首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance exercise is a potent stimulator of muscle protein synthesis and muscle cell growth, with the increase in protein synthesis being detected within 2–3 h post-exercise and remaining elevated for up to 48 h. However, during exercise, muscle protein synthesis is inhibited. An increase in AMP-activated protein kinase (AMPK) activity has recently been shown to decrease mammalian target of rapamycin (mTOR) signalling to key regulators of translation initiation. We hypothesized that the cellular mechanism for the inhibition of muscle protein synthesis during an acute bout of resistance exercise in humans would be associated with an activation of AMPK and an inhibition of downstream components of the mTOR pathway (4E-BP1 and S6K1). We studied 11 subjects (seven men, four women) before, during, and for 2 h following a bout of resistance exercise. Muscle biopsy specimens were collected at each time point from the vastus lateralis. We utilized immunoprecipitation and immunoblotting methods to measure muscle AMPKα2 activity, and mTOR-associated upstream and downstream signalling proteins, and stable isotope techniques to measure muscle fractional protein synthetic rate (FSR). AMPKα2 activity (pmol min−1 (mg protein)−1) at baseline was 1.7 ± 0.3, increased immediately post-exercise (3.0 ± 0.6), and remained elevated at 1 h post-exercise ( P < 0.05). Muscle FSR decreased during exercise and was significantly increased at 1 and 2 h post-exercise ( P < 0.05). Phosphorylation of 4E-BP1 at Thr37/46 was significantly reduced immediately post-exercise ( P < 0.05). We conclude that AMPK activation and a reduced phosphorylation of 4E-BP1 may contribute to the inhibition of muscle protein synthesis during resistance exercise. However, by 1–2 h post-exercise, muscle protein synthesis increased in association with an activation of protein kinase B, mTOR, S6K1 and eEF2.  相似文献   

2.
In rat epitrochlearis skeletal muscle, contraction inhibited the basal and insulin-stimulated rates of protein synthesis by 75 and 70%, respectively, while increasing adenosine monophosphate-activated protein kinase (AMPK) activity. Insulin, on the other hand, stimulated protein synthesis (by 30%) and increased p70 ribosomal protein S6 kinase (p70S6K) Thr389, 40S ribosomal protein S6 (rpS6) Ser235/236, rpS6 Ser240/244 and eukaryotic initiation factor-4E-binding protein-1 (4E-BP1) Thr37/46 phosphorylation over basal values. Electrical stimulation had no effect on mammalian target of rapamycin complex 1 (mTORC1) signalling, as reflected by the lack of reduction in basal levels of p70S6K, rpS6 Ser235/236, rpS6 Ser240/244 and 4E-BP1 phosphorylation, but did antagonize mTORC1 signalling after stimulation of the pathway by insulin. Eukaryotic elongation factor-2 (eEF2) Thr56 phosphorylation increased rapidly on electrical stimulation reaching a maximum at 1 min, whereas AMPK Thr172 phosphorylation slowly increased to reach threefold after 30 min. Eukaryotic elongation factor-2 kinase (eEF2K) was not activated after 30 min of contraction when AMPK was activated. This could not be explained by the expression of a tissue-specific isoform of eEF2K in skeletal muscle lacking the Ser398 AMPK phosphorylation site. Therefore, in this skeletal muscle system, the contraction-induced inhibition of protein synthesis could not be attributed to a reduction in mTORC1 signalling but could be due to an increase in eEF2 phosphorylation independent of AMPK activation.  相似文献   

3.
AMP-activated protein kinase (AMPK) is a key energy-sensitive enzyme that controls numerous metabolic and cellular processes. Mammalian target of rapamycin (mTOR) is another energy/nutrient-sensitive kinase that controls protein synthesis and cell growth. In this study we determined whether older versus younger men have alterations in the AMPK and mTOR pathways in skeletal muscle, and examined the effect of a long term resistance type exercise training program on these signaling intermediaries. Older men had decreased AMPKα2 activity and lower phosphorylation of AMPK and its downstream signaling substrate acetyl-CoA carboxylase (ACC). mTOR phosphylation also was reduced in muscle from older men. Exercise training increased AMPKα1 activity in older men, however, AMPKα2 activity, and the phosphorylation of AMPK, ACC and mTOR, were not affected. In conclusion, older men have alterations in the AMPK-ACC and mTOR pathways in muscle. In addition, prolonged resistance type exercise training induces an isoform-selective up regulation of AMPK activity.  相似文献   

4.
The purpose of the present investigation was to determine whether mammalian target of rapamycin (mTOR)-mediated signalling and some key regulatory proteins of translation initiation are altered in skeletal muscle during the immediate phase of recovery following acute resistance exercise. Rats were operantly conditioned to reach an illuminated bar located high on a Plexiglass cage, such that the animals completed concentric and eccentric contractions involving the hindlimb musculature. Gastrocnemius muscle was extracted immediately after acute exercise and 5, 10, 15, 30 and 60 min of recovery. Phosphorylation of protein kinase B (PKB) on Ser-473 peaked at 10 min of recovery (282 % of control,   P < 0.05  ) with no significant changes noted for mTOR phosphorylation on Ser-2448. Eukaryotic initiation factor (eIF) 4E-binding protein-1 (4E-BP1) and S6 kinase-1 (S6K1), both downstream effectors of mTOR, were altered during recovery as well. 4E-BP1 phosphorylation was significantly elevated at 10 min (292 %,   P < 0.01  ) of recovery. S6K1 phosphorylation on Thr-389 demonstrated a trend for peak activation at 10 min following exercise (336 %,   P = 0.06  ) with ribosomal protein S6 phosphorylation being maximally activated at 15 min of recovery (647 %,   P < 0.05  ). Components of the eIF4F complex were enhanced during recovery as eIF4E association with eIF4G peaked at 10 min (292 %,   P < 0.05  ). Events regulating the binding of initiator methionyl-tRNA to the 40S ribosomal subunit were assessed through eIF2B activity and eIF2α phosphorylation on Ser-51. No differences were noted with either eIF2B or eIF2α. Collectively, these results provide strong evidence that mTOR-mediating signalling is transiently upregulated during the immediate period following resistance exercise and this response may constitute the most proximal growth response of the cell.  相似文献   

5.
The present study examined the effects of an acute bout of treadmill exercise on signalling through the extracellular signal-regulated kinase (ERK)1/2 and mammalian target of rapamycin (mTOR) pathways to regulatory mechanisms involved in mRNA translation in mouse gastrocnemius muscle. Briefly, C57BL/6 male mice were run at 26 m min−1 on a treadmill for periods of 10, 20 or 30 min, then the gastrocnemius was rapidly removed and analysed for phosphorylation and/or association of protein components of signalling pathways and mRNA translation regulatory mechanisms. Repression of global mRNA translation was suggested by disaggregation of polysomes into free ribosomes, which occurred by 10 min and was sustained throughout the time course. Exercise repressed the mTOR signalling pathway, as shown by dephosphorylation of the eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1), enhanced association of the regulatory-associated protein of mTOR with mTOR, and increased assembly of the tuberin–hamartin complex. In contrast, exercise caused no change in phosphorylation of either Akt/PKB or tuberin. Upstream of mTOR, exercise was associated with an increase in cAMP, protein kinase A activity, and AMP-activated protein kinase phosphorylation. Simultaneously, exercise caused a rapid and sustained activation of the MEK1/2–ERK1/2–p90RSK pathway, resulting in increased phosphorylation of downstream targets including eIF4E and the ribosomal protein (rp)S6 on S235/S236. Overall, the data are consistent with exercise-induced repression of mTOR signalling and global rates of mRNA translation, accompanied perhaps by up-regulated translation of selected mRNAs through regulatory mechanisms such as eIF4E and rpS6 phosphorylation, mediated by activation of the ERK1/2 pathway.  相似文献   

6.
Resistance exercise disturbs skeletal muscle homeostasis leading to activation of catabolic and anabolic processes within the muscle cell. A current challenge of exercise biology is to describe the molecular mechanisms of regulation by which contractile activity stimulates net protein breakdown during exercise and net protein synthesis during recovery. Muscle growth is optimized by combining exercise and appropriate nutritional strategies, such as amino acid (AA) and carbohydrate ingestion. The effects are integrated at the level of one central regulatory protein, mTOR (mammalian target of rapamycin). mTOR is a complex protein integrating signals of the energetic status of the cell and environmental stimuli to control protein synthesis, protein breakdown and therefore cell growth. mTOR is known to be activated by insulin, and the mechanisms involved are well documented. The ways by which exercise and AA lead to mTOR activation remain partially unclear. Exercise and AA use different signalling pathways upstream of mTOR. Exercise seems to recruit partially the same pathway as insulin, whereas AA could act more directly on mTOR. During resistance exercise, the activity of mTOR could be acutely blunted by AMP-activated protein kinase (AMPK), thus inhibiting protein synthesis and enhancing AA availability for energy metabolism. During recovery, the inhibition of mTOR by AMPK is suppressed, and its activation is maximized by the presence of AA. There appears to be a requirement for a minimal concentration of plasma insulin to stimulate muscle protein synthesis in response to resistance exercise and AA ingestion.  相似文献   

7.
We investigated if acute endurance-type exercise interacts with insulin-stimulated activation of atypical protein kinase C (aPKC) and insulin signalling to peptide chain elongation in human skeletal muscle. Four hours after acute one-legged exercise, insulin-induced glucose uptake was ∼80% higher ( N = 12, P < 0.05) in previously exercised muscle, measured during a euglycaemic–hyperinsulinaemic clamp (100 μU ml−1). Insulin increased ( P < 0.05) both insulin receptor substrate (IRS)-1 and IRS-2 associated phosphatidylinositol (PI)-3 kinase activity and led to increased ( P < 0.001) phosphorylation of Akt on Ser473 and Thr308 in skeletal muscle. Interestingly, in response to prior exercise IRS-2-associated PI-3 kinase activity was higher ( P < 0.05) both at basal and during insulin stimulation. This coincided with correspondingly altered phosphorylation of the extracellular-regulated protein kinase 1/2 (ERK 1/2), p70S6 kinase (P70S6K), eukaryotic elongation factor 2 (eEF2) kinase and eEF2. aPKC was similarly activated by insulin in rested and exercised muscle, without detectable changes in aPKC Thr410 phosphorylation. However, when adding phosphatidylinositol-3,4,5-triphosphate (PIP 3 ), the signalling product of PI-3 kinase, to basal muscle homogenates, aPKC was more potently activated ( P = 0.01) in previously exercised muscle. Collectively, this study shows that endurance-type exercise interacts with insulin signalling to peptide chain elongation. Although protein turnover was not evaluated, this suggests that capacity for protein synthesis after acute endurance-type exercise may be improved. Furthermore, endurance exercise increased the responsiveness of aPKC to PIP 3 providing a possible link to improved insulin-stimulated glucose uptake after exercise.  相似文献   

8.
Aim: Exercise induced alterations in the rate of muscle protein synthesis may be related to activity changes in signalling pathways involved in protein synthesis. The aim of the present study was to investigate whether such changes in enzyme phosphorylation occur after endurance exercise. Methods: Six male subjects performed ergometer cycling exercise for 1 h at 75% of the maximal oxygen uptake. Muscle biopsy samples from the vastus lateralis were taken before, immediately after, 30 min, 1 h, 2 h and 3 h after exercise for the determination of protein kinase B (PKB/Akt), mammalian target of rapamycin (mTOR), glycogen synthase 3 kinase (GSK‐3), p70S6 kinase (p70S6k) and eukaryotic elongation factor 2 (eEF2) phosphorylation. Results: The phosphorylation of Akt was unchanged directly after exercise, but two‐ to fourfold increased 1 and 2 h after the exercise, whereas GSK‐3α and β phosphorylation were two‐ to fourfold elevated throughout most of the 3‐h recovery period. Phosphorylation of mTOR was elevated threefold directly after, 30 min and 2 h after exercise and eEF2 phosphorylation was decreased by 35–75% from 30 min to 3 h‐recovery. Exercise led to a five‐ to eightfold increase in Ser424/Thr421 phosphorylation of p70S6k up to 30 min after exercise, but no change in Thr389 phosphorylation. Conclusions: The marked decrease in eEF2 phosphorylation suggests an activation of translation elongation and possibly protein synthesis in the recovery period after sustained endurance exercise. The lack of p70S6k activation suggests that translation initiation is activated via alternative pathways, possibly via the activation of eukaryotic initiating factor 2B.  相似文献   

9.
High glucose and high insulin, pathogenic factors in type 2 diabetes, induce rapid synthesis of the matrix protein laminin-beta1 in renal proximal tubular epithelial cells by stimulation of initiation phase of mRNA translation. We investigated if elongation phase of translation also contributes to high glucose and high insulin induction of laminin-beta1 synthesis in proximal tubular epithelial cells. High glucose or high insulin rapidly increased activating Thr56 dephosphorylation of eEF2 and inactivating Ser366 phosphorylation of eEF2 kinase, events that facilitate elongation. Studies with inhibitors showed that PI3 kinase-Akt-mTOR-p70S6 kinase pathway controlled changes in phosphorylation of eEF2 and eEF2 kinase induced by high glucose or high insulin. Renal cortical homogenates from db/db mice in early stage of type 2 diabetes showed decrease in eEF2 phosphorylation and increment in eEF2 kinase phosphorylation in association with renal hypertrophy and glomerular and tubular increase in laminin-beta1 content. Rapamycin, an inhibitor of mTOR, abolished diabetes-induced changes in phosphorylation of eEF2, eEF2 kinase, and p70S6 kinase and ameliorated renal hypertrophy and laminin-beta1 protein content, without affecting hyperglycemia. These data show that mTOR is an attractive target for amelioration of diabetes-induced renal injury.  相似文献   

10.
徐飞 《中国组织工程研究》2011,15(20):3775-3777
背景:腺嘌呤核苷酸活化蛋白激酶的下游靶分子哺乳动物雷帕霉素靶蛋白对细胞生长、分裂和蛋白质合成有重要意义。 目的:综述腺嘌呤核苷酸活化蛋白激酶与哺乳动物雷帕霉素靶蛋白信号转导相互调节的最新研究进展,以期揭示腺嘌呤核苷酸活化蛋白激酶和哺乳动物雷帕霉素靶蛋白信号转导的交互作用对蛋白质合成的影响。 方法:以“(mammalian target of rapamycin OR mTOR) AND (AMP activated protein kinase OR AMPK) AND signal transduction”为检索式,计算机检索PubMed数据库相关内容的文献,最终纳入30篇可反映腺嘌呤核苷酸活化蛋白激酶与哺乳动物雷帕霉素靶蛋白信号转导通路相互作用的文献,并进行归纳总结。 结果与结论:腺嘌呤核苷酸活化蛋白激酶活化导致哺乳动物雷帕霉素靶蛋白信号转导减弱一定程度上抑制蛋白质合成,腺嘌呤核苷酸活化蛋白激酶通过多个位点磷酸化和活化而调节哺乳动物雷帕霉素靶蛋白信号转导。腺嘌呤核苷酸活化蛋白激酶磷酸化马铃薯球蛋白会抑制Akt,ERK1/ERK2和p90rsk等其他蛋白激酶的作用。明确腺嘌呤核苷酸活化蛋白激酶对哺乳动物雷帕霉素靶蛋白的调节过程所起的作用,对揭示腺嘌呤核苷酸活化蛋白激酶-哺乳动物雷帕霉素靶蛋白途径调控能量代谢和蛋白合成方面有重要意义。  相似文献   

11.
Protein synthesis in skeletal muscle is known to decrease during contractions but the underlying regulatory mechanisms are unknown. Here, the effect of exercise on skeletal muscle eukaryotic elongation factor 2 (eEF2) phosphorylation, a key component in protein translation machinery, was examined. Eight healthy men exercised on a cycle ergometer at a workload eliciting ∼67% peak pulmonary oxygen consumption     with skeletal muscle biopsies taken from the vastus lateralis muscle at rest as well as after 1, 10, 30, 60 and 90 min of exercise. In response to exercise, there was a rapid (i.e. < 1 min) 5- to 7-fold increase in eEF2 phosphorylation at Thr56 that was sustained for 90 min of continuous exercise. The in vitro activity of skeletal muscle eEF2 kinase was not altered by exercise indicating that the increased activity of eEF2 kinase to eEF2 is not mediated by covalent mechanisms. In support of this, the increase in AMPK activity was temporally unrelated to eEF2 phosphorylation. However, skeletal muscle eEF2 kinase was potently activated by Ca2+–calmodulin in vitro , suggesting that the higher eEF2 phosphorylation in working skeletal muscle is mediated by allosteric activation of eEF2 kinase by Ca2+ signalling via calmodulin. Given that eEF2 phosphorylation inhibits eEF2 activity and mRNA translation, these findings suggest that the inhibition of protein synthesis in contracting skeletal muscle is due to the Ca2+-induced stimulation of eEF2 kinase.  相似文献   

12.
Aim: Feeding protein after resistance exercise enhances the magnitude and duration of myofibrillar protein synthesis (MPS) over that induced by feeding alone. We hypothesized that the underlying mechanism for this would be a greater and prolonged phosphorylation of signalling involved in protein translation. Methods: Seven healthy young males performed unilateral resistance exercise followed immediately by the ingestion of 25 g of whey protein to maximally stimulate MPS in a rested and exercised leg. Results: Phosphorylation of p70 ribosomal protein S6 kinase (p70S6K) was elevated (P < 0.05) above fasted at 1 h at rest whereas it was elevated at 1, 3 and 5 h after exercise with protein ingestion and displayed a similar post‐exercise time course to that shown by MPS. Extracellular regulated kinase1/2 (ERK1/2) and p90 ribosomal S6 kinase (p90RSK) phosphorylation were unaltered after protein ingestion at rest but were elevated (P < 0.05) above fasted early in recovery (1 h) and were greater for the exercised‐fed leg than feeding alone (main effect; P < 0.01). Eukaryotic elongation factor 2 (eEF2) phosphorylation was also less (main effect; P < 0.05) in the exercised‐fed leg than in the rested leg suggesting greater activity after exercise. Eukaryotic initiation 4E binding protein‐1 (4EBP‐1) phosphorylation was increased (P < 0.05) above fasted to the same extent in both conditions. Conclusion: Our data suggest that resistance exercise followed by protein feeding stimulates MPS over that induced by feeding alone in part by enhancing the phosphorylation of select proteins within the mammalian target of rapamycin (p70S6K, eEF2) and by activating proteins within the mitogen‐activated protein kinase (ERK1/2, p90RSK) signalling.  相似文献   

13.
BACKGROUND: The mammalian target of rapamycin (mTOR) regulates multiple cellular functions including translation in response to nutrients, especially amino acids. AMP-activated protein kinase (AMPK) modulates metabolism in response to energy demand by responding to changes in AMP. RESULTS: The treatment of SV40-immortalized human corneal epithelial cells (HCE-T cells) with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), widely used as an AMPK activator, inhibits p70 S6k activities. Altered glucose availability, which regulates AMPK activity, also modulates the activity of p70 S6k. AICAR treatment also inhibits phosphorylation of Thr-412 in the p70 S6 kinase (p70 S6k), which is indispensable for the activity. Furthermore, over-expression of mutant AMPK subunits by stable expression in rabbit pulmonary fibroblast cell lines (PS120 cells) also modulates p70 S6k activity. The insensitivity of the rapamycin-resistant p70 S6k variant to AICAR treatment suggests that the inhibition of p70 S6k is mediated through a common effector, supporting a model whereby mTOR and its downstream effector are controlled by AMPK. CONCLUSION: These results indicate that the AMPK and mTOR signalling pathways are possibly linked. In addition to the mTOR signal acting as a priming switch that modulates p70 S6k activation, AMPK appears to provide an overriding switch linking p70 S6k regulation to cellular energy metabolism.  相似文献   

14.
Muscle protein synthesis and mTORC1 signalling are concurrently stimulated following muscle contraction in humans. In an effort to determine whether mTORC1 signalling is essential for regulating muscle protein synthesis in humans, we treated subjects with a potent mTORC1 inhibitor (rapamycin) prior to performing a series of high-intensity muscle contractions. Here we show that rapamycin treatment blocks the early (1–2 h) acute contraction-induced increase (∼40%) in human muscle protein synthesis. In addition, several downstream components of the mTORC1 signalling pathway were also blunted or blocked by rapamycin. For instance, S6K1 phosphorylation (Thr421/Ser424) was increased post-exercise 6-fold in the control group while being unchanged with rapamycin treatment. Furthermore, eEF2 phosphorylation (Thr56) was reduced by ∼25% post-exercise in the control group but phosphorylation following rapamycin treatment was unaltered, indicating that translation elongation was inhibited. Rapamycin administration prior to exercise also reduced the ability of raptor to associate with mTORC1 during post-exercise recovery. Surprisingly, rapamycin treatment prior to resistance exercise completely blocked the contraction-induced increase in the phosphorylation of ERK1/2 (Thr202/Tyr204) and blunted the increase in MNK1 (Thr197/202) phosphorylation. However, the phosphorylation of a known target of MNK1, eIF4E (Ser208), was similar in both groups ( P > 0.05) which is consistent with the notion that rapamycin does not directly inhibit MAPK signalling. We conclude that mTORC1 signalling is, in part, playing a key role in regulating the contraction-induced stimulation of muscle protein synthesis in humans, while dual activation of mTORC1 and ERK1/2 stimulation may be required for full stimulation of human skeletal muscle protein synthesis.  相似文献   

15.
We aimed to determine whether exercise-induced elevations in systemic concentration of testosterone, growth hormone (GH) and insulin-like growth factor-1 (IGF-1) enhanced post-exercise myofibrillar protein synthesis (MPS) and phosphorylation of signalling proteins important in regulating mRNA translation. Eight young men (20 ± 1.1 years, BMI = 26 ± 3.5 kg m−2) completed two exercise protocols designed to maintain basal hormone concentrations (low hormone, LH) or elicit increases in endogenous hormones (high hormone, HH). In the LH protocol, participants performed a bout of unilateral resistance exercise with the elbow flexors. The HH protocol consisted of the same elbow flexor exercise with the contralateral arm followed immediately by high-volume leg resistance exercise. Participants consumed 25 g of protein after arm exercise to maximize MPS. Muscle biopsies and blood samples were taken as appropriate. There were no changes in serum testosterone, GH or IGF-1 after the LH protocol, whereas there were marked elevations after HH (testosterone, P < 0.001; GH, P < 0.001; IGF-1, P < 0.05). Exercise stimulated a rise in MPS in the biceps brachii (rest = 0.040 ± 0.007, LH = 0.071 ± 0.008, HH = 0.064 ± 0.014% h−1; P < 0.05) with no effect of elevated hormones ( P = 0.72). Phosphorylation of the 70 kDa S6 protein kinase (p70S6K) also increased post-exercise ( P < 0.05) with no differences between conditions. We conclude that the transient increases in endogenous purportedly anabolic hormones do not enhance fed-state anabolic signalling or MPS following resistance exercise. Local mechanisms are likely to be of predominant importance for the post-exercise increase in MPS.  相似文献   

16.
We investigated how myofibrillar protein synthesis (MPS) and muscle anabolic signalling were affected by resistance exercise at 20–90% of 1 repetition maximum (1 RM) in two groups (25 each) of post-absorptive, healthy, young (24 ± 6 years) and old (70 ± 5 years) men with identical body mass indices (24 ± 2 kg m−2). We hypothesized that, in response to exercise, anabolic signalling molecule phosphorylation and MPS would be modified in a dose-dependant fashion, but to a lesser extent in older men. Vastus lateralis muscle was sampled before, immediately after, and 1, 2 and 4 h post-exercise. MPS was measured by incorporation of [1,2-13C] leucine (gas chromatography–combustion–mass spectrometry using plasma [1,2-13C]α-ketoisocaparoate as surrogate precursor); the phosphorylation of p70 ribosomal S6 kinase (p70s6K) and eukaryotic initiation factor 4E binding protein 1 (4EBP1) was measured using Western analysis with anti-phosphoantibodies. In each group, there was a sigmoidal dose–response relationship between MPS at 1–2 h post-exercise and exercise intensity, which was blunted ( P < 0.05) in the older men. At all intensities, MPS fell in both groups to near-basal values by 2–4 h post-exercise. The phosphorylation of p70s6K and 4EBP1 at 60–90% 1 RM was blunted in older men. At 1 h post-exercise at 60–90% 1 RM, p70s6K phosphorylation predicted the rate of MPS at 1–2 h post-exercise in the young but not in the old. The results suggest that in the post-absorptive state: (i) MPS is dose dependant on intensity rising to a plateau at 60–90% 1 RM; (ii) older men show anabolic resistance of signalling and MPS to resistance exercise.  相似文献   

17.
5'AMP-activated protein kinase (AMPK) is an energy sensor activated by perturbed cellular energy status such as during muscle contraction. Activated AMPK is thought to regulate several key metabolic pathways. We used sex comparison to investigate whether AMPK signalling in skeletal muscle regulates fat oxidation during exercise. Moderately trained women and men completed 90 min bicycle exercise at 60%     . Both AMPK Thr172 phosphorylation and α2AMPK activity were increased by exercise in men (∼200%, P < 0.001) but not significantly in women. The sex difference in muscle AMPK activation with exercise was accompanied by an increase in muscle free AMP (∼164%, P < 0.01), free AMP/ATP ratio (159%, P < 0.05), and creatine (∼42%, P < 0.001) in men but not in women (NS), suggesting that lack of AMPK activation in women was due to better maintenance of muscle cellular energy balance compared with men. During exercise, fat oxidation per kg lean body mass was higher in women than in men ( P < 0.05). Regression analysis revealed that a higher proportion of type 1 muscle fibres (∼23%, P < 0.01) and a higher capillarization (∼23%, P < 0.05) in women than in men could partly explain the sex difference in α2AMPK activity ( r =−0.54, P < 0.05) and fat oxidation ( r = 0.64, P < 0.05) during exercise. On the other hand, fat oxidation appeared not to be regulated via AMPK. In conclusion, during prolonged submaximal exercise at 60%     , higher fat oxidation in women cannot be explained by higher AMPK signalling but is accompanied by improved muscle cellular energy balance in women probably due to sex specific muscle morphology.  相似文献   

18.
19.
Maternal obesity and over-nutrition give rise to both obstetric problems and neonatal morbidity. The objective of this study was to evaluate effects of maternal obesity and over-nutrition on signalling of the AMP-activated protein kinase (AMPK) pathway in fetal skeletal muscle in an obese pregnant sheep model. Non-pregnant ewes were assigned to a control group (Con, fed 100% of NRC nutrient recommendations, n = 7) or obesogenic group (OB, fed 150% of National Research Council (NRC) recommendations, n = 7) diet from 60 days before to 75 days after conception (term 150 days) when fetal semitendinosus skeletal muscle (St) was sampled. OB mothers developed severe obesity accompanied by higher maternal and fetal plasma glucose and insulin levels. In fetal St, activity of phosphoinositide-3 kinase (PI3K) associated with insulin receptor substrate-1 (IRS-1) was attenuated ( P < 0.05), in agreement with the increased phophorylation of IRS-1 at serine 1011. Phosphorylation of AMP-activated protein kinase (AMPK) at Thr 172, acetyl-CoA carboxylase at Ser 79, tuberous sclerosis 2 at Thr 1462 and eukaryotic translation initiation factor 4E-binding protein 1 at Thr 37/46 were reduced in OB compared to Con fetal St. No difference in energy status (AMP/ATP ratio) was observed. The expression of protein phosphatase 2C was increased in OB compared to Con fetal St. Plasma tumour necrosis factor α (TNFα) was increased in OB fetuses indicating an increased inflammatory state. Expression of peroxisome proliferator-activated receptor γ (PPARγ) was higher in OB St, indicating enhanced adipogenesis. The glutathione: glutathione disulphide ratio was also lower, showing increased oxidative stress in OB fetal St. In summary, we have demonstrated decreased signalling of the AMPK system in skeletal muscle of fetuses of OB mothers, which may play a role in altered muscle development and development of insulin resistance in the offspring.  相似文献   

20.
Maintenance of skeletal muscle mass depends on the equilibrium between protein synthesis and protein breakdown; diminished functional demand during unloading breaks this balance and leads to muscle atrophy. The current study analyzed time-course alterations in regulatory genes and proteins in the unloaded soleus muscle and the effects of branched-chain amino acid (BCAA) supplementation on muscle atrophy and abundance of molecules that regulate protein turnover. Short-term (6 days) hindlimb suspension of rats resulted in significant losses of myofibrillar proteins, total RNA, and rRNAs and pronounced atrophy of the soleus muscle. Muscle disuse induced upregulation and increases in the abundance of the eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), increases in gene and protein amounts of two ubiquitin ligases (muscle RING-finger protein 1 and muscle atrophy F-box protein), and decreases in the expression of cyclin D1, the ribosomal protein S6 kinase 1, the mammalian target of rapamycin (mTOR), and ERK1/2. BCAA addition to the diet did not prevent muscle atrophy and had no apparent effect on regulators of proteasomal protein degradation. However, BCAA supplementation reduced the loss of myofibrillar proteins and RNA, attenuated the increases in 4E-BP1, and partially preserved cyclin D1, mTOR and ERK1 proteins. These results indicate that BCAA supplementation alone does not oppose protein degradation but partly preserves specific signal transduction proteins that act as regulators of protein synthesis and cell growth in the non-weight-bearing soleus muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号