首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A subset of patients harboring mutations in the dystrophin gene suffer from X-linked dilated cardiomyopathy (XLCM), a familial heart disease that is not accompanied by any clinical signs of skeletal muscle myopathy. As the muscle (M) isoform of dystrophin is not expressed in these patients, the absence of skeletal muscle symptoms has been attributed to expression of the brain (B) and cerebellar Purkinje (CP) isoforms of dystrophin in skeletal, but not cardiac, muscles of XLCM patients. The compensatory mechanism of dystrophin B and CP promoter upregulation is not known but it has been suggested that the dystrophin muscle enhancer from intron 1, DME-1, may be important in this activity. Previous studies have shown that the presence of the DME-1 is essential for a significant increase in dystrophin B and CP promoter activity in skeletal muscle cells in culture. Here, we demonstrate that the mouse dystrophin CP promoter drives expression of a lacZ reporter gene specifically to the cerebellar Purkinje cell layer but not to skeletal or cardiac muscle of transgenic mice. However, if the mouse counterpart of DME-1 is present in the transgene construct, the dystrophin CP promoter is now activated in skeletal muscle, but not in cardiac muscle. Our findings provide in vivo evidence for the importance of the dystrophin muscle enhancer sequences in activating the dystrophin CP promoter in skeletal muscle. Furthermore, they provide support for the model in which muscle enhancers, like DME-1, activate the dystrophin B and CP promoters in skeletal muscle, but not in cardiac muscle, of XLCM patients.  相似文献   

2.
3.
4.
5.
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused, in most cases, by the complete absence of the 427 kDa cytoskeletal protein, dystrophin. There is no effective treatment, and affected individuals die from respiratory failure and cardiomyopathy by age 30. Here, we investigated whether cardiomyopathy could be prevented in animal models of DMD by increasing diaphragm utrophin or dystrophin expression and thereby restoring diaphragm function. In a transgenic mdx mouse, where utrophin was over expressed in the skeletal muscle and the diaphragm, but not in the heart, we found cardiac function, specifically right and left ventricular ejection fraction as measured using in vivo magnetic resonance imaging, was restored to wild-type levels. In mdx mice treated with a peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) that resulted in high levels of dystrophin restoration in the skeletal muscle and the diaphragm only, cardiac function was also restored to wild-type levels. In dystrophin/utrophin-deficient double-knockout (dKO) mice, a more severely affected animal model of DMD, treatment with a PPMO again produced high levels of dystrophin only in the skeletal muscle and the diaphragm, and once more restored cardiac function to wild-type levels. In the dKO mouse, there was no difference in heart function between treatment of the diaphragm plus the heart and treatment of the diaphragm alone. Restoration of diaphragm and other respiratory muscle function, irrespective of the method used, was sufficient to prevent cardiomyopathy in dystrophic mice. This novel mechanism of treating respiratory muscles to prevent cardiomyopathy in dystrophic mice warrants further investigation for its implications on the need to directly treat the heart in DMD.  相似文献   

6.
X-linked dilated cardiomyopathy (XLDC) is a familial heart disease presenting in young males as a rapidly progressive congestive heart failure, without clinical signs of skeletal myopathy. This condition has recently been linked to the dystrophin gene in some families and deletions encompassing the genomic region coding for the first muscle exon have been detected. In order to identify the defect responsible for this disease at the molecular level and to understand the reasons for the selective heart involvement, a family with a severe form of XLDC was studied. In the affected members, no deletions of the dystrophin gene were observed. Analysis of the muscle promoter, first exon and intron regions revealed the presence of a single point mutation at the first exon-intron boundary, inactivating the universally conserved 5' splice site consensus sequence of the first intron. This mutation introduced a new restriction site for MseI, which cosegregates with the disease in the analyzed family. Expression of the major dystrophin mRNA isoforms (from the muscle-, brain- and Purkinje cell-promoters) was completely abolished in the myocardium, while the brain- and Purkinje cell- (but not the muscle-) isoforms were detectable in the skeletal muscle. Immunocytochemical studies with anti- dystrophin antibodies showed that the protein was reduced in quantity but normally distributed in the skeletal muscle, while it was undetectable in the cardiac muscle. These findings indicate that expression of the muscle dystrophin isoform is critical for myocardial function and suggest that selective heart involvement in dystrophin- linked dilated cardiomyopathy is related to the absence, in the heart, of a compensatory expression of dystrophin from alternative promoters.   相似文献   

7.
8.
9.
10.
X-linked dilated cardiomyopathy (XLDC) is a dystrophinopathy characterized by severe cardiomyopathy with no skeletal muscle involvement. Several XLDC patients have been described with mutations that abolish dystrophin muscle (M) isoform expression. The absence of skeletal muscle degeneration normally associated with loss of dystrophin function was shown to be due to increased expression of brain (B) and cerebellar Purkinje (CP) isoforms of the gene exclusively in the skeletal muscle of these patients. This suggested that the B and CP promoters have an inherent capacity to function in skeletal muscle or that they are up-regulated by a skeletal muscle-specific enhancer unaffected by the mutations in these patients. In this work we have analyzed the deletion breakpoints of two XLDC patients with deletions removing the M promoter and exon 1, but not affecting the B and CP promoters. Despite the presence of several muscle-specific regulatory motifs, the B and CP promoters were found to be essentially inactive in muscle cell lines and primary cultures. As dystrophin muscle enhancer 1 (DME1), the only known muscle-specific enhancer within the dystrophin gene, is preserved in these patients, we tested its ability to up-regulate the B and CP promoters in muscle cells. B and CP promoter activity was significantly increased in the presence of DME1, and more importantly, activation was observed exclusively in cells presenting a skeletal muscle phenotype. These results point to a role for DME1 in the induction of B and CP isoform expression in the skeletal muscle of XLDC patients defective for M isoform expression.  相似文献   

11.
For most experimental and therapeutic applications of gene transfer, regulation of the timing and level of gene expression is preferable to constitutive gene expression. Among the systems that have been developed for pharmacologically controlled gene expression in mammalian cells, the bacterial tetracycline (tet)-responsive system has the advantage that it is dependent on a drug (tet) that is both highly specific and non-toxic. The tet-responsive system has been previously used to modulate expression of cell cycle regulatory proteins in cultured cells, reporter genes in plants and transgenic mice and reporter genes directly injected into the heart. Here we show that orally or parenterally administered tet regulates expression of tet-responsive plasmids injected directly into mouse skeletal muscle. Reporter gene expression was suppressed by two orders of magnitude in the presence of tet, and that suppression was reversed when tet was withdrawn. These data show that skeletal muscle offers an accessible and well characterized target tissue for tet-controlled expression of genesin vivo, suggesting applications to developmental studies and gene therapy.  相似文献   

12.
13.
14.
A promising approach for treating Duchenne muscular dystrophy (DMD) is by autologous cell transplantation of myogenic stem cells transduced with a therapeutic expression cassette. Development of this method has been hampered by a low frequency of cellular engraftment, the difficulty of tracing transplanted cells, the rapid loss of autologous cells carrying marker genes that are unable to halt muscle necrosis and the difficulty of stable transfer of a large dystrophin gene into myogenic stem cells. We engineered a 5.7 kb miniDys-GFP fusion gene by replacing the dystrophin C-terminal domain (DeltaCT) with an eGFP coding sequence and removing much of the dystrophin central rod domain (DeltaH2-R19). In a transgenic mdx(4Cv) mouse expressing the miniDys-GFP fusion protein under the control of a skeletal muscle-specific promoter, the green fusion protein localized on the sarcolemma, where it assembled the dystrophin-glycoprotein complex and completely prevented the development of dystrophy in transgenic mdx(4Cv) muscles. When myogenic and other stem cells from these mice were transplanted into mdx(4Cv) recipients, donor cells can be readily identified in skeletal muscle by direct green fluorescence or by using antibodies against GFP or dystrophin. In mdx(4Cv) mice reconstituted with bone marrow cells from the transgenic mice, we monitored engraftment in various muscle groups and found the number of miniDys-GFP(+) fibers increased with time. We suggest that these transgenic mdx(4Cv) mice are highly useful for developing autologous cell therapies for DMD.  相似文献   

15.
16.
Adenosine deaminase (ADA) is expressed ubiquitously by diverse mammalian cells and tissues but at levels that vary according to tissue and species. In humans, the thymus exhibits levels of the enzyme up to 100-fold higher than most other tissues. Using transgenic mice, we identified human ADA gene regulatory domains. Up to 3.7 kb of 5'-flanking and first exon DNA from the human ADA gene failed to promote the expression of a chloramphenicol acetyl transferase (CAT) reporter gene in an efficient, reproducible, or tissue-appropriate manner in transgenic mice. However, when 12.8 kb of DNA from the first intron of the human ADA gene was placed 3' of CAT-coding and -processing sequences, transgenic mice reproducibly expressed CAT activity in most tissues, with profoundly high levels in the thymus. DNase I hypersensitivity studies demonstrated that among transgenic mouse tissues, human thymus, and a variety of human cell lines, a region of the intron 4-10 kb downstream of the first exon exhibited an array of hypersensitive sites that varied according to tissue and cell type. Deletion of this region from the gene construction eliminated high-level expression in transgenic mice. In transfection-transient expression assays, the 12.8-kb intron fragment exhibited enhancer activity in several cell types. A 1.3-kb fragment encompassing two of the hypersensitive sites exhibited some of these activities. The results of these studies suggest that the diverse pattern of human ADA gene expression is determined, in part, by a cluster of cis-regulatory elements contained within its large first intron.  相似文献   

17.
To identify developmental steps leading to adult skeletal muscle fiber-type-specific gene expression, we carried out transgenic mouse studies of the IRE enhancer of the quail TnIfast gene. Histochemical analysis of IRE/herpesvirus tk promoter/beta-galactosidase reporter transgene expression in adult muscle directly demonstrated IRE-driven fast vs. slow fiber-type specificity, and IIB>IIX>IIA differential expression among the fast fiber types: patterns similar to those of native-promoter TnIfast constructs. These tissue- and cell-type specificities are autonomous to the IRE and do not depend on interactions with a muscle gene promoter. Developmental studies showed that the adult pattern of IRE-driven transgene expression emerges in three steps: (1) activation during the formation of primary embryonic (presumptive slow) muscle fibers; (2) activation, to markedly higher levels, during formation of secondary (presumptive fast) fibers, and (3) differential augmentation of expression during early postnatal maturation of the IIB, IIX, IIA fast fiber types. These results provide insight into the roles of gene activation and gene repression mechanisms in fiber-type specificity and can account for apparently disparate results obtained in previous studies of TnI isoform expression in development. Each of the three IRE-driven developmental steps is spatiotemporally associated with a different major regulatory event at the fast myosin heavy chain gene cluster, suggesting that diverse muscle gene families respond to common, or tightly integrated, regulatory signals during multiple steps of muscle fiber differentiation.  相似文献   

18.
Gene therapy holds great promise for curing Duchenne muscular dystrophy (DMD), the most common fatal inherited childhood muscle disease. Success of DMD gene therapy depends upon functional improvement in both skeletal and cardiac muscle. Numerous gene transfer studies have been performed to correct skeletal muscle pathology, yet little is known about cardiomyopathy gene therapy. Since complete transduction of the entire heart is an impractical goal, it becomes critical to determine the minimal level of correction needed for successful DMD cardiomyopathy gene therapy. To address this question, we generated heterozygous mice that persistently expressed the full-length dystrophin gene in 50% of the cardiomyocytes of mdx mice, a model for DMD. We questioned whether dystrophin expression in half of the heart cells was sufficient to prevent stress-induced cardiomyopathy. Heart function of mdx mouse is normal in the absence of external stress. To determine the therapeutic effect, we challenged 3-month-old mice with beta-isoproterenol. Cardiomyocyte sarcolemma integrity was significantly impaired in mdx but not in heterozygous and C57Bl/10 mice. Importantly, in vivo closed-chest hemodynamic assays revealed normal left ventricular function in beta-isoproterenol-stimulated heterozygous mice. Since the expression profile in the heterozygous mice mimicked viral transduction, we conclude that gene therapy correction in 50% of the heart cells may be sufficient to treat cardiomyopathy in mdx mice. This finding may also apply to the gene therapy of other inherited cardiomyopathies.  相似文献   

19.
Caveolins are structural protein components of caveolar membrane domains. Caveolin-3, a muscle-specific member of the caveolin family, is expressed in skeletal muscle tissue and in the heart. The multiple roles that caveolin-3 plays in cellular physiology are becoming more apparent. We have shown that lack of caveolin-3 expression in skeletal muscle resembles limb-girdle muscular dystrophy-1C. In contrast, we have demonstrated that overexpression of caveolin-3 in skeletal muscle tissue promotes defects similar to those seen in Duchenne muscular dystrophy (DMD). Thus, a tight regulation of caveolin-3 expression is fundamental for normal muscle functions. Since caveolin-3 is also endogenously expressed in cardiac myocytes, and cardiomyopathies are observed in DMD patients, we looked at the effects of overexpression of caveolin-3 on cardiac structure and function by characterizing caveolin-3 transgenic mice. Our results indicate that overexpression of caveolin-3 causes severe cardiac tissue degeneration, fibrosis and a reduction in cardiac functions. We also show that dystrophin and its associated glycoproteins are down-regulated in caveolin-3 transgenic heart. In addition, we demonstrate that the activity of nitric oxide synthase (NOS) is down-regulated by high levels of caveolin-3 in the heart. Taken together, these results indicate that overexpression of caveolin-3 is sufficient to induce severe cardiomyopathy. In addition, these findings suggest that caveolin-3 transgenic mice may represent a valid mouse model for studying the molecular mechanisms underlying cardiomyopathies associated with Duchenne muscular dystrophy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号