首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related substances are ubiquitous environmental pollutants causing a wide variety of pathological alterations, with the most severe being progressive anorexia and body weight loss. These features suggest a possible involvement of the nervous system and neuroendocrine-related organs including the pituitary gland. However, so far there is little evidence for direct effects of TCDD on these areas. In the present study, male Sprague-Dawley rats were treated with a single oral dose of TCDD (10 microg/kg) and euthanized 1, 3, or 28 days after treatment. The expression of cytochrome P450 1A1 (CYP1A1), the aryl hydrocarbon receptor (AHR), and the aryl hydrocarbon receptor nuclear translocator (ARNT) were analyzed in different brain regions and pituitaries using semiquantitative RT-PCR and Western blotting. Relative levels of CYP1A1 mRNA and protein were dramatically increased in the pituitary. A significant increase in CYP1A1 mRNA was also detected in all the brain regions examined including olfactory bulb, striatum-caudate, hypothalamus, hippocampus, cortex, cerebellum, and substantia nigra. The increase in the expression was time-dependent with the highest level observed 1 day after TCDD treatment. The AHR and ARNT mRNAs were detected in the same areas but in contrast to CYP1A1 the changes in AHR and ARNT mRNA expression were limited to the 28-day time point. The present results provide evidence for the presence of CYP1A1, AHR, and ARNT in the central nervous system and in the pituitary, suggesting that TCDD may exert a direct effect on these regions.  相似文献   

2.
Cigarette smoking can induce CYP1A1 in the lung. Induction requires the aryl hydrocarbon receptor (AHR) and aryl hydrocarbon receptor nuclear translocator (ARNT) proteins. Lung samples from seven of 75 Finnish patients who smoked until the time of surgery exhibited absent or low levels of CYP1A1 protein, mRNA and enzymatic activity, suggesting that these individuals might be genetically non or poorly inducible for CYP1A1. All seven lung samples expressed normal levels of AHR mRNA and ARNT mRNA, indicating that they did not carry inactivating polymorphisms in the 5' upstream regulatory regions of these genes. Sequencing of cDNAs encompassing the complete coding regions of AHR and ARNT identified a previously known codon 554 polymorphism in AHR, which was present in the homozygous state in one individual. This polymorphism, which leads to an amino acid substitution, has previously been reported either to have no effect or to enhance CYP1A1 induction. Previously unreported silent single nucleotide polymorphisms were identified in codon 44 of AHR and codon 189 of ARNT. 1500 bp of genomic sequence from the 5' upstream regulatory sequence of the CYP1A1 gene was also sequenced in the non-inducible individuals. A nucleotide substitution polymorphism at position -459 was detected in the heterozygous state in two individuals. This polymorphic site does not reside in any known regulatory sequence. The complete CYP1A1 coding sequence and intron/exon boundaries were then sequenced. None of the non or poorly inducible individuals exhibited any polymorphisms, either homozygous or heterozygous compared to representative inducible individuals or the previously published CYP1A1 sequence. Thus, no polymorphisms in the AHR, ARNT or CYP1A1 genes were identified that could be responsible for the non/low inducibility phenotype observed.  相似文献   

3.
4.
5.
6.
7.
8.
Fundulus heteroclitus is a well-characterized marine fish model for studying aryl hydrocarbon toxicity. The F. heteroclitus population in New Bedford Harbor (NBH), a Superfund site in southeastern Massachusetts, exhibits heritable resistance to the toxic effects of planar halogenated aromatic hydrocarbons (PHAHs), including 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs). To investigate the role of the aryl hydrocarbon receptor (AHR) signal transduction pathway in PHAH resistance, we measured the relative levels of AHR1, AHR2, and ARNT2 mRNA in whole embryos at different developmental stages and in dissected tissues of adults, comparing expression of these genes in NBH fish with fish from a reference site (Scorton Creek, MA [SC]). Expression of both AHR1 and AHR2 mRNA increased during development, achieving maximum levels prior to hatching. Maximal embryonic expression of AHR1 was delayed relative to AHR2. Whole NBH and SC embryos exhibited no discernable differences in expression of these genes. As we have previously observed, adult SC fish expressed AHR2 and ARNT2 mRNA in all tissues examined, while AHR1 was expressed predominantly in brain, heart, and gonads. In contrast, AHR1 mRNA was widely expressed in NBH fish, appearing with unusual abundance in gill, gut, kidney, liver, and spleen. This AHR1 expression pattern was not observed in the lab-reared progeny of NBH fish, demonstrating that constitutive AHR1 expression in gill, gut, kidney, liver, and spleen is not a heritable phenotype. Furthermore, widespread AHR1 expression was not induced in reference-site fish by TCDD or PCB mixtures, suggesting that aberrant AHR1 expression is not simply a normal physiological response of contaminant exposure. These results identify ubiquitous AHR1 expression as an attribute unique to feral NBH F. heteroclitus, and they represent a first step in determining the regulatory mechanisms underlying this expression pattern and its possible role in TCDD resistance.  相似文献   

9.
ARNT and ARNT2 proteins are expressed in mammalian and aquatic species and exhibit a high level of amino acid identity in the basic-helix loop-helix PER/ARNT/SIM domains involved in protein interactions and DNA binding. Since the analysis of ARNT2 function at the protein level has been limited, ARNT2 function in aryl hydrocarbon receptor (AHR)-mediated signaling was evaluated and compared to ARNT. In vitro, ARNT and ARNT2 dimerized equally with the AHR in the presence of 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) and ARNT2 outcompeted ARNT for binding to the AHR when expressed in excess. In contrast, activation of the AHR with 3-methylcholanthrene or benzo[a]pyrene resulted in predominant formation of AHR*ARNT complexes. ARNT2 expressed in Hepa-1 cell culture lines with reduced ARNT protein resulted in minimal induction of endogenous CYP1A1 protein compared to cells expressing ARNT, and mutation of the putative proline residue at amino acid 352 to histidine failed to produce an ARNT2 that could function in AHR-mediated signaling. However, the expression of ARNT2 in wild-type Hepa-1 cells reduced TCDD-mediated induction of endogenous CYP1A1 protein by 30%, even though AHR*ARNT2 complexes could not be detected in nuclear extracts. Western blot analysis of numerous mouse tissues and various cell culture lines showed that both endogenous ARNT and ARNT2 could be detected in cells derived from kidney, central nervous system, and retinal epithelium. Thus, ARNT2 has the ability to dimerize with the liganded AHR in vitro and is influenced by the activating ligand yet appears to be limited in its ability to influence AHR-mediated signaling in cell culture.  相似文献   

10.
Previous studies have demonstrated that acute exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) by injection leads to inhibition of caudal fin regeneration in zebrafish. Since the TCDD exposure in these studies is systemic, it is possible that pathology in organs other than the fin could result in inhibition of fin regeneration. Therefore, histopathology of adult zebrafish (Danio rerio) organs was characterized following abdominal cavity injection of a TCDD dose (70ng/g). The most pronounced histopathologic changes 5 days post-injection included lipidosis and hypertrophy of liver hepatocytes and hypertrophy of gill lamellae. Effects of TCDD exposure on immunolocalization of the zebrafish aryl hydrocarbon receptor nuclear translocator (ARNT2), the heterodimer partner of the aryl hydrocarbon receptor (AHR2), and an AHR regulated gene cytochrome P450 1A (CYP1A) was also determined. ARNT2 was immunolocalized to the gastrointestinal tract, gill lamellae, kidney, ventricle of the heart, caudal fin, brain and liver of zebrafish. TCDD exposure had no measurable effect on ARNT2 abundance or localization. CYP1A was immunolocalized in TCDD exposed fish as a biomarker for cells with an activated AHR pathway. CYP1A was not detected in any tissue from vehicle exposed fish. Significant TCDD-dependent induction of CYP1A was detected in the proximal tubules of the kidney, in liver hepatocytes and in the gastrointestinal tract of TCDD exposed fish. Significant but lower TCDD-dependent CYP1A expression was evident in the gill, caudal fin and ventricle of the heart. Overall, TCDD exposure in adult zebrafish leads to histopathology similar to that reported in other fish species, and it appears unlikely that the histopathology in these organs completely explains the inhibition of fin regeneration.  相似文献   

11.
12.
13.
14.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) brings about a wide variety of toxic and biochemical effects via an AH receptor (AHR)-mediated signalling pathway. Wasting syndrome and acute lethality are TCDD-induced endpoints showing a striking sensitivity difference between two rat strains, TCDD-sensitive Long-Evans (Turku/AB) (L-E) and TCDD-resistant Han/Wistar (Kuopio) (H/W). These rat strains were used to study hypothalamic effects of TCDD on expression of genes encoding AHR-regulated bHLH/PAS proteins potentially involved in molecular pathogenesis of the wasting syndrome. In addition, two well-established target genes of TCDD, CYP1A1 and CYP1A2 were also examined. Quantitative RT-PCR was used to measure mRNA levels in hypothalamus, which is a major center of food intake and body weight regulation. At both 6 and 96 h after a single dose of 50 microg/kg TCDD, significant elevations were found in mRNA levels of AHR repressor (AHRR), CYP1A1 and CYP1A2, but not those of AHR, ARNT or ARNT2. Likewise, TCDD (100 microg/kg) did not alter the expression of SIM1, implicated in the suppressive impact of TCDD on food intake, nor that of PER2, involved in regulation of circadian rhythms. Differences between H/W and L-E rats appeared in constitutive levels of AHR and ARNT and in TCDD-induced levels of CYP1A2, AHRR, AHR and ARNT, which all were about two- to four-fold lower in H/W rats. Thus, although the changes found do not account for the wasting syndrome, expression of all principal genes of the AHR-signalling pathway in rat hypothalamus make it a candidate target for TCDD.  相似文献   

15.
16.
17.
Cytochrome P-450 (CYP) 1B1 expression in mouse hepatoma (Hepa-1) wild-type (WT) cells was compared with responses in Hepa-1 variants LA1 and LA2, which, respectively, exhibit low aryl hydrocarbon receptor (AhR) level and defective AhR nuclear translocator (ARNT) protein. 10T1/2 mouse embryo fibroblasts express predominantly CYP1B1 and at a 100 times higher level than in Hepa-1 cells, whereas they express about 300-fold lower CYP1A1 than Hepa-1 cells. The expression of CYP1B1 in WT and LA1 variant, although at a much lower level, follows that of CYP1A1, reflecting their common regulation through the AhR. The LA2 (ARNT-defective) cells showed a major difference between CYP1B1 and CYP1A1 expression. Although CYP1A1 mRNA levels in LA2 were extremely low and unresponsive to 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD), basal CYP1B1 mRNA and protein were expressed at levels similar to those seen in TCDD-induced WT. The elevated basal CYP1B1 mRNA in LA2 cells decreased by 50% after transient transfection of ARNT cDNA, in parallel with substantial restoration of CYP1A1 induction. This implicates ARNT as a suppressor of CYP1B1 basal expression in Hepa cells. In transient CYP1B1-luciferase constructs in LA2 cells, ARNT shows stimulatory effects in the enhancer region but an inhibitory effect on the proximal promoter. Two CYP1B1 enhancer elements [xenobiotic-responsive element (XRE) 1/2 and XRE4] formed TCDD-unresponsive complexes of similar mobility to TCDD-stimulated AhR-ARNT complex with XRE5. However, because these two complexes were formed to the same extent in LA2 as in WT cells, they cannot be due to ARNT or contribute to ARNT-regulated suppression.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号