chromosome 7, but the remaining patient had a unique interstitial deletion of chromosome 11 (del(11)(q13.5q14.2)). In the suspected WBS group 2/22 (9%) patients had elastin deletions but a third patient had a complex karyotype including a ring chromosome 22 with a deletion of the long arm (r(22)(p11-->q13)). In the SVAS group, 1/7 (14%) had an elastin gene deletion, despite having normal development and minimal signs of WBS. Overall, some patients with submicroscopic elastin deletions have fewer features of Williams-Beuren syndrome than those with other cytogenetic abnormalities. These results, therefore, emphasise the importance of a combined conventional and molecular cytogenetic approach to diagnosis and suggest that the degree to which submicroscopic deletions of chromosome 7 extend beyond the elastin locus may explain some of the phenotypic variability found in Williams-Beuren syndrome.  相似文献   

16.
Human chromosome 15q11-q13 contains genes that are imprinted and expressed from only one parental allele. Prader-Willi syndrome (PWS) is due to the loss of expression of one or more paternally expressed genes on proximal human chromosome 15q, most often by deletion or maternal uniparental disomy. Several candidate genes and a putative imprinting centre have been identified in the deletion region. We report that the human necdin-encoding gene (NDN) is within the centromeric portion of the PWS deletion region, between the two imprinted genes ZNF127 and SNRPN. Murine necdin is a nuclear protein expressed exclusively in differentiated neurons in the brain. Necdin is postulated to govern the permanent arrest of cell growth of post-mitotic neurons during murine nervous system development. We have localized the mouse locus Ndn encoding necdin to chromosome 7 in a region of conserved synteny with human chromosome 15q11-q13, by genetic mapping in an interspecific backcross panel. Furthermore, we demonstrate that expression of Ndn is limited to the paternal allele in RNA from newborn mouse brain. Expression of NDN is detected in many human tissues, with highest levels of expression in brain and placenta. NDN is expressed exclusively from the paternally inherited allele in human fibroblasts. Loss of necdin gene expression may contribute to the disorder of brain development in individuals with PWS.   相似文献   

17.
We report on cytogenetic and molecular analysis of 29 Angelman syndrome (AS) individuals ascertained in 1990 through the first National Angelman Syndrome Conference. High resolution GTG- and GBG-banded chromosomes were studied. Standard molecular analysis with six 15q11q13 DNA sequences was used to analyze copy number and parental origin of 15q11q13. Concordance between molecular and cytogenetic data was excellent. The combind data showed that 23 of the 27 probands (85%) on whom we had definitive results have deletions of the chromosome 15q11q13 region. Two classes of deletion were detected molecularly: most patients were deleted for the 5 more proximal probes, but in 2 cases the deletion extended distally to include in sixth probe. In the 13 cases where the parental origin of the deleted chromosome 15 could be established, it was maternal. There were no cases of uniparental disomy. Cytological observations of the relative sizes of the heterochromatic regions of the short arm of chromosome 15 suggested that chromosomes with large heterochromatic blocks may be more prone to de novo deletion. © 1993 Wiley-Liss, Inc.  相似文献   

18.
We report on a 5-year-old white girl with Prader-Willi syndrome (PWS) and a submicroscopic deletion of 15q11q13 of approximately 100–200 kb in size. High resolution chromosome analysis was normal but fluorescence in situ hybridization (FISH), Southern hybridization, and microsatellite data from the 15q11q13 region demonstrated that the deletion was paternal in origin and included the SNRPN, PAR-5, and PAR-7 genes from the proximal to distal boundaries of the deletion segment. SNRPN and PW71B methylation studies showed an abnormal pattern consistent with the diagnosis of PWS and supported the presence of a paternal deletion of 15q11q13 or an imprinting mutation. Biparental (normal) inheritance of PW71B (D15S63 locus) and a deletion of the SNRPN gene were observed by microsatellite, quantitative Southern hybridization, and/or FISH analyses. Our patient met the diagnostic criteria for PWS, but has no reported behavior problems, hyperphagia, or hypopigmentation. Our patient further supports SNRPN and possibly other genomic sequences which are deleted as the cause of the phenotype recognized in PWS patients. © 1996 Wiley-Liss, Inc.  相似文献   

19.
BACKGROUND. Prader-Willi syndrome is a genetic disorder characterized by infantile hypotonia, obesity, hypogonadism, and mental retardation, but it is difficult to diagnose clinically in infants and young children. In about two thirds of patients, a cytogenetically visible deletion can be detected in the paternally derived chromosome 15 (15q11q13). Recently, patients with Prader-Willi syndrome have been described who do not have the cytogenetic deletion but instead have two copies of the 15q11q13 region that are inherited from the mother (with none inherited from the father). This unusual form of inheritance is known as maternal uniparental disomy. Using molecular genetic techniques, we sought to determine the frequency of uniparental disomy in Prader-Willi syndrome. METHODS. We performed molecular analyses using DNA markers within 15q11q13 and elsewhere on chromosome 15 in 30 patients with Prader-Willi syndrome who had no cytogenetically visible deletion. We also studied their parents. Three patients with Prader-Willi syndrome who had a cytogenetic deletion served as controls. RESULTS. In 18 of the 30 patients without a cytogenetic deletion (60 percent), we demonstrated the presence of maternal uniparental disomy for chromosome 15 and its association with advanced maternal age. In another eight patients (27 percent), we identified large molecular deletions. The remaining four patients (13 percent) had evidence of normal biparental inheritance for chromosome 15; three of these patients were the only ones in the study who had some atypical clinical features. CONCLUSIONS. In about 20 percent of all cases, Prader-Willi syndrome results from the inheritance of both copies of chromosome 15 from the mother (maternal uniparental disomy). With the combined use of cytogenetic and molecular techniques, the genetic basis of Prader-Willi syndrome can be identified in up to 95 percent of patients.  相似文献   

20.
Angelman syndrome (AS) results from a lack of maternal contribution from chromosome 15q11-13, arising from de novo deletion in most cases or rarely from uniparental disomy. These families are associated with a low recurrence risk. However, in a minority of families, more than one child is affected. No deletion has been found in these families, except one. The mode of inheritance in these families is autosomal dominant modified by imprinting. Sporadic cases, with no observable deletion, therefore pose a counselling dilemma as there could be a recurrence risk as high as 50%. We present a series of 93 AS patients, showing the relative contribution of these different genetic mechanisms. Eighty-one AS patients were sporadic cases while 12 cases came from six families. Sixty cases had deletions in 15q11-13 detected by a set of highly polymorphic (CA)n repeats markers and conventional RFLPs. Ten sporadic cases plus all 12 familial cases had no detectable deletion. In addition, two cases of de novo deletions occurred in a chromosome 15 carrying a pericentric inversion. In one of these the AS child had a cousin with Prader-Willi syndrome (PWS) arising from a de novo deletion in an inv(15) inherited from his father. One case arose from a maternal balanced t(9;15)(p24;q15) translocation. There were three cases of uniparental disomy. Five patients were monoallelic for all loci across the minimal AS critical region, but the presence of a deletion cannot be confirmed. In familial cases, all affected sibs inherited the same maternal chromosome 15 markers for the region 15q11-13. Two cases were observed with a de novo deletion starting close to the locus D15S11 (IR4-2R), providing evidence for the development of classical AS with smaller deletions. Cytogenetic analysis proved limited in its ability to detect deletions, detecting only 42 out of 60 cases. However, cytogenetic analysis is still essential to detect chromosomal abnormalities other than deletions such as inversions and balanced translocations since both have an increased risk for deletions. A staged diagnostic strategy based on the use of highly informative (CA)n repeat markers is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号