首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bc1-2 protein is a potent anti-apoptotic protein that inhibits a mitochondria-operated pathway of apoptosis in many cells. DNA damaging agents and death receptor ligands can activate this mitochondrial apoptotic mechanism. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been suggested to escape from the inhibitory action of Bc1-2 protein. We show that in human breast tumor MCF-7 cells, TRAIL induced a mitochondrial pathway of apoptosis that involved cytochrome c release from mitochondria and activation of caspase 9. The DNA damaging drug doxorubicin also activated this mitochondria-regulated mechanism of apoptosis, which was inhibited in Bc1-2-overexpressing cells. We also demonstrate that in MCF-7 cells Bc1-2 might confer resistance to TRAIL-induced apoptosis, depending on the expression levels of the anti-apoptotic protein. These results indicate that enhanced expression of Bc1-2 in tumor cells can render these cells less sensitive not only to chemotherapeutic drugs but also to TRAIL.  相似文献   

2.
Shi RX  Ong CN  Shen HM 《Cancer research》2005,65(17):7815-7823
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is an important member of the TNF superfamily with great potential in cancer therapy. Luteolin is a dietary flavonoid commonly found in some medicinal plants. Here we found that pretreatment with a noncytotoxic concentration of luteolin significantly sensitized TRAIL-induced apoptosis in both TRAIL-sensitive (HeLa) and TRAIL-resistant cancer cells (CNE1, HT29, and HepG2). Such sensitization is achieved through enhanced caspase-8 activation and caspase-3 maturation. Further, the protein level of X-linked inhibitor of apoptosis protein (XIAP) was markedly reduced in cells treated with luteolin and TRAIL, and ectopic expression of XIAP protected against cell death induced by luteolin and TRAIL, showing that luteolin sensitizes TRAIL-induced apoptosis through down-regulation of XIAP. In search of the molecular mechanism responsible for XIAP down-regulation, we found that luteolin and TRAIL promoted XIAP ubiquitination and proteasomal degradation. Next, we showed that protein kinase C (PKC) activation prevented cell death induced by luteolin and TRAIL via suppression of XIAP down-regulation. Moreover, luteolin inhibited PKC activity, and bisindolylmaleimide I, a general PKC inhibitor, simulated luteolin in sensitizing TRAIL-induced apoptosis. Taken together, these results present a novel anticancer effect of luteolin and support its potential application in cancer therapy in combination with TRAIL. In addition, our data reveal a new function of PKC in cell death: PKC activation stabilizes XIAP and thus suppresses TRAIL-induced apoptosis.  相似文献   

3.
Shankar E  Sivaprasad U  Basu A 《Oncogene》2008,27(28):3957-3966
Protein kinase C epsilon (PKC epsilon ) acts as an antiapoptotic protein and inhibits tumor necrosis factor-alpha (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in MCF-7 breast cancer cells. Members of the TNF receptor superfamily trigger apoptosis independent of the tumor suppressor protein p53, which primarily affects DNA damage-induced apoptosis. We have previously shown that PKC epsilon acts upstream of Akt to inhibit receptor-initiated cell death. Since Akt can regulate p53, we have examined the involvement of p53 in PKC epsilon-mediated TRAIL resistance. Overexpression of PKC epsilon in MCF-7 cells (MCF-7/PKC epsilon ) caused a decrease in p53 and an increase in human homolog of murine double minute 2 (Hdm2) and phospho-Hdm2. Depletion of p53 by siRNA attenuated, whereas depletion of Hdm2 enhanced TRAIL-mediated apoptosis. Knockdown of Akt decreased Hdm2 phosphorylation, increased p53 level and potentiated TRAIL-induced cell death. Depletion of epsilon from MCF-7 cells caused an increase in p53, whereas knockdown of p53 caused a decrease in Bid mRNA. Depletion of Akt from MCF-7/PKC epsilon cells resulted in an increase in p53 and Bid. These results suggest that PKC epsilon mediates TRAIL resistance by Akt-mediated phosphorylation of Hdm2 resulting in suppression of p53 expression and downregulation of Bid in MCF-7 breast cancer cells.  相似文献   

4.
Sun BK  Kim JH  Nguyen HN  Oh S  Kim SY  Choi S  Choi HJ  Lee YJ  Song JJ 《Oncology reports》2011,25(2):537-544
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to activate mitogen-activated protein kinases (MAPKs) depending on caspase and mammalian sterile 20-like kinase 1 activations. However, the upstream molecule of MAPKs has not yet been identified. The mitogen-activated protein kinase kinase 1 (MEKK1) and the apoptosis signal-regulating kinase 1 (ASK1) are considered to be possible candidates for the action of MAPKKKs induced by TRAIL and the possibility of reactive oxygen species involvement has also been investigated. We found that MEKK1/MEKK4 as opposed to ASK1, are responsible for TRAIL-induced c-Jun NH2-terminal kinase (JNK) or p38 activation, and that their catalytic activity is repressed by the caspase-8 inhibitor, suggesting that the caspase-8 activation induced by TRAIL is indispensible for MEKK activation. The 14-3-3 θ was also shown to interact with and to dissociate from MEKK1 by TRAIL treatment, thus implicating the 14-3-3 protein as a negative regulator of MEKK1 activation. Taken together, we show herein that the upstream molecule of the TRAIL-induced MAPK activation is MEKK, as opposed to ASK1, via the mediation of its signal through JNK/p38 in a caspase-8-dependent manner.  相似文献   

5.
The effects of reactive oxygen species (ROS) on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in solid cancers have yet to be clearly defined. In this study, we found that the classic uncoupler of oxidative phosphorylation, carbonyl cyanide m-chlorophenylhydrazone (CCCP), induced a reduction in DeltaPsim and generation of ROS. This uncoupling effect enhanced TRAIL-induced apoptosis in TRAIL-resistant human colon carcinoma cell lines (RKO, HT29, and HCT8). Sensitization was inhibited by benzyloxycarbonyl-valine-alanine-aspartate fluoromethylketone, indicating the requirement for caspase activation. CCCP per se did not induce apoptosis or release of proapoptotic factors from mitochondria. Generation of ROS by CCCP was responsible for TRAIL-induced Bax and caspase activation because scavenging ROS completely abrogated apical caspase-8 activation and further downstream events leading to cell death. Overexpression of Bcl-2 did not prevent the initial loss of DeltaPsim and ROS generation following CCCP treatment, but did prevent cell death following TRAIL and CCCP exposure. Uncoupling of mitochondria also facilitated TRAIL-induced release of proapoptotic factors. X-linked inhibitor of apoptosis overexpression abrogated TRAIL-induced apoptosis in the presence of CCCP and decreased initiator procaspase-8 processing, indicating that additional processing of caspase-8 required initiation of a mitochondrial amplification loop via effector caspases. Of interest, depletion of caspase-9 in RKO cells did not protect cells from TRAIL/CCCP-induced apoptosis, indicating that apoptosis occurred via a caspase-9-independent pathway. Data suggest that in the presence of mitochondrial-derived ROS, TRAIL induced mitochondrial release of Smac/DIABLO and inactivation of X-linked inhibitor of apoptosis through caspase-9-independent activation of caspase 3.  相似文献   

6.
Heat stress may enhance the effect of apoptosis-inducing agents in resistant tumor cells. One such agent is the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which has attracted intense interest for its ability to induce apoptosis in tumors without affecting nonmalignant cells. We therefore tested whether heat stress potentiates TRAIL-induced apoptosis in mesothelioma cells, its cell type being resistant to TRAIL alone. We found that heat stress enhanced the apoptosis caused by TRAIL but not by chemotherapy. To explain this potentiation, we found that heat stress decreased Akt phosphorylation via the dissociation of heat shock protein 90 (Hsp90) from its client protein 3-phosphoinositide-dependent kinase 1 (PDK-1), a major Akt kinase. The role of Hsp90 and the Akt pathway was confirmed by showing that inhibitors of Hsp90 and the phosphatidyilinositol-3 kinase/Akt pathway reproduced the effect of heat stress on TRAIL-induced apoptosis and that the effect of inhibiting Hsp90 on TRAIL-induced apoptosis could be overcome by activating the Akt pathway with a constitutively active construct of the Akt kinase PDK-1. The effect of heat stress involved multiple steps of the apoptotic machinery. Heat stress potentiated the death receptor pathway, as shown by an increase in TRAIL-induced caspase 8 cleavage. Nonetheless, knockdown of Bid, the main intermediary molecule from the death receptor pathway to the mitochondria, inhibited the effect of heat stress, showing that mitochondrial amplification was required for potentiation by heat stress. In summary, these results support the novel concept that heat stress inhibits the Akt pathway by dissociating PDK-1 from its chaperone Hsp90, leading to potentiation of TRAIL-induced apoptosis in resistant malignant cells.  相似文献   

7.
Zou W  Liu X  Yue P  Zhou Z  Sporn MB  Lotan R  Khuri FR  Sun SY 《Cancer research》2004,64(20):7570-7578
Death receptor (DR) 4 or 5, on binding to its ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), triggers apoptosis via activating the caspase-8-mediated caspase cascade. Certain anticancer drugs up-regulate the expression of these receptors and thereby induce apoptosis or enhance TRAIL-induced apoptosis. In this study, we explored the ability of methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me) to activate the extrinsic DR-mediated apoptotic pathway in human lung cancer cells. We found that CDDO-Me not only activated caspase-8 but also induced expression of DRs, particularly DR5, in a p53-independent mechanism. Correspondingly, CDDO-Me augmented TRAIL-induced apoptosis in these cells regardless of p53 status as evidenced by enhanced DNA fragmentation and activation of caspase cascades, suggesting that CDDO-Me-induced DRs are functionally active. Moreover, silencing of DR5 expression using small interfering RNA suppressed apoptosis induced by CDDO-Me alone or by combination of CDDO-Me and TRAIL, indicating that DR5 up-regulation is required for induction of apoptosis by CDDO-Me and for enhancement of TRAIL-induced apoptosis by CDDO-Me. CDDO-Me rapidly activated c-Jun NH(2)-terminal kinase (JNK) before DR up-regulation and caspase-8 activation. Moreover, application of the JNK-specific inhibitor SP600125 blocked CDDO-Me-induced increases in JNK activation, DR up-regulation, caspase-8 activation, and DNA fragmentation. These results show that activation of JNK pathway results in CDDO-Me-induced DR up-regulation, caspase-8 activation, and apoptosis. Collectively, we conclude that CDDO-Me induces apoptosis via the JNK-mediated DR up-regulation in human lung cancer cells.  相似文献   

8.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor family that induces apoptosis in cancer cells. However, gastric cancer cells are insensitive to TRAIL. In the present study, we show that pretreatment with IFN-α enhanced TRAIL-induced apoptosis of gastric cancer MGC803 cells. IFN-α up-regulated death receptor 5 (DR5) expression and down-regulated survivin expression. Furthermore, extracellular-regulated protein kinase (ERK1/2) activation was induced by IFN-α, and a combination of IFN-α and TRAIL led to further activation of ERK1/2. Inhibition of the MAPK/ERK signaling pathway partially reversed apoptosis, as well as the expression patterns of DR5 and survivin. Moreover, the expression of the c-casitas B-lineage lymphoma (c-Cbl) family was down-regulated by IFN-α. Transfection of c-Cbl suppressed IFN-α-induced ERK activation. These results indicate that IFN-α enhances TRAIL-induced apoptosis in gastric cancer cells at least partially via downregulation of c-Cbl, and subsequent up-regulation of the MAPK/ERK pathway.  相似文献   

9.
The cyclin-dependent kinase inhibitor flavopiridol is undergoing clinical trials as an antitumor drug. We show here that pretreatment of different human breast cancer cell lines with flavopiridol facilitates tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. In breast tumor cells, apoptosis induction by TRAIL is blocked at the level of apical caspase-8 activation. Flavopiridol treatment enhances TRAIL-induced formation of death-inducing signaling complex and early processing of procaspase-8. Subsequently, a TRAIL-induced, mitochondria-operated pathway of apoptosis is activated in cells treated with flavopiridol. Down-regulation of cellular FLICE-inhibitory proteins (c-FLIP; c-FLIP(L) and c-FLIP(S)) is observed on flavopiridol treatment. c-FLIP loss and apoptosis sensitization by flavopiridol are both prevented in cells treated with an inhibitor of the ubiquitin-proteasome system. Furthermore, targeting c-FLIP directly with small interfering RNA oligonucleotides also sensitizes various human breast tumor cell lines to TRAIL-induced apoptosis. Our results indicate that flavopiridol sensitizes breast cancer cells to TRAIL-induced apoptosis by facilitating early events in the apoptotic pathway, and this combination treatment could be regarded as a potential therapeutic tool against breast tumors.  相似文献   

10.
Suliman A  Lam A  Datta R  Srivastava RK 《Oncogene》2001,20(17):2122-2133
Tumor necrosis (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family of cytokines that promotes apoptosis. TRAIL induces apoptosis via death receptors (DR4 and DR5) in a wide variety of tumor cells but not in normal cells. The objectives of this study are to investigate the intracellular mechanisms by which TRAIL induces apoptosis. The death receptor Fas, upon ligand binding, trimerizes and recruits the adaptor protein FADD through the cytoplasmic death domain of Fas. FADD then binds and activates procaspase-8. It is unclear whether FADD is required for TRAIL-induced apoptosis. Here we show that the signaling complex of DR4/DR5 is assembled in response to TRAIL binding. FADD and caspase-8, but not caspase-10, are recruited to the receptor, and cells deficient in either FADD or caspase-8 blocked TRAIL-induced apoptosis. In addition, TRAIL initiates the activation of caspases, the loss of mitochondrial transmembrane potential (Deltapsi(m)), the cleavage of BID, and the redistribution of mitochondrial cytochrome c. Treatment of Jurkat cells with cyclosporin A delayed TRAIL-induced Deltapsi(m), caspase-3 activation and apoptosis. Similarly, Overexpression of Bcl-2 or Bcl-X(L) delayed, but did not inhibit, TRAIL-induced Deltapsi(m) and apoptosis. In contrast, XIAP, cowpox virus CrmA and baculovirus p35 inhibited TRAIL-induced apoptosis. These data suggest that death receptors (DR4 and DR5) and Fas receptors induced apoptosis through identical signaling pathway, and TRAIL-induced apoptosis via both mitochondrial-dependent and -independent pathways.  相似文献   

11.
Neuroblastoma is the most common solid extracranial cancer form in childhood with an etiology that is mostly unknown. Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been proposed as a promising future anticancer drug candidate, highly malignant neuroblastoma has been reported to acquire TRAIL resistance by mechanisms that are poorly understood. Here, we show by western blot analysis, and live cell imaging using anchored FRET sensors, that the resistance to TRAIL-induced apoptosis in human neuroblastoma SK-N-AS cells depends on an incomplete processing of procaspase-3, generating an immature and catalytically inactive 21?kDa fragment. We have previously shown that the naturally occurring compound curcumin can sensitize SK-N-AS cells to TRAIL. In the present study, we show that curcumin also has a similar effect on human neuroblastoma SHEP1 cells. Furthermore, we show that curcumin and TRAIL co-treatment induces complete maturation and activation of caspase-3 in both cell lines. The mechanisms behind this effect seem to be dependent on protein kinase C (PKC), since inhibition of PKC using bisindolylmaleimide XI, could also sensitize these cells to TRAIL through a similar effect on caspase-3 activation. Moreover, TRAIL co-treatment with bisindolylmaleimide XI or curcumin resulted in down-regulation of X-linked inhibitor of apoptosis protein. In conclusion, our study shows that PKC can be involved in TRAIL resistance in human neuroblastoma cells by preventing caspase-3 maturation.  相似文献   

12.
Zhang XD  Borrow JM  Zhang XY  Nguyen T  Hersey P 《Oncogene》2003,22(19):2869-2881
We have previously shown that Smac/DIABLO release from mitochondria appears to be the principal pathway by which TRAIL induces apoptosis of human melanoma. We report that TRAIL-induced release of Smac/DIABLO appears to be downregulated by concomitant signaling through the MEK Erk1/2 kinase pathway and that this inhibits TRAIL-induced apoptosis. Inhibition of Erk1/2 signaling by either the MEK inhibitor U0126 or a dominant-negative mutant of MKK1 markedly sensitized melanoma cells to TRAIL-induced apoptosis. The site in the apoptotic pathway acted on by U0126 appeared to be downstream of caspase-8 and Bid but upstream of caspase-3 in that the levels of proteolytic cleavage of caspase-8 and Bid by TRAIL were similar in cells with or without exposure to U0126. Caspase-3 activation and cleavage of its substrates, PARP, ICAD and XIAP, were however increased by cotreatment with U0126. This was associated with a rapid reduction in mitochondrial transmembrane potential (MMP) and increased release of Smac/DIABLO into the cytosol. Exploration of events leading to the changes in MMP revealed an increased translocation of Bax from the cytosol to mitochondria in the presence of U0126. There was also a delayed decrease in the levels of expression of Mcl-1. Bcl-2 and Bcl-X(L). Over expression of Bcl-2 blocked TRAIL-induced apoptosis in the presence of U0126. Cytochrome c appeared not to play a major role in sensitization of melanoma to TRAIL in that caspase-9 activation was not detected in most of the cell lines. These results suggest that Erk1/2 signaling may protect melanoma cells against TRAIL-induced apoptosis by inhibiting the relocation of Bax from the cytosol to mitochondria and that this may reduce TRAIL-mediated release of Smac/DIABLO and induction of apoptosis.  相似文献   

13.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to have selective antitumor activity. TRAIL induces ubiquitous pathways of cell death in which caspase activation is mediated either directly or via the release of apoptogenic factors from mitochondria; however, the precise components of the mitochondrial signaling pathway have not been well defined. Notably, mitochondria constitute an important target in overcoming resistance to TRAIL in many types of tumors. Bid is considered to be fundamental in engaging mitochondria during death receptor-mediated apoptosis, but this action is dependent on mitochondrial lipids. Here, we report that TRAIL signaling induces an alteration in mitochondrial membrane lipids, particularly cardiolipin. This occurs independently of caspase activation and primes mitochondrial membranes to the proapoptotic action of Bid. We unveil a link between TRAIL signaling and alteration of membrane lipid homeostasis that occurs in parallel to apical caspase activation but does not take over the mode of cell death because of the concurrent activation of caspase-8. In particular, TRAIL-induced alteration of mitochondrial lipids follows an imbalance in the cellular homeostasis of phosphatidylcholine, which results in an elevation in diacylglycerol (DAG). Elevated DAG in turn activates the delta isoform of phospholipid-dependent serine/threonine protein kinase C, which then accelerates the cleavage of caspase-8. We also show that preservation of phosphatidylcholine homeostasis by inhibition of lipid-degrading enzymes almost completely impedes the activation of pro-caspase-9 while scarcely changing the activation of caspase-8.  相似文献   

14.
We compared the response of normal (FHC) and cancer (HT-29) human colon epithelial cells to the important apoptotic inducers TNF-alpha, anti-Fas antibody and TNF-related apoptosis inducing ligand (TRAIL). The two cell lines did not respond to TNF-alpha (15 ng/ml), expressed a limited sensitivity to anti-Fas antibody (200 ng/ml) and a different response to TRAIL (100 ng/ml). We studied apoptosis with regard to the changes at the receptor level (DR, DcR and FLIP) and at the level of mitochondria (Bid protein cleavage, Apo2.7 protein expression and caspase-9 activation). Two different approaches were used to sensitize the cells to TRAIL-induced apoptosis: inhibition of protein synthesis (cycloheximide, CHX) and inhibition of the pro-survival MEK/ERK pathway (U0126). While the two cell lines were markedly sensitized to all three TNF family members by CHX, a different degree of response (especially for TRAIL) was obtained when inhibition of the MEK/ERK pathway was achieved. TRAIL-induced apoptosis was significantly enhanced by U0126 co-treatment in the HT-29 cells, but not in the FHC cells. The most significant differences between the HT-29 and FHC cells co-treated with TRAIL and U0126 were demonstrated with regard to the involvement of the mitochondrial apoptotic pathway, suggesting its importance in the regulation of cell sensitivity to the TRAIL-induced apoptosis.  相似文献   

15.
16.
17.
Zhang XD  Zhang XY  Gray CP  Nguyen T  Hersey P 《Cancer research》2001,61(19):7339-7348
In previous studies we have shown that the sensitivity of melanoma cell lines to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis was determined largely by the level of expression of death receptor TRAIL receptor 2 on the cells. However, approximately one-third of melanoma cell lines were resistant to TRAIL, despite expression of high levels of TRAIL receptor 2. The present studies show that these cell lines had similar levels of TRAIL-induced activated caspase-3 as the TRAIL-sensitive lines, but the activated caspase-3 did not degrade substrates downstream of caspase-3 [inhibitor of caspase-activated DNase and poly(ADP-ribose) polymerase]. This appeared to be due to inhibition of caspase-3 by X-linked inhibitor of apoptosis (XIAP) because XIAP was bound to activated caspase-3, and transfection of XIAP into TRAIL-sensitive cell lines resulted in similar inhibition of TRAIL-induced apoptosis. Conversely, reduction of XIAP levels by overexpression of Smac/DIABLO in the TRAIL-resistant melanoma cells was associated with the appearance of catalytic activity by caspase-3 and increased TRAIL-induced apoptosis. TRAIL was shown to cause release of Smac/DIABLO from mitochondria, but this release was greater in TRAIL-sensitive cell lines than in TRAIL-resistant cell lines and was associated with down-regulation of XIAP levels. Furthermore, inhibition of Smac/DIABLO release by overexpression of Bcl-2 inhibited down-regulation of XIAP levels. These results suggest that Smac/DIABLO release from mitochondria and its binding to XIAP are an alternative pathway by which TRAIL induces apoptosis of melanoma, and this pathway is dependent on the release of activated caspase-3 from inhibition by XIAP and possibly other inhibitor of apoptosis family members.  相似文献   

18.
Ravi R  Bedi A 《Cancer research》2002,62(15):4180-4185
Tumor-cell death can be triggered by engagement of specific death receptors with Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL). Apo2L/TRAIL-induced apoptosis involves caspase-8-mediated cleavage of BID. The active truncated form of BID (tBID) triggers the mitochondrial activation of caspase-9 by inducing the activation of BAK or BAX. Although a broad spectrum of human cancer cell lines express death receptors for Apo2L/TRAIL, many remain resistant to TRAIL/Apo2L-induced death. A variety of human cancers exhibit increased activity of casein kinase II (CK2). Here we demonstrate that CK2 is at the nexus of two signaling pathways that protect tumor cells from Apo2L/TRAIL-induced apoptosis. We find that CK2 inhibits Apo2L/TRAIL-induced caspase-8-mediated cleavage of BID, thereby reducing the formation of tBID. In addition, CK2 promotes nuclear factor kappa B (NF-kappa B)-mediated expression of Bcl-x(L), which sequesters tBID and curtails its ability to activate BAX. Tumor cells with constitutive activation of CK2 exhibit a high Bcl-x(L)/tBID ratio and fail to activate caspase-9 or undergo apoptosis in response to Apo2L/TRAIL. Conversely, reduction of the Bcl-x(L)/tBID ratio by inhibition of CK2 renders such cancer cells sensitive to Apo2L/TRAIL-induced activation of caspase-9 and apoptosis. Using isogenic cancer cell lines that differ only in the presence or absence of either the p53 tumor suppressor or the BAX gene, we show that the enhancement of Apo2L/TRAIL-induced tumor-cell death by CK2 inhibitors requires BAX, but not p53. The identification of CK2 as a key survival signal that protects tumor cells from death-receptor-induced apoptosis could aid the design of Apo2L/TRAIL-based combination regimens for treatment of diverse cancers.  相似文献   

19.
Signaling pathways involved in survival responses may attenuate the apoptotic response to the cytotoxic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in human colon carcinomas. In six lines examined, three were sensitive (GC(3)/c1, VRC(5)/c1, HCT116), HT29 demonstrated intermediate sensitivity, and RKO and HCT8 were resistant to TRAIL-induced apoptosis. Calphostin c [an inhibitor of classic and novel isoforms of protein kinase C (PKC)] sensitized five of six cell lines to TRAIL, whereas Go6976, (inhibitor of classic PKC isoforms), did not influence TRAIL sensitivity. Rottlerin, an inhibitor of novel isoforms of PKC, specifically PKC delta, sensitized five of six cell lines to TRAIL-induced apoptosis, suggesting that PKC delta may be involved in the mechanism of TRAIL resistance. Transfection of HCT116 with a proapoptotic cleaved fragment of PKC delta or an antiapoptotic full-length PKC delta did not influence the sensitivity of HCT116 to TRAIL. Furthermore, the incubation of HCT116 or RKO with phorbol myristate acetate for 16 h, which down-regulated the expression of novel PKC isoforms, also did not influence sensitivity to TRAIL either in the absence or presence of rottlerin. However, after 15-min incubation with rottlerin, mitochondrial membrane potential (Delta psi m) was dramatically reduced in RKO cells, and, in cells subsequently treated with TRAIL, rapid apoptosis was evident within 8 h. Calphostin c, but not Go6976, also caused a decrease in Delta psi m. In RKO, rottlerin induced the release of cytochrome c, HtrA2/Omi, Smac/DIABLO, and AIF from the mitochondria, potentiated in combination with TRAIL, with concomitant caspase activation and down-regulation of XIAP. In HT29, the release of proapoptotic factors was demonstrated only when rottlerin and TRAIL were combined, and Bcl-2 overexpression inhibited this release and the induction of apoptosis. TRAIL-induced apoptosis was not influenced by rottlerin or Bcl-2 overexpression in type I (GC(3)/c1) cells. Data suggest that rottlerin affects mitochondrial function independent of PKC delta, thereby sensitizing cells to TRAIL, and that mitochondria constitute an important target in overcoming inherent resistance to TRAIL in colon carcinomas.  相似文献   

20.
A pair of isogenic colon carcinoma cells, SW480 and 620, was used to investigate the mechanisms of acquired tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistance during tumour progression. Whereas primary tumour SW480 cells are sensitive to TRAIL-induced apoptosis, metastatic SW620 cells are resistant. The apoptotic signalling activated by TRAIL in SW480 cells is a type II pathway. We show that in SW620 cells, although caspase-8 is recruited and activated at the death-inducing-signalling complex and Bid is cleaved, this does not lead to caspase-9 activation. Comparison of Bcl-2, Bcl-xL and Mcl-1 levels in both cell lines showed no difference. In SW620 cells transfected with a tBid-GFP construct, tBid-GFP was correctly localized to the mitochondria. Thus, the resistance of SW620 cells is at the level of the mitochondria that can withstand large amounts of tBid. Although caspase-3 was directly cleaved by caspase-8 in SW620 cells to yield the p20 fragment, no further autocatalytic maturation into the p17 fragment was observed. We show that, in contrast to SW480 cells, the SW620 cell line expresses high amounts of X-linked inhibitor of apoptosis (XIAP). Downregulation of XIAP with bortezomib or small-interfering RNA was sufficient to restore the sensitivity of SW620 cells to TRAIL-induced apoptosis in the absence of SMAC/Diablo or cytochrome c release from the mitochondria. Thus, SW620 cells have developed a dual resistance to TRAIL-induced apoptosis: a block at the level of the mitochondria and, after a conversion to a type I pathway, an increased expression of XIAP which inhibits this pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号