共查询到20条相似文献,搜索用时 15 毫秒
1.
The dosimetric accuracy of treatment planning systems (TPSs) decreases for locations outside the treatment field borders. However, the true accuracy of specific TPSs for locations beyond the treatment field borders is not well documented. Our objective was to quantify the accuracy of out-of-field dose predicted by the commercially available Eclipse version 8.6 TPS (Varian Medical Systems, Palo Alto, CA) for a clinical treatment delivered on a Varian Clinac 2100. We calculated (in the TPS) and determined (with thermoluminescent dosimeters) doses at a total of 238 points of measurement (with distance from the field edge ranging from 3.75 to 11.25 cm). Our comparisons determined that the Eclipse TPS underestimated out-of-field doses by an average of 40% over the range of distances examined. As the distance from the treatment field increased, the TPS underestimated the dose with increasing magnitude--up to 55% at 11.25 cm from the treatment field border. These data confirm that accuracy beyond the treatment border is inadequate, and out-of-field data from TPSs should be used only with a clear understanding of this limitation. Studies that require accurate out-of-field dose should use other dose reconstruction methods, such as direct measurements or Monte Carlo calculations. 相似文献
2.
The determination of the dose to organs from diagnostic x rays has become important because of reports of radiation injury to patients from fluoroscopically guided interventional procedures. We have modified a convolution/superposition-based treatment planning system to compute the dose distribution for kilovoltage beams. We computed lung doses using this system and compared them to those calculated using the CDI3 organ dose calculation program. We also computed average lung doses from a simulated radiofrequency ablation procedure and compared our results to published doses for a similar procedure. Doses calculated using this system were an average of 20% lower for AP beams and 7% higher for PA beams than those obtained using CDI3. The ratio of the average dose to the lungs to the skin dose from the simulated ablation procedure ranged from 25% higher to 15% lower than that determined by other authors. Our results show that a treatment planning system designed for use in the megavoltage energy range can be used for calculating organ doses in the diagnostic energy range. Our doses compare well with those previously reported. Differences are partly due to variations in experimental techniques. Using a three-dimensional (3-D) treatment planning system to calculate dose also allows us to generate dose volume histograms (DVH) and compute normal tissue complication probabilities (NTCP) for diagnostic procedures. 相似文献
3.
4.
Algorithms for fully three-dimensional divergent-beam radiotherapy treatment planning have been developed to achieve very high sampling of dose in heterogeneous (inhomogeneous density) tissue throughout an arbitrarily oriented patient volume, in clinically acceptable times of calculation. Dose is calculated at points along numerous rays which sample each beam. To display the dose distribution, the calculated dose values for each beam are interpolated onto rectilinear grids of (arbitrary) parallel planes, scaled for beam weight and finally merged with the weighted dose contributions of other beams. In this paper we describe and demonstrate the algorithm for the primary component of the three-dimensional photon dose distribution delivered to a patient. 相似文献
5.
目的:探讨CT造影剂对脑动静脉畸形VMAT计划剂量分布的影响。方法:选取15例脑动静脉畸形患者为研究对象,在相同体位下行平扫和增强CT扫描。在增强CT图像上勾画靶区和危及器官,通过图像配准将上述结构复制至平扫CT图像。在VARIAN Eclipse 13.6计划系统中完成增强CT图像的VMAT计划设计(5条弧),并将此计划复制至平扫CT图像,不进行通量优化,重新计算剂量分布。记录两组计划的靶区、危及器官以及感兴趣区域的CT值,靶区的D2%、D98%、Dmean、适形度指数、均匀性指数以及梯度跌落指数,危及器官Dmax以及正常组织受照射体积V2 Gy、V10 Gy、V12 Gy,并采用非参数配对Wilcoxon检验分析两组数据间的差异。结果:在靶区和感兴趣区域处,增强图像的CT值显著高于平扫图像(P=0.001);而在其他组织处,两组图像的CT值比较均无统计学差异(P>0.05)。两组计划的剂量学参数差异小于2%,且无统计学差异(P>0.05)。结论:CT造影剂对脑动静脉畸形VMAT计划剂量分布的影响较小,临床上可忽略。 相似文献
6.
The Monte Carlo (MC) method provides the most accurate to-date dose calculations in heterogeneous media and complex geometries, and this spawns increasing interest in incorporating MC calculations in the treatment planning quality assurance process. This process involves MC dose calculations for the treatment plans produced clinically. Commonly used in radiotherapy, MC codes are BEAMnrc and DOSXYZnrc, which transport particles in a coordinate system (c.s.) that has been established historically and does not correspond to the c.s. of treatment planning systems (TPSs). Relative rotations of these c.s. are not straightforward, especially for non-coplanar treatments. Transformation equations are therefore required to re-calculate a treatment plan using BEAM/DOSXYZnrc codes. This paper presents such transformations for beam angles defined in a DICOM-compliant treatment planning coordinate system. Verification of the derived transformations with two three-field plans simulated on a phantom using TPS as well as MC codes has been performed demonstrating exact geometrical agreement of the MC treatment fields' placement. 相似文献
7.
A direct data link between a CT scanner and a radiation treatment planning system has been developed. The link transmits the data serially over a coaxial cable using the pseudo-paper-tape punch and reader (serial PIO) interfaces. The data transmission rate with error-check is approximately 25,000 8-bit bytes/s. This translates to about 7 s for transferring a CT scan with a 320-pixel diameter. 相似文献
8.
Aspradakis MM Morrison RH Richmond ND Steele A 《Physics in medicine and biology》2003,48(17):2873-2893
This work describes an experimental verification of the two-photon dose calculation engines available on the Helax-TMS (version 6.1) commercial radiotherapy treatment planning system. The performance of the pencil beam convolution and the collapsed cone superposition algorithms was examined for 4, 6, 15 MV beams, under a range of clinically relevant irradiation geometries. Comparisons against measurements were carried out in terms of absolute dose, thus assessment of the accuracy of monitor unit (MU) calculations was also carried out. Results show that both algorithms agree with measurement to acceptable tolerance levels in most cases in homogeneous water-equivalent media irradiated under full scatter conditions. The collapsed cone algorithm slightly overestimates the penumbra width and this is mainly due to discretization effects of the fluence matrix. The accuracy of this algorithm strongly depends on the resolution of the patient density matrix. It is recommended that the density matrix voxel size used for dose calculations is less than 5 x 5 x 5 mm3. The dose in media irradiated under missing tissue geometry, or in the presence of low or high-density heterogeneities, is modelled best with the collapsed cone algorithm. This is of particular clinical interest in treatment planning of the breast and of the thorax. For these treatment sites, a retrospective study of treatment plans indicated in certain cases significant overestimation of the dose to the planning target volume when using the pencil beam convolution model. 相似文献
9.
Implementation of the isocenter-shift technique for smoothing MLC field edge on a 3D treatment planning system 总被引:1,自引:0,他引:1
Stepped leaf edges are the major limitation of conforming to the prescribed treatment contour defined by the conventional multileaf collimator (MLC), which produces a scalloped dose pattern. The commercial HD-270 MLC (HDI) technique provides a software solution of the conventional MLC to achieve smoothed edge and optimal penumbra of the MLC shaped field. We implemented the HDI functionality on a 3D treatment planning system and compared the dosimetric effects of the HDI delivery in simulation with those in experiment for a number of the MLC fields. The fields from the contour of varied shapes with different sizes of the leaf stepping were tested for the HDI delivery. There is a good agreement of the dose distribution between the calculation as implemented in the planning system and the measurement performed on the treatment machine. It has been shown that the HDI delivery significantly smooths the stepped field edge with the reduced isodose undulation and effective penumbra. A problem may be present when the HDI is applied for the treatment of the circular contour of smaller diameter, and the conformity of the MLC shaping may not be achievable satisfactorily with the existing system. The optimization of leaf configuration is suggested to improve the conformity of the HDI technique. The HDI planning then can be used to assist in the decision making of applying the HDI treatment delivery. 相似文献
10.
A method for incorporating organ motion due to breathing into 3D dose calculations. 总被引:12,自引:0,他引:12
A method is proposed that incorporates the effects of intratreatment organ motion due to breathing on the dose calculations for the treatment of liver disease. Our method is based on the convolution of a static dose distribution with a probability distribution function (PDF) which describes the nature of the motion. The organ motion due to breathing is assumed here to be one-dimensional (in the superior-inferior direction), and is modeled using a periodic but asymmetric function (more time spent at exhale versus inhale). The dose distribution calculated using convolution-based methods is compared to the static dose distribution using dose difference displays and the effective volume (Veff) of the uninvolved liver, as per a liver dose escalation protocol in use at our institution. The convolution-based calculation is also compared to direct simulations that model individual fractions of a treatment. Analysis shows that incorporation of the organ motion could lead to changes in the dose prescribed for a treatment based on the Veff of the uninvolved liver. Comparison of convolution-based calculations and direct simulation of various worst-case scenarios indicates that a single convolution-based calculation is sufficient to predict the dose distribution for the example treatment plan given. 相似文献
11.
The ability to determine dose distribution and calculate organ doses from diagnostic x rays has become increasingly important in recent years because of relatively high doses in interventional radiology and cardiology procedures. In an attempt to determine the dose from both diagnostic and orthovoltage x rays, we have used a commercial treatment planning system (Pinnacle, ADAC Laboratories, Milpitas, CA) to calculate the doses in phantoms from kilovoltage x rays. The planning system's capabilities for dose computation have been extended to lower energies by the addition of energy deposition kernels in the 20-110 keV range and modeling of the 60, 80, 100, and 120 kVp beams using the system. We compared the dose calculated by the system with that measured using thermoluminescent dosimeters (TLDs) placed in various positions within several phantoms. The phantoms consisted of a cubical solid water phantom, the solid water phantom with added lung and bone inhomogeneities, and the Rando anthropomorphic phantom. Using Pinnacle, a treatment plan was generated using CT scans of each of these phantoms and point doses at the positions of TLD chips were calculated. Comparisons of measured and computed values show an average difference of less than 2% within materials of atomic number less than and equal to that of water. The algorithm, however, does not produce accurate results in and around bone inhomogeneities and underestimates attenuation of x rays by bone by an average of 145%. A modification to the CT number-to-density conversion table used by the system resulted in significant improvements in the dose calculated to points beyond bone. 相似文献
12.
Pignoli E Serretiello S Somigliana A Zonca G Pellegrini R Mongioj V Marchesini R 《Physics in medicine and biology》2000,45(8):N77-N84
The dosimetric accuracy of a 3D treatment planning system (TPS) for conformal radiotherapy with a computer-assisted dynamic multileaf collimator (DMLC) was evaluated. The DMLC and the TPS have been developed for clinical applications where dynamic fields not greater than 10 x 10 cm2 and multiple non-coplanar arcs are required. Dosimetric verifications were performed by simulating conformal treatments of irregularly shaped targets using several arcs of irradiation with 6 MV x-rays and a spherical-shaped, tissue-simulating phantom. The accuracy of the delivered dose at the isocentre was verified using an ionization chamber placed in the centre of the phantom. Isodose distributions in the axial and sagittal planes passing through the centre of the phantom were measured using double-layer radiochromic films. Measured dose at the isocentre as well as isodose distributions were compared to those calculated by the TPS. The maximum percentage difference between measured and prescribed dose was less than 2.5% for all the simulated treatment plans. The mean (+/-SD) displacement between measured and calculated isodoses was, in the axial planes, 1.0 +/- 0.6 mm, 1.2 +/- 0.7 mm and 1.5 +/- 1.1 mm for 80%, 50% and 20% isodose curves, respectively, whereas in the sagittal planes it was 2.0 +/- 1.2 mm and 2.2 +/- 2 mm for 80% and 50% isodose curves, respectively. The results indicate that the accuracy of the 3D treatment planning system used with the DMLC is reasonably acceptable in clinical applications which require treatments with several non-coplanar arcs and small dynamic fields. 相似文献
13.
目的 探索基于3D MRI与CT建模的3D打印模型在骶骨肿瘤术前规划中的应用价值.方法 回顾性分析华中科技大学同济医学院附属同济医院2015年6月至2020年6月收治的接受一期后路肿瘤切除+腰椎-骨盆重建术的骶骨肿瘤患者20例,分为两组,每组10例.其中模型组采用3D MRI与CT建模的3D打印模型辅助术前规划,常规组... 相似文献
14.
Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system 总被引:1,自引:0,他引:1
Ma CM Pawlicki T Jiang SB Li JS Deng J Mok E Kapur A Xing L Ma L Boyer AL 《Physics in medicine and biology》2000,45(9):2483-2495
The purpose of this work was to use Monte Carlo simulations to verify the accuracy of the dose distributions from a commercial treatment planning optimization system (Corvus, Nomos Corp., Sewickley, PA) for intensity-modulated radiotherapy (IMRT). A Monte Carlo treatment planning system has been implemented clinically to improve and verify the accuracy of radiotherapy dose calculations. Further modifications to the system were made to compute the dose in a patient for multiple fixed-gantry IMRT fields. The dose distributions in the experimental phantoms and in the patients were calculated and used to verify the optimized treatment plans generated by the Corvus system. The Monte Carlo calculated IMRT dose distributions agreed with the measurements to within 2% of the maximum dose for all the beam energies and field sizes for both the homogeneous and heterogeneous phantoms. The dose distributions predicted by the Corvus system, which employs a finite-size pencil beam (FSPB) algorithm, agreed with the Monte Carlo simulations and measurements to within 4% in a cylindrical water phantom with various hypothetical target shapes. Discrepancies of more than 5% (relative to the prescribed target dose) in the target region and over 20% in the critical structures were found in some IMRT patient calculations. The FSPB algorithm as implemented in the Corvus system is adequate for homogeneous phantoms (such as prostate) but may result in significant under or over-estimation of the dose in some cases involving heterogeneities such as the air-tissue, lung-tissue and tissue-bone interfaces. 相似文献
15.
Bourhaleb F Marchetto F Attili A Pittà G Cirio R Donetti M Giordanengo S Givehchi N Iliescu S Krengli M La Rosa A Massai D Pecka A Pardo J Peroni C 《Computers in biology and medicine》2008,38(9):990-999
The therapeutic use of protons and ions, especially carbon ions, is a new technique and a challenge to conform the dose to the target due to the energy deposition characteristics of hadron beams. An appropriate treatment planning system (TPS) is strictly necessary to take full advantage. We developed a TPS software, ANCOD++, for the evaluation of the optimal conformal dose. ANCOD++ is an analytical code using the voxel-scan technique as an active method to deliver the dose to the patient, and provides treatment plans with both proton and carbon ion beams. The iterative algorithm, coded in C++ and running on Unix/Linux platform, allows the determination of the best fluences of the individual beams to obtain an optimal physical dose distribution, delivering a maximum dose to the target volume and a minimum dose to critical structures. The TPS is supported by Monte Carlo simulations with the package GEANT3 to provide the necessary physical lookup tables and verify the optimized treatment plans. Dose verifications done by means of full Monte Carlo simulations show an overall good agreement with the treatment planning calculations. We stress the fact that the purpose of this work is the verification of the physical dose and a next work will be dedicated to the radiobiological evaluation of the equivalent biological dose. 相似文献
16.
An external beam radiation therapy treatment planning system has been developed to run on the GE CT/T whole body scanner. The system interactively obtains treatment planning information directly from CT scans, including relative density conversion of user input inhomogeneity regions. The program generates beams isodose tables from input TAR-SAR data using the Cunningham model. Inhomogeneity corrections are applied using the power law TAR method at low energies and the TAR ratio method at high energies. Beam data are generated on the central axis and at off-axis locations coplanar with each CT scan, and isodose distributions are displayed on any transverse, coronal or sagittal plane. Examples of plans and initial verification results are discussed. 相似文献
17.
Computed tomography (CT) images of patients having metallic implants or dental fillings exhibit severe streaking artifacts. These artifacts may disallow tumor and organ delineation and compromise dose calculation outcomes in radiotherapy. We used a sinogram interpolation metal streaking artifact correction algorithm on several phantoms of exact-known compositions and on a prostate patient with two hip prostheses. We compared original CT images and artifact-corrected images of both. To evaluate the effect of the artifact correction on dose calculations, we performed Monte Carlo dose calculation in the EGSnrc/DOSXYZnrc code. For the phantoms, we performed calculations in the exact geometry, in the original CT geometry and in the artifact-corrected geometry for photon and electron beams. The maximum errors in 6 MV photon beam dose calculation were found to exceed 25% in original CT images when the standard DOSXYZnrc/CTCREATE calibration is used but less than 2% in artifact-corrected images when an extended calibration is used. The extended calibration includes an extra calibration point for a metal. The patient dose volume histograms of a hypothetical target irradiated by five 18 MV photon beams in a hypothetical treatment differ significantly in the original CT geometry and in the artifact-corrected geometry. This was found to be mostly due to miss-assignment of tissue voxels to air due to metal artifacts. We also developed a simple Monte Carlo model for a CT scanner and we simulated the contribution of scatter and beam hardening to metal streaking artifacts. We found that whereas beam hardening has a minor effect on metal artifacts, scatter is an important cause of these artifacts. 相似文献
18.
V Sboros C M Moran T Anderson L Gatzoulis A Criton M Averkiou S D Pye W N McDicken 《Physics in medicine and biology》2001,46(12):3301-3321
An in vitro system for the investigation of the behaviour of contrast microbubbles in an ultrasound field, that provides a full diagnostic range of settings, is yet to be presented in the literature. The evaluation of a good compromise of such a system is presented in this paper. It is based on (a) an HD13000 ATL scanner (Bothell, WA, USA) externally controlled by a PC and (b) on the use of well-defined reference materials. The suspensions of the reference ultrasonic scattering material are placed in an anechoic tank. The pulse length ranges from 2 to 10 cycles, the acoustic pressure from 0.08 to 1.8 MPa, the transmit frequency from 1 to 4.3 MHz, and the receive frequency from 1 to 8 MHz. The collection of 256 samples of RF data, at an offset distance from the transducer face, was performed at 20 MHz digitization rate, which corresponds to approximately 1 cm depth in water. Two particle suspensions are also presented for use as reference scatterers for contrast studies: (a) a suspension of Orgasol (ELF Atochem, Paris, France) particles (approximately 5 microm mean diameter) and (b) a suspension of Eccosphere (New Metals & Chemicals Ltd, Essex, UK) particles (approximately 50 microm mean diameter). A preliminary experiment with the contrast agent Definity (DuPont Pharmaceutical Co, Waltham, MA) showed that the above two materials are suitable for use as a reference for contrast backscatter. 相似文献
19.
DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations 总被引:8,自引:0,他引:8
A new Monte Carlo (MC) algorithm, the 'dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 128(3) voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a 'mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The delta-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels. 相似文献
20.
Casanova Borca V Pasquino M Bresciani S Catuzzo P Ozzello F Tofani S;American Association of Physicists in Medicine 《Medical physics》2005,32(3):744-751
The accuracy of the dose calculation algorithm is one of the most critical steps in assessing the radiotherapy treatment to achieve the 5% accuracy in dose delivery, which represents the suggested limit to increase the complication-free local control of tumor. We have used the AAPM Task Group 23 (TG-23) test package for clinical photon external beam therapy to evaluate the accuracy of the new version of the PLATO TPS algorithm. The comparison between tabulated values and calculated ones has been performed for 266 and 297 dose values for the 4 and 18 MV photon beams, respectively. Dose deviations less than 2% were found in the 98.5%- and 90.6% analyzed dose points for the two considered energies, respectively. Larger deviations were obtained for both energies, in large dose gradients, such as the build-up region or near the field edges and blocks. As far as the radiological field width is concerned, 64 points were analyzed for both the energies: 53 points (83%) and 64 points (100%) were within +/-2 millimeters for the 4 and 18 MV photon beams, respectively. The results show the good accuracy of the algorithm either in simple geometry beam conditions or in complex ones, in homogeneous medium, and in the presence of inhomogeneities, for low and high energy beams. Our results fit well the data reported by several authors related to the calculation accuracy of different treatment planning systems (TPSs) (within a mean value of 0.7% and 1.2% for 4 and 18 MV respectively). The TG-23 test package can be considered a powerful instrument to evaluate dose calculation accuracy, and as such may play an important role in a quality assurance program related to the commissioning of a new TPS. 相似文献