首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The goal of the present study was to examine the contribution of thalamo-amygdala and thalamo-cortico-amygdala projections to fear conditioning. Lesions were used to destroy either the thalamo-cortico-amygdala projection, the thalamo-amygdala projection, or both projections, and the effects of such lesions on the acquisition of conditioned fear responses (changes in arterial pressure and freezing behavior) to a tone paired with footshock were measured. In each group of animals examined, a large lesion of the acoustic thalamus, including all nuclei of the medial geniculate body and adjacent portions of the posterior thalamus, was made on one side of the brain to block auditory transmission to the forebrain at the level of the thalamus on that side. In this way, experimental lesions could be made on the contralateral side of the brain. Thus, animals with thalamo-amygdala pathway lesions received a large lesion of the acoustic thalamus on one side. Contralaterally, only the nuclei that project to the amygdala (the medial division of the medial geniculate body, the posterior intralaminar nucleus, and the suprageniculate nucleus) were selectively destroyed, leaving much of the thalamo-cortico-amygdala projection intact. For thalamo-cortico-amygdala pathway lesions, the acoustic thalamus was destroyed on one side and temporal and perirhinal cortices were ablated contralaterally. In these animals, thalamo-amygdala projections were intact on the side of the cortical lesion. Destruction of either pathway alone had no effect on auditory fear conditioning. However, combined lesions of the two sensory pathways disrupted conditioning.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Pavlovian fear conditioning procedures have been a fruitful means of exploring the neural substrates of associative learning. There is now substantial evidence suggesting that many aspects of conditioned fear depend critically upon the integrity of the amygdala and the perirhinal cortex. Recent studies in our laboratory examining the contributions of these areas to olfactory and contextual fear conditioning are reviewed; collectively the results of these studies suggest that the amygdala participates critically in the acquisition and expression of fear conditioned to both an olfactory conditioned stimulus (CS) and to the training context, while the perirhinal cortex contributes to olfactory, but not contextual, fear conditioning. Moreover, it appears that perirhinal cortex may play a prominent role in recognition of the CS following conditioning. These results are discussed in light of the extent to which they replicate and extend previous research examining the contributions of these areas to fear conditioned to auditory and visual CSs.  相似文献   

3.
An abundance of evidence indicates a role for the dorsal hippocampus (DH) in learning and memory. Pavlovian fear conditioning provides a useful model system in which to investigate DH function because conditioning to polymodal contextual cues, but generally not to discrete unimodal cues, depends upon the integrity of the DH. There is some suggestion that the hippocampus may be involved in generalization to discrete auditory stimuli following conditioning, but the available literature offers conflicting results regarding the nature of hippocampus involvement. The present experiments were designed to address a role for the DH in auditory generalization following delay fear conditioning. Rats were trained with two or 16 trials of delay fear conditioning and subsequently given a neurotoxic lesion of the DH or sham surgery. Upon recovery, they were tested for fear conditioned responding to the auditory stimulus they were trained with, as well as generalized responding to a novel auditory stimulus. Sham animals showed substantial generalization to the novel stimulus when trained with two or 16 trials. However, lesion animals showed much less generalization (better discriminative performance) to the novel stimulus following 16 conditioning trials while still showing substantial fear conditioned freezing to the trained stimulus. A second experiment showed that this effect was not the result of a non-associative response to the novel stimulus. We conclude that, with extended training, animals become capable of discriminating between trained and novel stimuli but another hippocampus-dependent process maintains generalized responding.  相似文献   

4.
This is the first mapping study of the brain activity associated with the renewal of an extinguished conditioned response. Rats were given radiolabeled fluorodeoxyglucose, a glucose analog, to map brain effects of an extinguished tone during context-dependent renewal of conditioned fear. A tone conditioned stimulus was paired with a footshock unconditioned stimulus in a first context, followed by conditioned response extinction in a second context and conditioned response renewal in a third context. Control rats were treated identically, except that tone and shock were presented pseudorandomly. Compared with control subjects, rats with conditioned response renewal had increased tone-evoked fluorodeoxyglucose uptake in the auditory system (auditory cortex, medial geniculate, inferior colliculus and lateral lemniscal nuclei), as well as somatic and visceral sensory nuclei (external cuneate, spinal trigeminal, solitary tract and vestibular nuclei). In addition, perirhinal cortex, anterior lateral hypothalamus and ventrolateral periaqueductal gray showed conditioned response renewal effects. Brain-behavior correlations indicated that the activity of the external cuneate nucleus strongly predicted the conditioned response in the renewal group. It is suggested that context-dependent fear renewal is associated with (1) tone-evoked activation of the excitatory conditioned stimulus representation in the auditory system, (2) associative activation of the unconditioned stimulus representation in somatic and visceral sensory nuclei in the absence of the unconditioned stimulus, and (3) neural activation of the perirhinal cortex, hypothalamus and periaqueductal gray. These findings support Pavlov's stimulus-substitution theory as a neural mechanism contributing to the renewal effect.  相似文献   

5.
Neuronal MEK is important for normal fear conditioning in mice   总被引:3,自引:0,他引:3  
The extracellular signal-regulated kinase (ERK) cascade has received much attention for its possible role in neuronal synaptic plasticity. Although ERK activation has been linked to learning behaviors and activity-dependent neuronal function, much of the acquired data has relied upon pharmacological agents that suppress ERK function in both neurons and nonneuronal cells. To determine the function of neuronal ERK activity in learning, a new line of transgenic mice was generated wherein dominant-negative MEK1, the upstream obligate activator of ERK1/2, was expressed by using a neuronal-specific and pan-neuronal Talpha1 alpha-tubulin promoter element. Mice expressing this construct exhibited decreased ERK1/2 activity in the hippocampus and thus were tested for learning impairments. In a battery of control tests, including open field, rotarod, and shock threshold, the transgenic mice displayed no deficits and performed as well as their wild-type littermate counterparts. However, the mice displayed a significant impairment in contextual fear conditioning compared with the wild-type littermates. These findings indicate that the MEK1/ERK1/2 cascade within neurons plays an important role in the processes of learning and memory.  相似文献   

6.
The role of the CAMKK pathway in object recognition memory was investigated. Rats' performance in a preferential object recognition test was examined after local infusion into the perirhinal cortex of the CAMKK inhibitor STO-609. STO-609 infused either before or immediately after acquisition impaired memory tested after a 24 h but not a 20-min delay. Memory was not impaired when STO-609 was infused 20 min after acquisition. The expression of a downstream reaction product of CAMKK was measured by immunohistochemical staining for phospho-CAMKI(Thr177) at 10, 40, 70, and 100 min following the viewing of novel and familiar images of objects. Processing familiar images resulted in more pCAMKI stained neurons in the perirhinal cortex than processing novel images at the 10- and 40-min delays. Prior infusion of STO-609 caused a reduction in pCAMKI stained neurons in response to viewing either novel or familiar images, consistent with its role as an inhibitor of CAMKK. The results establish that the CAMKK pathway within the perirhinal cortex is important for the consolidation of object recognition memory. The activation of pCAMKI after acquisition is earlier than previously reported for pCAMKII.  相似文献   

7.
To provide information about the possible regions involved in auditory recognition memory, this study employed an imaging technique that has proved valuable in the study of visual recognition memory. The technique was used to image populations of neurons that are differentially activated by novel and familiar auditory stimuli, thereby paralleling previous studies of visual familiarity discrimination. Differences evoked by novel and familiar sounds in the activation of neurons were measured in different parts of the rat auditory pathway by immunohistochemistry for the protein product (Fos) of the immediate early gene c-fos. Significantly higher counts of stained neuronal nuclei (266 +/- 21/mm2) were evoked by novel than by familiar sounds (192 +/- 17/mm2) in the auditory association cortex (area Te3; AudA). No such significant differences were found for the inferior colliculus, primary auditory cortex, postrhinal cortex, perirhinal cortex (PRH), entorhinal cortex, amygdala or hippocampus. These findings are discussed in relation to the results of lesion studies and what is known of areas involved in familiarity discrimination for visual stimuli. Differential activation is produced by novel and familiar individual stimuli in sensory association cortex for both auditory and visual stimuli, whereas the PRH is differentially activated by visual but not auditory stimuli. It is suggested that this latter difference is related to the nature of the particular auditory and visual stimuli used.  相似文献   

8.
To specify the functional role of the rhinal cortex, baboons with bilateral excitotoxic lesions of the rhinal cortex (RH group) were tested on a series of computerized memory and learning tasks. Preoperatively, they were trained to and then tested on a delayed nonmatching-to-sample (DNMS) task with trial-unique stimuli. Postoperatively, this visual recognition memory task was given twice. As compared to a sham-operated group, the RH group showed good retention of rule learning and were unimpaired on the Delay memory subtest. Performance on the List Length memory subtest was, however, severely impaired at both postoperative evaluations, with a significant negative correlation between cognitive performance and neuronal loss in rhinal areas. Visual habit memory and spatial working memory were assessed postoperatively only, using a concurrent discrimination learning task and both a delayed-response task (with a two- and four-location choice) and a delayed alternation task, respectively. The RH group was unimpaired on the first two tasks and was even faster than the controls in learning the delayed-response task with four locations. Finally, most RH baboons failed to learn the delayed alternation task within the limits of testing. These results indicate that neuronal loss in the rhinal cortex is sufficient to impair visual recognition memory, and extend the implication of this area to spatial executive functions. Furthermore, the observation of impaired recognition memory and executive processes with preserved procedural memory and retrograde memory suggests that damage to the rhinal cortex probably participates in the cognitive deficits typical of the early stages of Alzheimer's disease.  相似文献   

9.
Long-term potentiation (LTP) and depression (LTD) at parallel fibre-Purkinje cell synapses have been described in vitro in the cerebellar cortex, but the physiological roles of these two forms of plasticity have not been well defined. Here we show that, in cerebellar slices taken from rats that had undergone fear conditioning, there was a significant occlusion of electrically induced LTP at parallel fibre-Purkinje cell synapses. This effect was long-lasting and related to associative processes, as LTP was not occluded in unpaired animals. Notably, in conditioned animals the LTP-inducing protocol produced LTD in some cells instead of LTP. Conversely, synaptic depression induced by conjunctive stimulation of parallel fibers and climbing fibres was impaired in tissue taken immediately following aversive stimulation in both paired and unpaired subjects. This effect was not, however, long-lasting as the incidence and extent of LTD returned to normal levels 24 h after behavioural testing. These findings suggest that LTP takes part in the mechanisms underlying aversive associative memories in the cerebellum.  相似文献   

10.
The present study compared the impact of perirhinal cortex lesions on tests of object recognition. Object recognition was tested directly by looking at the preferential exploration of novel objects over simultaneously presented familiar objects. Object recognition was also tested indirectly by presenting just novel objects or just familiar objects, and recording exploration levels. Rats with perirhinal cortex lesions were severely impaired at discriminating a novel object from a simultaneously presented familiar object (direct test), yet displayed normal levels of exploration to novel objects presented on their own and showed normal declines in exploration times for familiar objects that were repeatedly presented (indirect tests). This effective reduction in the exploration of familiar objects after perirhinal cortex lesions points to the sparing of some recognition mechanisms. This possibility led us to determine whether rats with perirhinal cortex lesions can overcome their preferential exploration deficits when given multiple object familiarisation trials prior to that same (familiar) object being paired with a novel object. It was found that after multiple familiarisation trials, objects could now successfully be recognised as familiar by rats with perirhinal cortex lesions, both following a 90-min delay (the longest delay tested) and when object recognition was tested in the dark after familiarisation trials in the light. These latter findings reveal: (i) the presumed recruitment of other regions to solve recognition memory problems in the absence of perirhinal cortex tissue; and (ii) that these additional recognition mechanisms require more familiarisation trials than perirhinal-based recognition mechanisms.  相似文献   

11.
This study was aimed at determining (i) whether or not bilateral subtotal lesions of the anterior thalamic nuclei (ATH) in rodents produced memory deficits for spatial and/or non-spatial information and of auditory fear conditioning, and (ii) if these eventual deficits resemble those produced by chronic alcohol consumption (CAC). Working memory was assessed using both spatial (spontaneous alternation) and non-spatial (temporal alternation) delayed response tasks. Results showed that ATH lesions induced delay-dependent memory impairments in both spatial and non-spatial alternation tasks, as well as a decreased level of auditory and background contextual fear conditioning compared with respective controls. CAC did not induce accelerated rate of forgetting in the spatial and non-spatial tasks, but increased the vulnerability to interference in the spatial task. CAC impaired only background contextual fear conditioning. We conclude that ATH nuclei are involved in the maintenance of information over time, regardless of the nature (spatial vs. non-spatial) of the information, and play a role in associative processes for both unimodal (the tone) and polymodal (contextual) information. In contrast, ATH dysfunction does not account for the memory disorders induced by the CAC treatment. Our results contribute to showing that the functional overlap between the structures comprising the hippocampo-mamillo-thalamic pathway is only partial.  相似文献   

12.
To determine if learning-induced changes in the response of auditory cortical neurons to a conditioned stimulus (CS) reflect general changes in cellular excitability or alterations in signal processing that are specific to that stimulus, we determined frequency receptive fields (FRFs) of single neurons in secondary and ventral ectosylvian auditory fields of the cat during classical conditioning. Associative changes in FRFs of most cells were specific to the frequency of the CS, established rapidly and reversed by extinction. Thus, learning causes specific changes in cortical processing of sounds whose significance is acquired.  相似文献   

13.
Li XB  Inoue T  Nakagawa S  Koyama T 《Brain research》2004,1008(2):261-272
Much evidence from animal and clinical studies has shown that the mediodorsal nucleus of the thalamus (MD) is related to various types of memory, such as visual recognition, object-reward association, spatial working, and reference memory; however, few studies have investigated its role in emotion-related learning and memory processes. This study compared the effect of pre- and posttraining bilateral lesions of the mediodorsal thalamic nucleus with those of the amygdala on contextual conditioned fear. Both pre- and posttraining amygdala lesions almost eliminated conditioned freezing, and significantly blocked postshock freezing when behavioral tests were performed immediately after footshocks, reconfirming previous studies that the amygdala is implicated in the learning of Pavlovian conditioning. Both pre- and posttraining lesions of the mediodorsal nucleus of the thalamus significantly attenuated conditioned freezing but had no effect on postshock freezing. In contrast to lesions of the amygdala, those of the mediodorsal thalamic nucleus failed to alter the increased defecation induced by conditioned fear stress. Our results suggest that the mediodorsal nucleus of the thalamus has an important role in acquisition, consolidation or retrieval in Pavlovian contextual fear conditioning. Possible neural circuits, incorporating the amygdala, MD, and hippocampus, and the functional similarity of the MD and hippocampus in contextual fear conditioning, are also discussed.  相似文献   

14.
Neurogenesis in the auditory pathway of the marsupial Dasyurus hallucatus was studied. Intraperitoneal injections of tritiated thymidine (20-40 microCi) were made into pouch-young varying from 1 to 56 days pouch-life. Animals were killed as adults and brain sections were prepared for autoradiography and counterstained with a Nissl stain. Neurons in the ventral cochlear nucleus were generated prior to 3 days pouch-life, in the superior olive at 5-7 days, and in the dorsal cochlear nucleus over a prolonged period. Inferior collicular neurogenesis lagged behind that in the medial geniculate, the latter taking place between days 3 and 9 and the former between days 7 and 22. Neurogenesis began in the auditory cortex on day 9 and was completed by about day 42. Thus neurogenesis was complete in the medullary auditory nuclei before that in the midbrain commenced, and in the medial geniculate before that in the auditory cortex commenced. The time course of neurogenesis in the auditory pathway of the native cat was very similar to that in another marsupial, the brushtail possum. For both, neurogenesis occurred earlier than in eutherian mammals of a similar size but was more protracted.  相似文献   

15.
Hippocampal and amygdaloid neuroplasticity are important substrates for Pavlovian fear conditioning. The hippocampus has been implicated in trace fear conditioning. However, a systematic investigation of the significance of the trace interval has not yet been performed. Therefore, this study analyzed the time-dependent involvement of N-methyl-D-aspartate (NMDA) receptors in the dorsal hippocampus in one-trial auditory trace fear conditioning in C57BL/6J mice. The NMDA receptor antagonist APV was injected bilaterally into the dorsal hippocampus 15 min before training. Mice were exposed to tone (conditioned stimulus [CS]) and footshock (unconditioned stimulus [US]) in the conditioning context without delay (0 s) or with CS-US (trace) intervals of 1-45 s. Conditioned auditory fear was determined 24 h after training by the assessment of freezing and computerized evaluation of inactivity in a new context; 2 h later, context-dependent memory was tested in the conditioning context. NMDA receptor blockade by APV markedly impaired conditioned auditory fear at trace intervals of 15 s and 30 s, but not at shorter trace intervals. A 45-s trace interval prevented the formation of conditioned tone-dependent fear. Context-dependent memory was always impaired by APV treatment independent of the trace interval. The results indicate that the dorsal hippocampus and its NMDA receptors play an important role in auditory trace fear conditioning at trace intervals of 15-30-s length. In contrast, NMDA receptors in the dorsal hippocampus are unequivocally involved in contextual fear conditioning independent of the trace interval. The results point at a time-dependent role of the dorsal hippocampus in encoding of noncontingent explicit stimuli. Preprocessing of long CS-US contingencies in the hippocampus appears to be important for the final information processing and execution of fear memories through amygdala circuits.  相似文献   

16.
The hippocampus is believed to be an important structure for learning tasks that require temporal processing of information. The trace classical conditioning paradigm requires temporal processing because the conditioned stimulus (CS) and the unconditioned stimulus (US) are temporally separated by an empty trace interval. The present study sought to determine whether the hippocampus was necessary for rats to perform a classical trace fear conditioning task in which each of 10 trials consisted of an auditory tone CS (15-s duration) followed by an empty 30-s trace interval and then a fear-producing floor-shock US (0.5-s duration). Several weeks prior to training, animals were anesthetized and given aspiration lesions of the neocortex (NEO; n = 6), hippocampus and overlying neocortex (HIPP; n = 7), or no lesions at all (control; n = 6). Approximately 24 h after trace conditioning, NEO and control animals showed a significant decrease in movement to a CS-alone presentation that was indicative of a conditioned fear response. Animals in the HIPP group did not show conditioned fear responses to the CS alone, nor did a pseudoconditioning group (n = 7) that was trained with unpaired CSs and USs. Furthermore, all groups except the HIPP group showed conditioned fear responses to the original context in which they received shock USs. One week later, HIPP, NEO, and control animals received delay fear-conditioning trials with no trace interval separating the CS and US. Six of seven HIPP animals could perform the delay version, but none could perform the trace version. This result suggests that the trace fear task is a reliable and useful model for examining the neural mechanisms of hippocampally dependent learning. Hippocampus 1998;8:638–646. © 1998 Wiley-Liss, Inc.  相似文献   

17.
The effects of excitatory classical conditioning on cytochrome oxidase activity in the central auditory system were investigated using quantitative histochemistry. Rats in the conditioned group were trained with consistent pairings of a compound conditional stimulus (a tone and a light) with a mild footshock, to elicit conditioned suppression of drinking. Rats in the pseudorandom group were exposed to pseudorandom presentations of the same tone, light and shock stimuli without consistent pairings. Untrained rats in a naive group did not receive presentations of the experimental stimuli.
 The findings demonstrated that auditory fear conditioning modifies the metabolic neuronal responses of the auditory system, supporting the hypothesis that sensory neurons are responsive to behavioural stimulus properties acquired by learning. There was a clear distinction between thalamocortical and lower divisions of the auditory system based on the differences in metabolic activity evoked by classical conditioning, which lead to an overt learned behavioural response versus pseudorandom stimulus presentations, which lead to behavioural habituation. Increases in cytochrome oxidase activity indicated that tone processing is enhanced during associative conditioning at upper auditory structures (medial geniculate nucleus and secondary auditory cortices). In contrast, metabolic activation of lower auditory structures (cochlear nuclei and inferior colliculus) in response to the pseudorandom presentation of the experimental stimuli suggest that these areas may be activated during habituation to tone stimuli. Together these findings show that mapping the metabolic activity of cytochrome oxidase with quantitative histochemistry can be successfully used to map regional long‐lasting effects of learning on brain systems.  相似文献   

18.
Systems consolidation has been described as a time‐dependent reorganization process involving the neocortical and hippocampal networks underlying memory storage and retrieval. Previous studies of our lab were able to demonstrate that systems consolidation is a dynamic process, rather than a merely passive, time‐dependent phenomenon. Here, we studied the influence of sequential learning in contextual fear conditioning (CFC) with different training intensities in the time‐course of hippocampal dependency and contextual specificity. We found that sequential learning with high‐intensity shocks during CFC induces generalization of the first learning (context A) and maintains contextual specificity of the second learning (context B) 15 days after acquisition. Moreover, subsequent experiences reorganize brain structures involved in retrieval, accelerating the involvement of cortical structures and diminishing the hippocampal participation. Exposure to original context before novelty seems to only induce context specificity in hippocampal‐dependent memories. We propose that systems consolidation could be considered a potential biological mechanism for reducing possible interferences between similar memory traces. © 2017 Wiley Periodicals, Inc.  相似文献   

19.
We investigated the effects of damage to the medial temporal lobe (MTL) and anterolateral temporal cortex on semantic knowledge. We studied eight male controls, two patients with lesions limited to the hippocampal formation, three postencephalitic patients with extensive MTL lesions and variable damage to the lateral temporal cortex, and patient H.M. (whose lesion is limited mostly to the MTL, but who also has minimal damage to the anterolateral cortex). On 13 tests of semantic memory, patients with lesions limited to the hippocampal formation performed similarly to controls. Postencephalitic patients were mildly to moderately impaired on most tests. Patient H.M.'s performance was impaired on only a few tests and was less severely impaired overall than the three postencephalitic patients. A ranking of test scores showed a direct relationship between impairment and the extent of damage to lateral temporal cortex. These findings, and related findings from other studies, point to the importance of anterolateral temporal cortex for semantic knowledge. Patient H.M. performed uniquely in certain respects. For example, when providing definitions of objects, he made many grammatical errors. In contrast, the other patients with large MTL lesions made no more errors than those made by controls. Considering that H.M.'s lesion, both medially and laterally, is less extensive than the lesions in these other patients, it appears unlikely that his shortcomings in language production are related to his temporal lobe lesion.  相似文献   

20.
We investigated the roles of the auditory cortex in sound discrimination learning in Wistar rats. Absolute pitch or relative pitch can be used as discrimination cues in sound frequency discrimination. To clarify this, rats were trained to discriminate between rewarded (S+) and unrewarded (S-) test stimuli (S+ frequency>S- frequency). After learning was acquired by rats, performance was tested in a new test in which S+ frequency was constant but S+ frequencyS- frequency but both frequencies were increased. If the discrimination cue of the first test was preserved in the new test, performance following change of testing procedures was expected to remain high. The measured performance suggested that rats used relative pitch in half octave discrimination (difference between S+ and S- frequencies, 0.5 octave), and absolute pitch in octave discrimination (difference between S+ and S- frequencies, 1.0 octave). Bilateral lesions in the auditory cortex had almost no effect on performance before procedure change. Furthermore, performance following procedure change was not affected by lesions in the auditory cortex when the discrimination cue was preserved. However, performance was impaired by lesions in the auditory cortex when a new discrimination cue was used following procedure change. Lesions in the auditory cortex also impaired multimodal discrimination between sound and sound plus light. The present findings suggest that the auditory cortex plays a role as a sensory interface of the higher cortices required for flexible learning and multimodal discrimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号