首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
JP-8 has been associated with toxicity in animal models and humans. There is a great potential for human exposure to JP-8. Quantitation of percutaneous absorption of JP-8 is necessary for assessment of health hazards involved in its occupational exposure. In this study, we selected three aliphatic (dodecane, tridecane, and tetradecane) and two aromatic (naphthalene and 2-methylnaphthalene) chemicals, which are major components of JP-8. We investigated the changes in skin lipid and protein biophysics, and macroscopic barrier perturbation from dermal exposure of the above five chemicals. Fourier transform infrared (FTIR) spectroscopy was employed to investigate the biophysical changes in stratum corneum (SC) lipid and protein. FTIR results showed that all of the above five components of JP-8 significantly (P<0.05) extracted SC lipid and protein. Macroscopic barrier perturbation was determined by measuring the rate of transepidermal water loss (TEWL). All of the five JP-8 components studied, caused significant (P<0.05) increase in TEWL in comparison to control. We quantified the amount of chemicals absorbed assuming 0.25 m(2) body surface area exposed for 8 h. Our findings suggest that tridecane exhibits greater permeability through skin among aliphatic and naphthalene among aromatic JP-8 components. Amount of chemicals absorbed suggests that tridecane, naphthalene and its methyl derivatives should be monitored for their possible systemic toxicity.  相似文献   

2.
Percutaneous absorption and skin irritation of JP-8 (jet fuel)   总被引:5,自引:0,他引:5  
JP-8 is the major jet fuel used by US Army and Air Force. The purpose of the present study was to investigate the percutaneous absorption of JP-8 across pig ear skin and human skin in vitro and to study the effect of JP-8 exposure on the skin barrier function and irritation in Yucatan minipigs. JP-8 spiked with 5.0 microCi of radiolabeled (14C) tridecane, nonane, naphthalene or toluene (selected components of JP-8) was used for the in vitro percutaneous absorption studies with excised pig ear skin and human skin. For in vivo studies, 250 microl of JP-8 or two of its components (toluene or nonane) was placed in a Hill top chamber(R) and affixed over the marked treatment area for 24 h. Transepidermal water loss (TEWL), skin capacitance (moisture content) and skin irritation (erythema and edema) were evaluated before treatment and at 1,2 and 24 h after removal of the patches. The components of JP-8 such as tridecane, nonane, naphthalene and toluene permeated significantly through pig ear skin and human skin and the permeation rates were found to be proportional to their composition in JP-8. The steady state flux values of tridecane across pig ear skin and human skin did not differ significantly (P>0.05). Though the steady state flux values of nonane, naphthalene and toluene were statistically different between porcine and human skin (P<0.01), the values were close considering the large variations usually observed in the percutaneous absorption studies. Application of toluene, nonane or JP-8 increased the TEWL, JP-8 being the highest (3.5 times at 24 h compared to baseline level). The skin moisture content decreased after the application of JP-8, though it was not significantly different (P>0.05) from the baseline level. JP-8 caused a moderate erythema and a moderate to severe edema. Though the edema decreased after 24 h, the degree of erythema remained about the same until 24 h. The skin irritation caused by JP-8 was greater than neat toluene or nonane. The TEWL data of toluene, nonane and JP-8 correlated well with the skin irritation data (erythema and edema). Exposure of JP-8, which contains hundreds of aliphatic and aromatic hydrocarbons, caused significant changes in the barrier function of the skin as indicated by an increase in TEWL and produced a significant erythema and edema in minipigs. Furthermore, the disruption of barrier function of skin, as indicated by increased TEWL after exposure to JP-8 might result in increased permeation of its own components and/or other chemicals exposed to skin. The present study provides further evidence that pig ear skin may be used as a model for predicting the rates of permeation of chemicals through human skin.  相似文献   

3.
JP-8 jet fuel has been reported to cause systemic and dermal toxicities in animal models and humans. There is a great potential for human exposure to JP-8. In this study, we determined percutaneous absorption and dermal toxicity of three components of JP-8 (i.e., xylene, heptane, and hexadecane) in vivo in weanling pigs. In vivo percutaneous absorption results suggest a greater absorption of hexadecane (0.43%) than xylene (0.17%) or heptane (0.14%) of the applied dose after 30 min exposure. Transepidermal water loss (TEWL) provides a robust method for assessing damage to the stratum corneum. Heptane showed greater increase in TEWL than the other two chemicals. No significant (p < 0.05) increase in temperature was observed at the chemically treated site than the control site. Heptane showed greater TEWL values and erythema score than other two chemicals (xylene and hexadecane). We did not observe any skin reactions or edema from these chemicals. Erythema was completely resolved after 24 h of the patch removal in case of xylene and hexadecane.  相似文献   

4.
Abstract

JP-8 jet fuel has been reported to cause systemic and dermal toxicities in animal models and humans. There is a great potential for human exposure to JP-8. In this study, we determined percutaneous absorption and dermal toxicity of three components of JP-8 (i.e., xylene, heptane, and hexadecane) in vivo in weanling pigs. In vivo percutaneous absorption results suggest a greater absorption of hexadecane (0.43%) than xylene (0.17%) or heptane (0.14%) of the applied dose after 30 min exposure. Transepidermal water loss (TEWL) provides a robust method for assessing damage to the stratum corneum. Heptane showed greater increase in TEWL than the other two chemicals. No significant (p<0.05) increase in temperature was observed at the chemically treated site than the control site. Heptane showed greater TEWL values and erythema score than other two chemicals (xylene and hexadecane). We did not observe any skin reactions or edema from these chemicals. Erythema was completely resolved after 24 h of the patch removal in case of xylene and hexadecane.  相似文献   

5.
In this study, we investigated the skin irritation, macroscopic and microscopic barrier alteration in vivo in rabbits from aliphatic and aromatic components of jet propellant-8 (JP-8) jet fuel. Macroscopic barrier properties were evaluated by measuring transepidermal water loss (TEWL), skin capacitance, and skin temperature; microscopic changes were observed by light microscopy. Draize visual scoring system was used to measure skin irritation. We found significant (P<0.05) increase in temperature at the site of all chemically saturated patches immediately after patch removal in comparison to the control site. Tridecane (TRI) produced a greater increase in temperature and capacitance at all time points than all the other components of JP-8. Both the aliphatic and aromatic components increased the TEWL at all time points. Tridecane produced greater increase in TEWL followed by naphthalene (NAP), 1-methylnaphthalene (1-MN), 2-metylnaphthalene (2-MN), tetradecane (TET), and dodecane (DOD). All of the above components of JP-8 caused moderate to severe erythema and edema, which were not resolved to the baseline even after 24 h of patch removal. Light microscopy revealed an increase in epidermal thickness (ET), and decrease in length and thickness of collagen fibers’ bundle by the above components of JP-8. These results suggest potential dermatotoxicity from the JP-8 components.  相似文献   

6.
Kanikkannan N  Locke BR  Singh M 《Toxicology》2002,175(1-3):35-47
Jet A and JP-8 are the major jet fuels used in civilian and military (US Air Force) flights, respectively. JP-8+100 is a new jet fuel recently introduced by US Air Force in some of its locations. The purpose of this study was to investigate the effects of dermal exposure of jet fuels (Jet A, JP-8, and JP-8+100) on the skin morphology, barrier function, moisture content, blood flow, and skin irritation (erythema and edema) in hairless rats. Jet fuels were applied by both occlusive and unocclusive methods. The skin of treated and control (untreated) sites were excised and analyzed by magnetic resonance imaging (MRI) (500 MHz, 11.7 Tesla). Unocclusive application of JP-8, Jet A, and JP-8+100 increased the transepidermal water loss (TEWL) gradually and the values at 120 h were significantly greater than the baseline value (P<0.05). Both occlusive and unocclusive application of jet fuels decreased the skin moisture content significantly (P<0.05). Unocclusive application of JP-8, Jet A, and JP-8+100 increased the skin blood flow, though the values returned to the baseline levels within 24 h. Occlusive application of jet fuels (8 h/day for 2 days) caused a substantial increase in the skin blood flow and the values at 48 h were about 6-fold greater than the baseline value. Occlusive application of jet fuels caused a moderate to severe erythema and a moderate edema. MRI was used to obtain proton images and water self-diffusion maps of hairless rat skin exposed to jet fuel. Exposure to JP-8 showed the largest difference from the control with regards to visual observations of the stratum corneum and hair follicles, while JP-8+100 appeared to affect the hair follicle region. The results of the present study demonstrate that exposure to jet fuels can disrupt the skin barrier function, cause skin irritation, and alter the skin structure (stratum corneum and viable epidermis) and MRI can be used as a tool to investigate the alterations in the skin morphology after exposure to toxic chemicals.  相似文献   

7.
The purpose of this study was to evaluate an in vitro EpiDerm human skin model (EPI-200) to study the irritation potential of jet fuels (JP-8 and JP-8+100). Parallel in vivo studies on hairless rats on the dermal irritancy of jet fuels were also conducted. Cytokines are an important part of an irritation and inflammatory cascade, which are expressed in upon dermal exposures of irritant chemicals even when there are no obvious visible marks of irritation on the skin. We have chosen two primary cytokines (IL-1alpha and TNF-1alpha) as markers of irritation response of jet fuels. Initially, the EPI-200 was treated with different quantities of JP-8 and JP-8+100 to determine quantities which did not cause significant cytotoxicity, as monitored using the MTT assay and paraffin embedded histological cross-sections. Volumes of 2.5-50 microl/tissue (approximately 4.0-78 microl/cm2) of JP-8 and JP-8+100 showed a dose dependent loss of tissue viability and morphological alterations of the tissue. At a quantity of 1.25 microl/tissue (approximately 2.0 microl/cm2), no significant change in tissue viability or morphology was observed for exposure time extending to 48 h. Nonetheless, this dose induced significant increase in IL-1alpha and TNF-alpha release versus non-treated controls after 24 and 48 h. In addition, IL-1alpha release for JP-8+100 was significantly higher than that observed for JP-8, but TNF-alpha release after 48 h exposure to these two jet fuels was the same. These findings parallel in vivo studies on hairless rats, which indicated higher irritation levels due to JP-8+100 versus JP-8. In vivo, transepidermal water loss (TEWL) and IL-1alpha expression levels followed the order JP-8+100 > JP-8 > control. Further, in vivo TNF-alpha levels for JP-8 and JP-8+100 were also elevated but not significantly different from one another. In aggregate, these findings indicate that EPI-200 tissue model can be utilized as an alternative to the use of animals in evaluating dermal irritation.  相似文献   

8.
JP-8 is the major jet fuel used by US Air Force. JP-8+100 is a new jet fuel recently introduced by the US Air Force, which contains JP-8 plus three performance additives [butylated hydroxytoluene (BHT), metal deactivator (MDA) and 8Q405]. The purpose of the present study was to investigate the percutaneous permeation of JP-8+100 across pig ear skin in vitro and to study the effect of JP-8+100 exposure on the skin barrier function, moisture content and irritation in Yucatan minipigs. The influence of performance additives on the permeation of JP-8 was studied by adding each additive individually to JP-8. The percutaneous permeation and skin irritation data obtained with JP-8+100 were compared with that of JP-8. JP-8+100 spiked with 5.0 microCi of radiolabeled [14C]tridecane, nonane, naphthalene or toluene (selected components of JP-8+100) was used for the in vitro percutaneous permeation studies. For skin irritation studies, 250 microl of JP-8+100 was placed in a Hill top chamber and affixed over the marked treatment area for 24 h. The components of JP-8+100 such as tridecane, nonane, naphthalene and toluene permeated readily through pig ear skin without any apparent lag time. Compared to JP-8, the permeation of tridecane, toluene and nonane from JP-8+100 was significantly lower (P<0.05). However, the permeation of naphthalene from JP-8+100 was significantly higher than from JP-8. When BHT was added to JP-8, the permeation of all four chemicals were significantly decreased (P<0.05). Though the addition of 8Q405 to JP-8 decreased the permeation of all four chemicals, the values were not significantly different (P>0.05) from that of JP-8. Addition of MDA did not show any significant change in the permeation of the selected chemicals from JP-8. Application of JP-8+100 increased the transepidermal water loss (TEWL) about three times compared to the baseline level. The skin moisture content decreased consistently after the application of JP-8+100, though it was not significantly different (P>0.05) from the baseline level. JP-8+100 caused a moderate erythema (score: 1.60) and a moderate to severe edema (score: 2.60). These results suggest that JP-8+100 produces significant changes in the barrier function of the skin and a local irritant effect upon occlusive dermal exposure. However there was no significant difference in the skin irritation data observed from JP-8 and JP-8+100.  相似文献   

9.
The effect of the solvent systems ethanol (EtOH), propylene glycol (PG) and combinations thereof was examined on the in vitro percutaneous absorption of the antithrombotic, aspirin, through porcine epidermis. Biophysical changes in the stratum corneum lipids were studied through the use of Fourier transform infrared (FTIR) spectroscopy. Macroscopic barrier properties of the epidermis were examined through the use of in vitro transepidermal water loss (TEWL). The flux of aspirin increased with increasing concentrations of EtOH in the solvent systems. The maximum flux of aspirin was achieved by 80% EtOH in combination with 20% PG beyond which (i.e. 100% EtOH) there was no increase in the flux. FTIR spectroscopic study was enacted in order to determine the biophysical properties of the stratum corneum when the solvents were applied. The FTIR spectra of the stratum corneum treated with 80% EtOH/20% PG showed a maximum decrease in absorbance for the asymmetric and symmetric C&z. sbnd;H peaks, which suggests a greater loss of the lipids in the stratum corneum layers. In vitro TEWL studies allowed an investigation into the macroscopic barrier integrity properties of the stratum corneum. The TEWL results indicated that each of the solvent systems significantly enhanced (P<0.05) in vitro TEWL in comparison to the control. In conclusion, 80% EtOH/20% PG enhanced the percutaneous absorption of aspirin by perturbing the macroscopic barrier integrity of the stratum corneum and through a loss of stratum corneum lipids. Copyright  相似文献   

10.
The effects of enhancers (5% terpenes; i.e., eugenol, limonene, and menthone) in combination with 50% propylene glycol in water (50% PG) on the in vitro percutaneous absorption of tamoxifen through the porcine epidermis, on biophysical changes in the stratum corneum (SC) lipids, on macroscopic barrier properties, and on binding of the drug to the SC were investigated. These enhancers in combination with 50% PG significantly increased (p<0.05) the permeability coefficient of tamoxifen in comparison with that of the control (50% PG in water). Fourier transform infrared spectroscopy (FT-IR) was employed to investigate the biophysical changes in the SC lipids. The FT-IR results showed that treatment of the SC with 5% terpenes/50% PG did not shift the asymmetric and symmetric C-H stretching absorbances peak positions to higher wavenumbers but resulted in a decrease in the peak heights and areas in comparison with the untreated SC. Treatment with menthone and limonene in combination with 50% PG significantly increased (p<0.05) the partition coefficient of tamoxifen in comparison with treatment with 50% PG alone. Also, exposure of the SC to 5% terpenes in combination with 50% PG significantly increased (p < 0.05) the in vitro transepidermal water loss (TEWL) in comparison with 50% PG alone. Thus, an enhancement by menthone, eugenol, and limonene in the permeability of the SC to tamoxifen is due to lipid extraction and macroscopic barrier perturbation. Moreover, the effective diffusion coefficient of tamoxifen through the epidermis was enhanced following the treatment with either 5% eugenol/50%PG or 5% limonene/50%PG compared with 50%PG alone.  相似文献   

11.
The goal of this work was to establish, using biophysical characterization, that porcine ear skin in vitro is a valid model for its human counterpart. Specifically, stratum corneum (SC) barrier function was evaluated during its progressive removal by adhesive tape-stripping using the techniques of transepidermal water loss (TEWL) and impedance spectroscopy. TEWL increased slowly at first and then more rapidly with the degree of SC impairment. In contrast, low-frequency skin impedance declined exponentially as a function of progressive SC removal. The methods provide complementary and correlated information about SC barrier function. Biophysical parameters, including the diffusivity and permeability coefficient of water across the SC, and the thickness of the barrier were determined from the TEWL data using Fick's first law of diffusion. Furthermore, an ionic partition coefficient-mobility product was estimated from the skin impedance measurements. Comparison of the results with those previously reported for human skin in vivo strongly supports the validity of the porcine membrane as an in vitro model.  相似文献   

12.
Previous studies in our laboratory have demonstrated that barrier creams, comprising perfluorinated polymers, are effective against the chemical warfare agent sulphur mustard (SM) when evaluated using human skin in vitro. The purpose of this follow-up study was to further evaluate three candidate (perfluorinated) barrier creams against SM (vapour) using the domestic white pig. The severity and progression of the resulting skin lesions were quantified daily for three weeks post-exposure using biophysical measurements of transepidermal water loss (TEWL) and skin reflectance spectroscopy (SRS). Skin biopsies obtained post-mortem were evaluated by light microscopy and additional skin samples were obtained from adjacent (unexposed) skin sites for a comparative in vitro skin absorption study. Samples of SM vapour within the dosing chambers were measured ex vivo to ascertain the exposure dose (Ct). The three creams were highly effective against SM in vivo (Ct approximately 5000 mg.min.m(-3)): After 3 weeks, barrier cream pre-treated sites were not significantly different from control (unexposed) skin when evaluated by TEWL, SRS or histology. In contrast, skin exposed to SM without pre-treatment showed evidence of persistent damage that was consistent with the slow healing time observed in humans. The amount of SM absorbed in vitro in untreated pig skin was similar to that required to cause comparable lesions in human skin (8-20 and 4-10 microg.cm(-2), respectively), further validating the use of pigs as a toxicologically-relevant dermal model for SM exposure.  相似文献   

13.
Fuel system maintenance usually requires direct, prolonged exposure to fuel. Thus, both military and commercial aircraft workers are at risk of dermal exposure and toxicity from JP-8 jet fuel. At present, there are no standards for U.S. Air Force personnel regarding dermal exposure to jet fuel. Hence, there are needs for data and approaches to understand the human hazard from dermal exposure to JP-8. In this study, we investigated the alteration in porcine skin at ultrastructural level, after a 24-h exposure to JP-8, with the help of transmission electron microscopy (TEM). Many ultrastructural modifications were noticed in the photomicrographs. Large-scale expansion in intercellular lipid domains of stratum corneum and disruption in its structural integrity; alteration in configuration of basal cells; rupture of hemidesmosomes and desmosomes; and diminished dendritic processes in Langerhans cells were observed. It is concluded that JP-8 exposure can cause alteration in skin anatomy, which may lead to dermal toxicity. Further studies are required to determine comparative damages incurred by individual components of JP-8.  相似文献   

14.
Topical exposure to jet fuel is a significant occupational hazard. Recent studies have focused on dermal absorption of fuel and its components, or alternatively, on the biochemical or immunotoxicological sequelae to exposure. Surprisingly, morphological and ultrastructural analyses have not been systematically conducted. Similarly, few studies have compared responses in skin to that of the primary target organ, the lung. The focus of the present investigation was 2-fold: first, to characterize the ultrastructural changes seen after topical exposure to moderate doses (335 or 67 microl/cm2) of jet fuels [Jet A, Jet Propellant (JP)-8, JP-8+100] for up to 4 days in pigs, and secondly, to determine if co-administration of substance P (SP) with JP-8 jet fuel in human epidermal keratinocyte cell cultures modulates toxicity as it does to pulmonary toxicity in laboratory animal studies. The primary change seen after exposure to all fuels was low-level inflammation accompanied by formation of lipid droplets in various skin layers, mitochondrial and nucleolar changes, cleft formation in the intercellular lipid lamellar bilayers, as well as disorganization in the stratum granulosum-stratum corneum interface. An increased number of Langerhans cells were also noted in jet fuel-treated skin. These changes suggest that the primary effect of jet fuel exposure is damage to the stratum corneum barrier. SP administration decreased the release of interleukin (IL)-8 normally seen in keratinocytes after JP-8 exposure, a response similar to that reported for SP's effect on JP-8 pulmonary toxicity. These studies provide a base upon which biochemical and immunological data collected in other model systems can be compared.  相似文献   

15.
Occupational and environmental exposures to jet fuel recently have become a source of public and regulatory concern. This study investigates the cutaneous toxicity of three fuels used in both civilian and military aircraft. Pigs, an accepted animal model for human skin, were exposed to low-dose (25 microl or 7.96 microl cm(-2)) or high-dose (335 microl or 67 microl cm(-2)) Jet A, JP-8 and JP-8 + 100 under occluded (Hill Top) chamber or cotton fabric) and non-occluded conditions for 5 h, 24 h and 5 days. To mimic occupational exposure, fuel-soaked fabric (high dose) was used. Erythema, edema, transepidermal water loss (TEWL) and epidermal thickness were quantified. High-dose fabric occluded sites had slight erythema at 5 h with increased erythema at 5 days. No erythema was noted in any of the occluded (Hill Top) or non-occluded sites at any of the time points. Morphological assessments depicted slight intracellular epidermal edema at all time points. An increase in change in TEWL (DeltaTEWL) was observed at the 5-h and 24-h fabric and Hill Top occluded treatments and a decrease at the 5-day fabric and Hill Top occluded sites. In all 5-day JP-8 + 100 fabric sites, intracorneal microabscesses filled with inflammatory cells were observed. Epidermal thickening was significant (P < 0.05) in all three jet fuels at the high-dose fabric sites, with JP-8 + 100 being the thickest. The epidermal rete peg depth increased significantly (P < 0.05) at 24 h and 5 days with Jet A, JP-8, and JP-8 + 100 in the fabric sites. No significant differences were noted in the 5-day non-occluded fabric and Hill Top occluded and non-occluded sites. Jet fuel JP-8 + 100 tended to have the greatest proliferative response. In conclusion, the high-dose fabric-soaked exposure at 5 days to Jet A, JP-8 and JP-8 + 100 fuels caused the greatest increase in cutaneous erythema, edema, epidermal thickness and rete peg depth compared with high-dose non-occluded or low-dose exposure under Hill Top occluded and non-occluded conditions.  相似文献   

16.
Applying military jet fuel (JP-8) to the skin of mice activates systemic immune suppression. In all of our previous experiments, JP-8 was applied to immunologically na?ve mice. The effect of jet fuels on established immune reactions, such as immunological memory, is unknown. The focus of the experiments presented here was to test the hypothesis that jet fuel exposure [both JP-8 and commercial jet fuel (Jet-A)] suppresses established immune reactions. Mice were immunized with the opportunistic fungal pathogen Candida albicans and, at different times after immunization (10 to 30 days), various doses of undiluted JP-8 or Jet-A were applied to their skin. Both the elicitation of delayed-type hypersensitivity (DTH) (mice challenged 10 days after immunization) and immunological memory (mice challenged 30 days after immunization) were significantly suppressed in a dose-dependent manner. Dermal exposure to either multiple small doses (50 microl over 4 days) or a single large dose (approximately 200-300 microl) of JP-8 and/or Jet-A suppressed DTH to C. albicans. The mechanism by which dermal application of JP-8 and Jet-A suppresses immunological memory involves the release of immune biologic response modifiers. Blocking the production of prostaglandin E(2) by a selective cyclooxygenase-2 inhibitor (SC 236) significantly reversed jet fuel-induced suppression of immunologic memory. These findings indicate, for the first time, that dermal exposure to commercial jet fuel (Jet-A) suppresses the immune response. In addition, the data reported here expand on previous findings by suggesting that jet fuel exposure may depress the protective effect of prior vaccination.  相似文献   

17.
The percutaneous absorption of topically applied jet fuel hydrocarbons (HC) through skin previously exposed to jet fuel has not been investigated, although this exposure scenario is the occupational norm. Pigs were exposed to JP-8 jet fuel-soaked cotton fabrics for 1 and 4 d with repeated daily exposures. Preexposed and unexposed skin was then dermatomed and placed in flow-through in vitro diffusion cells. Five cells with exposed skin and four cells with unexposed skin were dosed with a mixture of 14 different HC consisting of nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, ethyl benzene, o-xylene, trimethyl benzene (TMB), cyclohexyl benzene (CHB), naphthalene, and dimethyl naphthalene (DMN) in water + ethanol (50:50) as diluent. Another five cells containing only JP-8-exposed skin were dosed solely with diluent in order to determine the skin retention of jet fuel HC. The absorption parameters of flux, diffusivity, and permeability were calculated for the studied HC. The data indicated that there was a two-fold and four-fold increase in absorption of specific aromatic HC like ethyl benzene, o-xylene, and TMB through 1- and 4-dJP-8 preexposed skin, respectively. Similarly, dodecane and tridecane were absorbed more in 4-d than 1-dJP-8 preexposed skin experiments. The absorption of naphthalene and DMN was 1.5 times greater than the controls in both 1- and 4-d preexposures. CHB, naphthalene, and DMN had significant persistent skin retention in 4-d preexposures as compared to 1-d exposures that might leave skin capable of further absorption several days postexposure. The possible mechanism of an increase in HC absorption in fuel preexposed skin may be via lipid extraction from the stratum corneum as indicated by Fourier transform infrared (FTIR) spectroscopy. This study suggests that the preexposure of skin to jet fuel enhances the subsequent in vitro percutaneous absorption of HC, so single-dose absorption data for jet fuel HC from naive skin may not be optimal to predict the toxic potential for repeated exposures. For certain compounds, persistent absorption may occur days after the initial exposure.  相似文献   

18.
Chronic exposure to JP-8 jet fuel induces lung toxicity, adverse neurological effects and some liver and kidney dysfunction. In addition, inhalation of JP-8 induces immune suppression. Besides the lung, the other major route of JP-8 exposure is via the skin. In this study we tested the hypothesis that dermal exposure to JP-8 is immune suppressive. JP-8 was applied to the skin of adult female C3H/HeN mice and various immune parameters were examined. Dermal exposure to JP-8, either multiple small exposures (50 microl for 5 days) or a single large dose (250-300 microl) resulted in immune suppression. The induction of contact hypersensitivity was impaired in a dose-dependent manner regardless of whether the contact allergen was applied directly to the JP-8-treated skin or at a distant un-treated site. In addition, the generation of a classic delayed-type hypersensitivity reaction to a bacterial antigen (Borellia burgdorferi) injected into the subcutaneous space was suppressed by dermal application of JP-8 at a distant site. The ability of splenic T lymphocytes from JP-8-treated mice to proliferate in response to plate-bound monoclonal anti-CD3 was also significantly suppressed. Interleukin-10, a cytokine with potent immune suppressive activity, was found in the serum of JP-8-treated mice, suggesting that the mechanism of systemic immune suppression may involve the upregulation of cytokine release by JP-8. These findings confirm the immunosuppressive effects of JP-8 and demonstrate that dermal exposure to JP-8 is immunotoxic.  相似文献   

19.
Using in vitro and in vivo techniques, terpenes were evaluated as enhancers to improve the skin permeation of therapeutically active agents derived from tea, including tea catechins and theophylline. The in vitro permeation was determined by Franz cells. The skin deposition and subcutaneous amounts of drugs sampled by microdialysis were evaluated in vivo. Terpenes varied in their activities of enhancing drug permeation. The oxygen-containing terpenes were effective enhancers of drug permeation, whereas the hydrocarbon terpenes were much less efficient. Oxygen-containing terpenes with a bicyclic structure had reduced enhancing activity. Terpenes enhanced tea catechin permeation to a much greater degree than they did theophylline. The isomers of (+)-catechin and (-)-epicatechin showed different permeation behaviors when incorporated with terpenes. In the in vivo status, terpenes promoted the skin uptake but not the subsequent subcutaneous concentration of (-)-epigallocatechin gallate (EGCG). Both increased skin/vehicle partitioning and lipid bilayer disruption of the stratum corneum (SC) contributed the enhancing mechanisms of terpenes for topically applied tea catechins and theophylline based on the experimental results from the partition coefficient and transepidermal water loss (TEWL). alpha-Terpineol was found to be the best enhancer for catechins and theophylline. The high enhancement by alpha-terpineol was due to macroscopic perturbation of the SC and the biological reaction in viable skin as evaluated by TEWL and colorimetry.  相似文献   

20.
Bicelles are discoidal aggregates formed by a flat dimyristoyl-glycero-phosphocholine (DMPC) bilayer, stabilized by a rim of dihexanoyl-glycero-phosphocholine (DHPC) in water. Given the structure, composition and the dimensions of these aggregates around 10-50 nm diameter, their use for topical applications is a promising strategy. This work evaluates the effect of DMPC/DHPC bicelles with molar ratio (2/1) on intact skin. Biophysical properties of the skin, such as transepidermal water loss (TEWL), elasticity, skin capacitance and irritation were measured in healthy skin in vivo. To study the effect of the bicellar systems on the microstructure of the stratum corneum (SC) in vitro, pieces of native tissue were treated with the aforementioned bicellar system and evaluated by freeze substitution applied to transmission electron microscopy (FSTEM). Our results show that bicelles increase the TEWL, the skin elastic parameters and, decrease skin hydration without promoting local signs of irritation and without affecting the SC lipid microstructure. Thus, a permeabilizing effect of bicelles on the skin takes place possibly due to the changes in the phase behaviour of the SC lipids by effect of phospholipids from bicelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号