首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 412 毫秒
1.
2.
Granulocyte macrophage-colony-stimulating factor (GM-CSF), released from alveolar macrophages (AM), is an important regulator of eosinophil, T cell, and macrophage function and survival. We determined the mechanisms of GM-CSF regulation in AM from normal volunteers activated by lipopolysaccharide (LPS) by examining the role of nuclear factor-kappaB (NF-kappaB), and of p38 mitogen-activated protein (MAP) kinase and MAP kinase kinase (MKK-1). PD 098059 (10 microM), an inhibitor of upstream activator of MKK-1, inhibited GM-CSF expression, but the expression of GM-CSF was not inhibited by SB 203580 (10 microM), an inhibitor of p38-MAP kinase. Phosphorylation of extracellular signal-regulated kinase-1 (ERK-1), ERK-2, and p38 MAP kinase by LPS were demonstrated on Western blot analysis. LPS increased NF-kappaB:DNA binding as examined by electrophoretic mobility shift assay, but this was not suppressed by PD 098059 or by SB 203580. LPS induced an increase in NF-kappaB activation as examined by p50 translocation assay without suppression by PD 098059 or by SB 203580. SN50 (100 microM), an inhibitor of NF-kappaB translocation and the specific IKK-2-Inhibitor (AS602868; 10 microM), also prevented GM-CSF expression and release induced by LPS, indicating that GM-CSF release is NF-kappaB-dependent. PD 098059, but not SB 203580, inhibited LPS-induced histone acetyltransferase (HAT) activity, indicating chromatin modification. Furthermore, AS602868 and SN 50 suppressed LPS-induced HAT activity. TSA (10 ng/ml), an inhibitor of histone deacetylase (HDAC), reversed the inhibitory effect of PD 098059, SB 203580, SN 50 and AS602868 on GM-CSF release. GM-CSF expression and release in AM is controlled by NF-kappaB activation, and this is modulated by phosphorylation of MKK-1 and p38 MAP kinase acting on histone acetylation.  相似文献   

3.
Bacterial endotoxin [lipopolysaccharide (LPS)] stimulates macrophages to sequentially release early [tumor necrosis factor (TNF)] and late [high mobility group box 1 (HMGB1)] proinflammatory cytokines. The requirement of CD14 and mitogen-activated protein kinases [MAPK; e.g., p38 and extracellular signal-regulated kinase (ERK)1/2] for endotoxin-induced TNF production has been demonstrated previously, but little is known about their involvement in endotoxin-mediated HMGB1 release. Here, we demonstrated that genetic disruption of CD14 expression abrogated LPS-induced TNF production but only partially attenuated LPS-induced HMGB1 release in cultures of primary murine peritoneal macrophages. Pharmacological suppression of p38 or ERK1/2 MAPK with specific inhibitors (SB203580, SB202190, U0126, or PD98059) significantly attenuated LPS-induced TNF production but failed to inhibit LPS-induced HMGB1 release. Consistently, an endogenous, immunosuppressive molecule, spermine, failed to inhibit LPS-induced activation of p38 MAPK and yet, still significantly attenuated LPS-mediated HMGB1 release. Direct suppression of TNF activity with neutralizing antibodies or genetic disruption of TNF expression partially attenuated HMGB1 release from macrophages induced by LPS at lower concentrations (e.g., 10 ng/ml). Taken together, these data suggest that LPS stimulates macrophages to release HMGB1 partly through CD14- and TNF-dependent mechanisms.  相似文献   

4.
5.
Myofibroblast proliferation is a central feature of pulmonary fibrogenesis. Several growth factors, including platelet-derived growth factor (PDGF) and epidermal growth factor (EGF), stimulate myofibroblast growth by activating extracellular signal regulated kinases 1 and 2 (ERK1/2). In this report, we demonstrate that PDGF-BB and EGF also activate the p38 mitogen-activated protein (MAP) kinase. Inhibition of p38 activity with the pyridinylimidazole compound SB203580 enhanced both PDGF-BB and EGF-stimulated DNA synthesis in rat lung myofibroblasts. ERK1/2 phosphorylation in response to either PDGF-BB or EGF treatment was significantly increased by pretreatment of cells with SB203580. We also demonstrated that ERK1/2-induced phosphorylation of PHAS-1 substrate was enhanced by inhibition of p38 MAP kinase with SB203580. However, SB203580 did not significantly increase growth factor-induced activation of MEK, the upstream kinase that phosphorylates ERK1/2. p38 MAP kinase was co-immunoprecipitated with ERK-1/2 following growth factor stimulation. Collectively, these data demonstrate that p38 MAP kinase activation negatively regulates PDGF- and EGF-mediated growth responses by directly interacting with ERK1/2 and suppressing its phosphorylation.  相似文献   

6.
7.
目的:探讨MAPK信号转导途径在结核杆菌抗原(Mtb-Ag)活化的γδT细胞杀伤肿瘤细胞中的作用。方法:用Mtb-Ag刺激正常人PBMC以诱导γδT细胞扩增,并用磁珠阳性分选法分离高纯度的γδT细胞;用MTT比色法测定γδT细胞对肿瘤细胞系K562和Raji的细胞毒活性,并观察MEK/Erk特异性抑制剂PD98059和p38 MAPK特异性抑制剂SB203580,对细胞毒活性的阻断作用:用流式细胞仪检测肿瘤细胞诱导γδT细胞上CD69的表达,并观察PD98059和SB203580对CD69表达的抑制作用。结果:新鲜分离的PB-MC,用Mtb-Ag刺激培养第10天,用磁珠阳性法分离的细胞中γδT细胞的比率,分别为3.56%、74.63%和98.20%。PD98059可抑制γδT细胞的杀瘤活性,且对γδT细胞杀伤Fas低表达的K562细胞的抑制率(39.27%)高于对γδT细胞杀伤高表达Fas的Raji细胞的抑制率(26.58%)。PD98059还能明显抑制肿瘤细胞诱导γδT细胞表达CD69;而SB203580对γδT细胞的杀瘤活性和肿瘤细胞诱导的CD69的表达均无影响。结论:MAPK途径中的Erk通路(而不是p38通路)参与了γδT细胞对肿瘤细胞细胞毒活性的启动,且可能对γδT细胞的颗粒外吐作用较大,而对Fas/FasL介导的细胞毒活性的作用较小。MAPK途径的Erk通路可能还参与肿瘤细胞诱导γδT细胞的活化。  相似文献   

8.
目的探讨脂多糖刺激单核细胞源树突状细胞表达程序性死亡因子配体1(PD-L1)与p38MAPK信号通路的关系。方法体外培养树突状细胞,用p38抑制剂SB203580阻断p38MAPK通路后再用LPS刺激树突状细胞。光学显微镜观察各组细胞的形态变化;流式细胞术测定CD86和PD-L1表达的平均荧光强度;Western blot测定PD-L1蛋白表达。结果光镜下观察LPS刺激组细胞先经历梭型贴壁后逐渐恢复圆形,树突较多;SB203580和LPS共同刺激组细胞树突退化,未刺激组细胞成团悬浮,树突较多。SB203580和LPS共同刺激组细胞CD86、PD-L1较LPS刺激组的明显降低(P<0.05或P<0.01),与未刺激组的相比CD86差异无统计学意义,但PD-L1降低(P<0.05)。SB203580和LPS共同刺激组细胞PD-L1的蛋白表达量较其它两组的均明显减少(P<0.01或P<0.01)。结论 LPS通过p38MAPK信号通路调控树突状细胞表达PD-L1。  相似文献   

9.
Increased expression of the hepatocyte growth factor (HGF) receptor (c-met) and urokinase type plasminogen (uPA) correlated with the development and metastasis of cancers. To investigate the role of HGF/c-met signaling on metastasis in cancer cells stimulated with HGF, we examined the effects of a specific MEK1 inhibitor (PD98059) and a p38 MAP kinase inhibitor (SB203580) on HGF-induced uPA expression in pancreatic cancer cell lines, L3.6PL and IMIM-PC2. Pretreatment of PD98059 decreased HGF-mediated phosphorylation of extracellular receptor kinase (ERK), uPA secretion and expression of matrix metalloproteinases (MMP-2 and MMP-9) in a dose-dependent manner. In contrast, SB203580 pretreatment increased HGF-stimulated ERK phosphorylation, uPA secretion and expression of MMPs. SB203580 also reversed the inhibition of HGF-mediated ERK activation and uPA secretion in the PD98059-pretreated cells. These results suggest that ERK activation by HGF might play important roles in the metastasis of pancreatic cancer and the p38 MAPK pathway also involved in the HGF-mediated uPA secretion and metastasis by regulation of ERK pathway. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
11.
We have previously reported that thrombin stimulates synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the mechanism of thrombin in the thrombin-stimulated IL-6 synthesis and the involvement of Rho-kinase in MC3T3-E1 cells. Thrombin time-dependently induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase, p38 MAP kinase, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and myosin phosphatase targeting subunit-1 (MYPT-1), a Rho-kinase substrate. While SP600125, an inhibitor of SAPK/JNK, failed to reduce IL-6 synthesis, PD98059, a specific inhibitor of MEK, and SB203580 and BIRB0796, potent inhibitors of p38 MAP kinase, suppressed the IL-6 synthesis induced by thrombin. Y27632, a specific Rho-kinase inhibitor, significantly reduced thrombin-stimulated IL-6 synthesis as well as the MYPT-1 phosphorylation. Fasudil, another inhibitor of Rho-kinase, suppressed thrombin-stimulated IL-6 synthesis. Y27632 and fasudil failed to affect thrombin-induced phosphorylation of p44/p42 MAP kinase. Y27632 as well as fasudil attenuated thrombin-induced phosphorylation of p38 MAP kinase. These results strongly suggest that Rho-kinase regulates thrombin-stimulated IL-6 synthesis via p38 MAP kinase activation in osteoblasts.  相似文献   

12.
Leishmania donovani is an obligatory intracellular pathogen that resides and multiplies in the phagolysosomes of macrophages. The outcome of this infection depends on the balance between the host ability to activate macrophage killing and the parasite ability to suppress or evade this host immune response. Lipophosphoglycan (LPG) glycoconjugate, the surface molecule of the protozoan parasite is a virulence determinant and a major parasite molecule involved in this process. In this study, we examined the ability of Leishmania and its surface molecule, lipophosphoglycan to activate activating protein 1 (AP-1) through the mitogen-activated protein kinase (MAPK) cascade. We report here that the Leishmania surface molecule, lipophosphoglycan stimulates the simultaneous activation of all three classes of MAP kinases, extracellular signal-related kinases (ERKs), the c-jun amino-terminal kinase (JNK) and the p38 MAP kinase with differential kinetics in J774A.1 macrophage cell line. Furthermore, both L. donovani and its surface molecule lipophosphoglycan resulted in a dose- and time-dependent induction of AP-1 DNA-binding activity. We have also shown a dose-dependent increase of AP-1 binding activity in both low and high virulent strains of parasite. The use of inhibitors selective for ERK (PD98059) and p38 (SB203580) pathway showed that pre-incubation of cells with either SB203580 or PD98059 affected the binding activity of AP-1 suggesting that both p38 and ERK MAP kinase activation appear to be necessary for AP-1 activation by LPG. Lipophosphoglycan induced IL-12 production and generation of nitric oxide in murine macrophages. These results demonstrate that L. donovani LPG activates pro-inflammatory, endotoxin-like response pathway in J774A.1 macrophages and the interaction may play a pivotal role in the elimination of the parasite.  相似文献   

13.
Enteropathogenic Escherichia coli (EPEC) infection of T84 cells induces a decrease in transepithelial resistance, the formation of attaching and effacing (A/E) lesions, and cytokine production. The purpose of this study was to investigate the ability of EPEC to activate mitogen-activated protein (MAP) kinases in T84 cells and to correlate these signaling pathways with EPEC-induced cell responses. T84 cells were infected with either the wild-type (WT) EPEC strain E2348/69 or two mutants, intimin deletion strain CVD206 (deltaeaeA) and type III secretion apparatus mutant strain CVD452 (deltaescN::aphA). Infection of T84 cells with WT but not mutant EPEC strains induced tyrosine phosphorylation of several proteins in T84 cells, including the p46 and p52 Shc isoforms. Kinetics studies revealed that ERK1/2, p38, and c-Jun N-terminal kinase (JNK) MAP kinases were activated in cells infected with strain E2348/69 but not with the mutant strains. Inhibition of MAP kinases with PD98059 or SB203580 did not affect the EPEC-induced decrease in transepithelial resistance or actin accumulation beneath the WT bacteria, but these two inhibitors significantly decreased interleukin-8 (IL-8) synthesis. We demonstrate that EPEC induces activation of ERK1/2, p38, and JNK cascades, which all depend on bacterial adhesion and expression of the bacterial type III secretion system. ERK1/2 and p38 MAP kinases were equally implicated in IL-8 expression but did not participate in A/E lesion formation or transepithelial resistance modification, indicating that the signaling pathways involved in these events are distinct.  相似文献   

14.
Monophosphoryl lipid A (MPL) is a nontoxic derivative of lipopolysaccharide (LPS) that exhibits adjuvant properties similar to those of the parent LPS molecule. However, the mechanism by which MPL initiates its immunostimulatory properties remains unclear. Due to the involvement of Toll-like receptors in recognizing and transducing intracellular signals in response to LPS, the aim of the present study was to determine the ability of MPL to utilize the Toll-like receptor 2 (TLR2) and TLR4. We provide evidence that MPL differentially utilizes TLR2 and TLR4 for the induction of tumor necrosis factor alpha, interleukin 10 (IL-10), and IL-12 by purified human monocytes as well as by human peripheral blood mononuclear cells. Assessment of NF-kappa B activity demonstrated that MPL utilized TLR2 and especially TLR4 for the activation of NF-kappa B p65 by human monocytes. In addition, stimulation of human monocytes by MPL led to an up-regulation of the costimulatory molecules CD80 and CD86, an effect that could be reduced by pretreatment of cells with a monoclonal antibody to TLR2 or TLR4. Analysis of MPL-induced activation of the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinases revealed that MPL utilized both TLR2 and TLR4 for the phosphorylation of ERK1/2, while TLR4 was the predominant receptor involved in the ability of MPL to phosphorylate p38. Moreover, using selective inhibitors for MAP kinase kinase (PD98059) and p38 (SB203580), we show that ERK1/2 exhibited differential effects on production of TNF-alpha and IL-12 p40 by human monocytes, whereas MPL-induced activation of p38 appeared to be predominantly involved in production of IL-10 and IL-12 p40 by MPL-stimulated monocytes. Taken together, these findings aid in understanding the cellular mechanisms by which MPL induces host cell activation and subsequent adjuvant properties.  相似文献   

15.
Dendritic cells (DCs) are potent antigen-presenting cells that play a pivotal role in the initiation of T cell-dependent immune responses. Immature DCs obtained from peripheral blood CD14+ monocytes by culture with granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) differentiate into mature DCs upon stimulation with lipopolysaccharide (LPS). At least three families of mitogen-activated protein kinases (MAPKs), that is, extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK) and p38 MAPK, are involved in the DC maturation process. We report investigations of the role of JNK in the maturation of human monocyte-derived DCs. SP600125, a specific inhibitor of JNK, inhibited the LPS-induced up-regulation of CD80, CD83, CD86 and CD54, but augmented the up-regulation of HLA-DR. SP600125 slightly inhibited the down-regulation of FITC-dextran uptake during DC maturation. However, SP600125 did not affect the LPS induced up-regulation of allostimulatory capacity of DCs. SP600125 inhibited the release of IL-12 p70 and TNF-alpha from mature DCs. Although autologous T cells primed by the ovalbumin (OVA)-pulsed mature DCs produced IFN-gamma, but not IL-4, OVA-pulsed SP600125-treated mature DCs could initiate IL-4 production from autologous T cells. In contrast, a p38 MAPK inhibitor, SB203580, profoundly inhibited the phenotypic and functional maturation of DCs, while an ERK inhibitor, PD98059, had little or no effect. Taken together, the JNK signaling pathway appears to have a role that is distinct from the p38 MAPK and ERK cascades in the maturation process of DCs, and may be involved in the augmentation of Th2-prone T cell responses when it is suppressed.  相似文献   

16.
17.
目的: 观察树突状细胞(DCs)成熟过程中MAPKs和NF-κB信号分子表达情况,探讨尿酸刺激DCs成熟的分子机制。方法: 用尿酸体外刺激大鼠未成熟 DCs,在不同时点(0~45 min),免疫印迹方法检测p- p38、p-ERK1/2、p-JNK和NF-κB p65表达情况;以MAPKs和NF-κB信号分子抑制剂分别联合尿酸刺激DCs 48 h后,用流式细胞术检测表面分子CD83、CD86、IA/IE的表达;ELISA法测定IL-12 p70的水平。结果: (1)尿酸刺激后15 min,DCs p- p38、p-ERK1/2、p-JNK和NF-κB p65表达量明显增加,30 min时达到最大值;使用相应信号分子抑制剂后,相关蛋白表达均不能测出。(2)经p38、JNK、NF-κB p65等信号通路抑制剂预处理后,与单独尿酸刺激相比,DCs CD83、CD86、IA/IE等表面分子表达及IL-12 p70分泌水平均出现下降(P<0.05或P<0.01),ERK1/2抑制剂预处理者,则出现表达上升(P<0.05)。结论: 尿酸可以调节DCs p38、ERK1/2、JNK、 NF-κB等信号分子的活化,从而促进DCs表面分子表达及IL-12 p70分泌。这可能为尿酸能诱导DCs成熟及提高免疫功能的分子机制之一。  相似文献   

18.
Using a murine spleen-derived dendritic cell (DC) line (BC1) CD40-mediated interleukin (IL)-12 production was analyzed and compared between immature and mature DC. BC1 cells, immature DC (iDC), were maturated by treatment with lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-alpha. IL-12 production of LPS-treated DC (LPS/DC) was markedly enhanced by treatment with an anti-CD40 monoclonal antibody (mAb). Although the anti-CD40 mAb also enhanced IL-12 productions of iDC and TNF-alpha-treated DC (TNF/DC), these production levels were considerably low compared with that of LPS/DC. CD40-mediated IL-12-productions by iDC and TNF/DC were significantly enhanced by treatment with PD98059, a specific inhibitor of extracellular signal-related kinase (ERK) pathway. In contrast, PD98059 showed no significant effects on CD40-mediated IL-12-production by LPS/DC. These results demonstrated that ERK pathway was involved in negative regulation of the IL-12 productions by iDC and TNF/DC but not by LPS/DC. On the other hand, SB203580, a specific inhibitor of p38 mitogen activated protein kinase (MAPK) pathway, completely inhibited CD40-mediated IL-12-production by iDC, while not affecting those of TNF/DC and LPS/DC. Thus, p38 MAPK pathway appeared to positively regulate the IL-12 production in iDC but not in mature DC. It seems that roles of ERK and p38 MAPK for IL-12 production are developmentally changed in murine DC.  相似文献   

19.
The p38 mitogen-activated protein kinases (p38 MAPK) are activated in lymphocytes and acessory cells during innate and antigen-specific responses. We show that an inhibitor of two isoforms of p38 MAPK, SB 203580, inhibited the antigen-initiated production of IL-12, and IFN-gamma by cultures of splenic APC and naive CD4(+) T cells. Paradoxically, SB 203580 enhanced the LPS plus IFN-gamma-initiated production of IL-12 by peritoneal exudate macrophages, and the LPS-initiated of the production of both IL-12 and IFN-gamma by non-T non-B (scid) splenocytes. The enhancing effect of SB 203580 on the production of IL-12 by peritoneal exudate macrophages stimulated by LPS and IFN-gamma was dose dependent (EC(50) 0.3 microM), was only seen at lower concentrations of IFN-gamma and was due, at least in part, to a dose-dependent (IC(50) 0.3 microM) inhibition of the production of IL-10. These results indicate first, that p38 MAP kinase activity is required for the production of IL-10, as well as that of proinflammatory cytokines such as IL-12 and IFN-gamma, and, second, that the net effects of SB 203580 on the production of IL-12 and IFN-gamma can be positive or negative, depending on stimuli, cell populations, and levels of cytokines such as IFN-gamma and IL-10.  相似文献   

20.
Rapidly proliferating cancer cells rely on increased glucose consumption for survival. The glucose analog 2-deoxy-D-glucose (2DG) cannot complete glycolysis and inhibits the growth of many types of cancers. It is unknown whether reduced glycolysis inhibits the growth of pancreatic cancer. Activation of nerve growth factor (NGF)-neurotrophic tyrosine kinase receptor type 1 (NTRK1) signaling leads to enhanced proliferation of these cells. We investigated the effect of 2DG treatment on the viability of NTRK1-transfected pancreatic cancer cells. After treatment with 2DG, the viability of pancreatic cancer cells was evaluated by MTT assay. SB203580 (a specific inhibitor of the p38-MAPK pathway) and PD98059 (an MAP2K1 [mitogen-activated protein kinase kinase 1, previously, MEK1] inhibitor) were used to inhibit p38-MAPK and ERKs, respectively. The percentage of apoptotic cells was determined by flow cytometry. Overexpression of NTRK1 in pancreatic cancer cells resulted in increased cell proliferation, which was reduced by PD98059-mediated inhibition of ERKs but not by suppression of p38-MAPK with SB203580. After treatment with 2DG, the percentage of apoptotic cells was greater in those with high expression of NTRK1 than in cells with low NTRK1 expression. Blocking the p38-MAPK pathway with SB203580 effectively abolished the apoptosis induced by 2DG. We conclude that pancreatic cancer cells with a high expression of NTRK1 are more sensitive to 2DG-induced apoptosis, through the p38-MAPK pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号