首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Several complex diseases are caused by the malfunction of human metabolism, and deciphering the underlying molecular mechanisms can elucidate their aetiology. Systems biology is an integrative approach combining experimental and computational biology to identify and describe the molecular mechanisms of complex biological systems. Systems medicine has the potential to elucidate the onset and progression of complex metabolic diseases through the use of computational approaches. Advances in biotechnology have resulted in the provision of high-throughput data, which provide information about different metabolic processes. The systems medicine approach can utilize such data to reconstruct genome-scale metabolic models that can be used to study the function of specific enzymes and pathways in the context of the complete metabolic network. In this review, we outline the importance of genome-scale models in systems medicine and discuss how they may contribute towards the development of personalized medicine.  相似文献   

2.
Aging plays a central role in the occurrence of neurodegenerative diseases. Caloric restriction (CR) mitigates oxidative stress by decreasing the rate of generation of endogenous damage, a mechanism that can contribute to the slowing of the aging rate induced by this intervention. Various reports have recently linked methionine to aging, and methionine restriction (MetR) without energy restriction also increases life span. We have thus hypothesized that MetR can be responsible, at least in part, for the decrease in endogenous oxidative damage in CR. In this investigation we subjected male rats to exactly the same dietary protocol of MetR that is known to increase their life span. We have found that MetR: (1) decreases the mitochondrial complex I content and activity, as well as complex III content, while the complex II and IV, the mitochondrial flavoprotein apoptosis-inducing factor (AIF) and ATP content are unchanged; (2) increases the mitochondrial biogenesis factor PGC-1alpha; (3) increases the resistance of brain to metabolic and oxidative stress by increasing mitochondrial uncoupling protein 4 uncoupling protein 4 (UCP4); and (4) decreases mitochondrial oxidative DNA damage and all five different markers of protein oxidation measured and lowers membrane unsaturation in rat brain. No changes were detected for protein amino acid composition. These beneficial MetR-induced changes likely derived from metabolic reprogramming at the cellular and tissue level can play a key role in the protection against aging-associated neurodegenerative disorders.  相似文献   

3.
Yabut O  Bernstein HS 《Aging》2011,3(5):494-508
Aging-associated diseases are often caused by progressive loss or dysfunction of cells that ultimately affect the overall function of tissues and organs. Successful treatment of these diseases could benefit from cell-based therapy that would regenerate lost cells or otherwise restore tissue function. Human embryonic stem cells (hESCs) promise to be an important therapeutic candidate in treating aging-associated diseases due to their unique capacity for self-renewal and pluripotency. To date, there are numerous hESC lines that have been developed and characterized. We will discuss how hESC lines are derived, their molecular and cellular properties, and how their ability to differentiate into all three embryonic germ layers is determined. We will also outline the methods currently employed to direct their differentiation into populations of tissue-specific, functional cells. Finally, we will highlight the general challenges that must be overcome and the strategies being developed to generate highly-purified hESC-derived cell populations that can safely be used for clinical applications.  相似文献   

4.
Mitochondria form dynamic tubular networks that undergo frequent morphological changes through fission and fusion, the imbalance of which can affect cell survival in general and impact synaptic transmission and plasticity in neurons in particular. Some core components of the mitochondrial fission/fusion machinery, including the dynamin-like GTPases Drp1, Mitofusin, Opa1, and the Drp1-interacting protein Fis1, have been identified. How the fission and fusion processes are regulated under normal conditions and the extent to which defects in mitochondrial fission/fusion are involved in various disease conditions are poorly understood. Mitochondrial malfunction tends to cause diseases with brain and skeletal muscle manifestations and has been implicated in neurodegenerative diseases such as Parkinson's disease (PD). Whether abnormal mitochondrial fission or fusion plays a role in PD pathogenesis has not been shown. Here, we show that Pink1, a mitochondria-targeted Ser/Thr kinase linked to familial PD, genetically interacts with the mitochondrial fission/fusion machinery and modulates mitochondrial dynamics. Genetic manipulations that promote mitochondrial fission suppress Drosophila Pink1 mutant phenotypes in indirect flight muscle and dopamine neurons, whereas decreased fission has opposite effects. In Drosophila and mammalian cells, overexpression of Pink1 promotes mitochondrial fission, whereas inhibition of Pink1 leads to excessive fusion. Our genetic interaction results suggest that Fis1 may act in-between Pink1 and Drp1 in controlling mitochondrial fission. These results reveal a cell biological role for Pink1 and establish mitochondrial fission/fusion as a paradigm for PD research. Compounds that modulate mitochondrial fission/fusion could have therapeutic value in PD intervention.  相似文献   

5.
Overproduction of reactive oxygen species in aging tissues has been implicated in the pathogenesis of aging-associated cardiovascular dysfunction. Oxidant-induced DNA-damage activates the poly(ADP-ribose) polymerase (PARP) pathway, leading to tissue injury. In this study we investigated the acute effects of the PARP inhibitor INO-1001 on aging-associated cardiac and endothelial dysfunction. Using a pressure-volume conductance catheter, left ventricular pressure-volume analysis of young and aging rats was performed before and after a single injection of INO-1001. Endothelium-dependent and -independent vasorelaxation of isolated aortic rings were investigated by using acetylcholine and sodium nitroprusside. Aging animals showed a marked reduction of myocardial contractility and endothelium-dependent relaxant responsiveness of aortic rings. Single dose INO-1001-treatment resulted in acute improvement in their cardiac and endothelial function. Immunohistochemistry for nitrotyrosine and poly(ADP-ribose) confirmed enhanced nitro-oxidative stress and PARP-activation in aging animals. Acute treatment with INO-1001 decreased PARP-activation, but did not affect nitrotyrosine-immunoreactivity. Our results demonstrate that the aging-associated chronic cardiovascular dysfunction can be improved, at least, short term, by a single treatment course with a PARP-inhibitor, supporting the role of the nitro-oxidative stress -- PARP -- pathway in the age-related functional decline of the cardiovascular system. Pharmacological inhibition of PARP may represent a novel therapeutic utility to improve aging-associated cardiovascular dysfunction.  相似文献   

6.
Mitochondrial diseases are a heterogeneous group of rare hereditary disorders that may manifest with single organ involvement or as multisystemic disease. The pathophysiology of mitochondrial disease is complex and related to mutations of genes encoding mitochondrial proteins that are crucial to the cellular respiratory chain. Given its almost exclusive aerobic metabolism, the heart is particularly susceptible to mitochondrial dysfunction and commonly involved in mitochondrial disorders. Various clinical presentations are described, making clinical recognition challenging. Some patients may evolve towards the early need for heart transplantation, which emphasizes the importance of appropriate diagnosis and referral to a specialized centre.  相似文献   

7.
Aging is associated with various heart diseases, and this may be attributable, in part, to the prolonged exposure of the heart to cardiovascular risk factors. However, aging is also associated with heart disorders such as diastolic dysfunction that are not necessarily linked to the risk factors for cardiovascular diseases. Recent studies have demonstrated a mechanistic link between Wnt signaling and premature aging or aging-related phenotypes. As a part of the review series on Wnt signaling and the cardiovascular system, we discuss here the possible involvement of Wnt signaling in aging-associated heart diseases or heart disorders.  相似文献   

8.
Mitochondrial medicine is a field that expanded exponentially in the last 30 years. Individually rare, mitochondrial diseases as a whole are probably the most frequent genetic disorder in adults. The complexity of their genotype–phenotype correlation, in terms of penetrance and clinical expressivity, natural history and diagnostic algorithm derives from the dual genetic determination. In fact, in addition to the about 1.500 genes encoding mitochondrial proteins that reside in the nuclear genome (nDNA), we have the 13 proteins encoded by the mitochondrial genome (mtDNA), for which 22 specific tRNAs and 2 rRNAs are also needed. Thus, besides Mendelian genetics, we need to consider all peculiarities of how mtDNA is inherited, maintained and expressed to fully understand the pathogenic mechanisms of these disorders. Yet, from the initial restriction to the narrow field of oxidative phosphorylation dysfunction, the landscape of mitochondrial functions impinging on cellular homeostasis, driving life and death, is impressively enlarged. Finally, from the clinical standpoint, starting from the neuromuscular field, where brain and skeletal muscle were the primary targets of mitochondrial dysfunction as energy‐dependent tissues, after three decades virtually any subspecialty of medicine is now involved. We will summarize the key clinical pictures and pathogenic mechanisms of mitochondrial diseases in adults.  相似文献   

9.
10.
An enormous number of studies in the last two decades have been devoted to investigating the role of the endothelium in cardiovascular diseases. Nonetheless, the optimal methodology for investigating the multifaceted aspects of endothelial dysfunction is still under debate. Biochemical markers, molecular genetic tests and invasive and non-invasive tools with and without pharmacological and physiological stimuli have been introduced. Furthermore newer pharmacological tools have been proposed. However, the application of these methodologies should fulfil a number of requirements in order to provide conclusive answers in this area of research. Thus, the most relevant methodological issues in the research on endothelial function and dysfunction are summarized in this paper.  相似文献   

11.
Cigarette smoking causes various diseases, including lung cancer and cardiovascular disease, and reduces life span, though the mechanisms are not well understood. We hypothesize that smoking may cause cellular mitochondrial dysfunction and oxidative stress, leading to aging acceleration. In the present study, we tested the effects of acrolein, a major representative smoking toxicant, on human lung fibroblast IMR-90 cells with regard to cellular senescence, oxidative stress, and mitochondrial function. The results showed that subacute treatment with low dose of acrolein induces the following events compared to the control cells: cell senescence demonstrated by increases in the activity of β-galactosidase, the higher expression of p53 and p21, decreases in DNA synthesis, Sirt1 expression, and telomere length; oxidative stress occurred as the increases in the production of reactive oxygen species, DNA damage, and protein oxidation; and mitochondrial dysfunction shown as decreases in the mitochondrial membrane potential, mitochondrial biogenesis regulator PGC-1 alpha and mitochondria complex I, II, III, and V. These results suggest that acrolein may accelerate aging through the mechanism of increasing oxidative stress and mitochondrial dysfunction.  相似文献   

12.
Mitochondrial disease is a heterogeneous group of multisystemic diseases that develop consequent to mutations in nuclear or mitochondrial DNA. The prevalence of inherited mitochondrial disease has been estimated to be greater than 1 in 5,000 births; however, the diagnosis and treatment of this disease are not taught in most adult-cardiology curricula. Because mitochondrial diseases often occur as a syndrome with resultant multiorgan dysfunction, they might not immediately appear to be specific to the cardiovascular system. Mitochondrial cardiomyopathy can be described as a myocardial condition characterized by abnormal heart-muscle structure, function, or both, secondary to genetic defects involving the mitochondrial respiratory chain, in the absence of concomitant coronary artery disease, hypertension, valvular disease, or congenital heart disease. The typical cardiac manifestations of mitochondrial disease—hypertrophic and dilated cardiomyopathy, arrhythmias, left ventricular myocardial noncompaction, and heart failure—can worsen acutely during a metabolic crisis. The optimal management of mitochondrial disease necessitates the involvement of a multidisciplinary team, careful evaluations of patients, and the anticipation of iatrogenic and noniatrogenic complications.In this review, we describe the complex pathophysiology of mitochondrial disease and its clinical features. We focus on current practice in the diagnosis and treatment of patients with mitochondrial cardiomyopathy, including optimal therapeutic management and long-term monitoring. We hope that this information will serve as a guide for practicing cardiologists who treat patients thus affected.Key words: Cardiomyopathies/genetics/pathology/therapy, DNA, mitochondrial/analysis/genetics, energy metabolism/physiology, electron transport/physiology, genetic predisposition to disease, heart diseases/genetics, mitochondria/physiology, mitochondrial diseases/complications/diagnosis/genetics/physiopathology/drug therapy, risk factors, ventricular dysfunction, left/geneticsThe myocardium depends on a high level of aerobic metabolism to supply blood and energy substrate to all organs of the body. The mitochondria have a key role in energy production and in the growth and regulation of cardiac bioenergetic arrangements. Specific mitochondrial diseases have been attributed to mitochondrial mutations, and cardiac involvement is frequent. However, these syndromes are generally not covered comprehensively in cardiology curricula and might not be widely recognized by practicing cardiologists who treat adults. Recent research has shown that derangements of energy metabolism are ultimately implicated in most forms of heart failure. In this review, we describe the biologic characteristics of the mitochondria and their role in cardiac bioenergetic arrangements, discuss the spectrum of mitochondrial disease, and provide a guide for practicing cardiologists to use when treating patients affected by mitochondrial crisis.  相似文献   

13.
Mitochondrial dysfunction, with an estimated incidence of 1 in 5,000 births, is associated with a wide variety of multisystem degenerative diseases. Among the most prevalent forms of dysfunction are defects in the NADH:ubiquinone oxidoreductase (complex I). Caenorhabditis elegans strains with complex I mutations exhibit characteristic features of human mitochondrial disease including decreased rates of respiration and lactic acidosis. We hypothesized that introducing an additional pathway for the direct oxidation of lactate would be beneficial for energy metabolism. The yeast CYB2 gene encodes an L-lactate:cytochrome c oxidoreductase that oxidizes lactate, donates electrons directly into the mitochondrial respiratory chain, and supports lactate-dependent respiration. Cyb2p expression markedly increases lifespan, fertility, respiration rates, and ATP content in complex I-deficient animals. Our results indicate that metabolic imbalance leading to lactic acidosis and energy depletion are central mechanisms of pathogenesis in mitochondrial dysfunction and that introduction of an additional pathway for lactate oxidation should be considered as a treatment.  相似文献   

14.
OBJECTIVE: Because articular chondrocytes reside in a hypoxic milieu, anaerobic glycolysis is central in generating ATP to support chondrocyte matrix synthesis and viability, with mitochondrial oxidative phosphorylation possibly providing physiologic reserve ATP generation. Nitric oxide (NO) potently suppresses mitochondrial oxidative phosphorylation. Because enhanced cartilage NO generation occurs in osteoarthritis (OA), we systematically tested for mitochondrial dysfunction in the pathogenesis of OA. METHODS: We assessed chondrocytes for ATP depletion and for in situ changes in mitochondrial ultrastructure prior to and during the evolution of spontaneous knee OA in male Hartley guinea pigs, a model in which chondrocalcinosis also supervenes. RESULTS: Spontaneous NO release from knee cartilage samples in organ culture doubled between ages 2 months and 8 months as knee OA developed. Concomitantly, chondrocyte intracellular ATP levels declined by approximately 50%, despite a lack of mitochondrial ultrastructure abnormalities in knee chondrocytes. As ATP depletion progressed with aging in knee chondrocytes, an increased ratio of lactate to pyruvate was observed, consistent with an adaptive augmentation of glycolysis to mitochondrial dysfunction. Furthermore, we observed progressive elevation of chondrocyte ATP-scavenging nucleotide pyrophosphatase/phosphodiesterase (NPP) activity and extracellular levels of the NPP enzymatic end product inorganic pyrophosphate (PPi), which stimulate chondrocalcinosis. CONCLUSION: Profound chondrocyte ATP depletion develops in association with heightened NO generation in guinea pig knee OA. Increased NPP activity and concordant increases in extracellular PPi, which are strongly associated with human aging-associated degenerative arthropathy and directly stimulate chondrocalcinosis, may be primarily driven by chondrocyte ATP depletion. Our findings implicate a decreased mitochondrial bioenergetic reserve as a pathogenic factor in both degenerative arthropathy and chondrocalcinosis in aging.  相似文献   

15.
The most frequently reported species of mitochondrial DNA (mtDNA) damage associated with ageing is the 4977-bp 'Common Deletion'. However, recent observations have raised several issues within the deletion debate namely: the significance of the 4977-bp deletion (CD) as a universal DNA marker of ageing and mitochondrial dysfunction; and the possibility for maternal transmission of deletions in humans. Previous attempts at answering these questions have been limited because many investigations have been cross-sectional studies of unrelated individuals. With the unique feature of the maternal inheritance of mtDNA, our study overcomes some of these limitations by investigating the CD in human maternal lines, which represent 21 families spanning four generations. Using a highly sensitive PCR methodology, we identified the presence of the CD in leukocytes from all 71 individuals (age range-8 months-99 years) including all infants and children (n=15) which in addition were free of any known mitochondrial diseases. This is important because the few reports of the CD in infants have been linked to mitochondrial disease. These results question the significance of the CD as a universal DNA marker of ageing and subsequent mitochondrial dysfunction and provide support for the possibility for maternal transmission of deletions.  相似文献   

16.
Uncontrolled cell death is a fundamental cause of organ disease in humans. However, despite the need for us to delineate the molecular machinery that underlies cardiomyocyte death, our knowledge of these lethal cellular processes is still limited. The discovery that mitochondrial dysfunction, and in particular the mitochondrial permeability transition (MPT) pore, is often a common cause of the cardiac cell mortality that underlies numerous cardiac diseases has been a first crucial step. The purpose of this review is to outline our current understanding of the molecular identity of the MPT pore and the many questions that still need to be answered.  相似文献   

17.
线粒体功能障碍在糖尿病并发症发病机制中发挥重要作用,并且靶向线粒体功能的治疗策略在此类疾病中也越来越受重视。本课题组长期致力于探寻线粒体氧化应激、能量代谢等线粒体功能失衡与多种糖尿病并发症的联系。本文就线粒体功能障碍在糖尿病溃疡、糖尿病肾病、糖尿病并发非酒精性脂肪肝发病机制中的作用及具体分子途径进行综述,并探讨靶向线粒体功能障碍治疗上述疾病的可行性。  相似文献   

18.
Mitochondria play a critical role in the cardiomyocyte physiology by generating majority of the ATP required for the contraction/relaxation through oxidative phosphorylation (OXPHOS). Aging is a major risk factor for cardiovascular diseases (CVD) and mitochondrial dysfunction has been proposed as potential cause of aging. Recent technological innovations in Seahorse XFe24 Analyzer enhanced the detection sensitivity of oxygen consumption rate and proton flux to advance our ability study mitochondrial function. Studies of the respiratory function tests in the isolated mitochondria have the advantages to detect specific defects in the mitochondrial protein function and evaluate the direct mitochondrial effects of therapeutic/pharmacological agents. Here, we provide the protocols for studying the respiratory function of isolated murine cardiac mitochondria by measuring oxygen consumption rate using Seahorse XFe24 Analyzer. In addition, we provide details about experimental design, measurement of various respiratory parameters along with interpretation and analysis of data.  相似文献   

19.
Aging is a natural process characterized by a progressive functional impairment and reduced capacity to respond adaptively to environmental stimuli. Aging is associated with increased susceptibility to a variety of chronic diseases, including type 2 diabetes mellitus, cancer, and neurological diseases. Lung pathologies are not the exception, and the prevalence of several interstitial lung diseases (ILDs), primarily idiopathic pulmonary fibrosis, has been found to increase considerably with age. Although our understanding of the biology of aging has advanced remarkably in the last 2 decades, the molecular mechanisms linking aging to ILD remain unclear. Immunosenescence, oxidative stress, abnormal shortening of telomeres, apoptosis, and epigenetic changes affecting gene expression have been proposed to contribute to the aging process, and aging-associated diseases. Here, we review the emerging concepts highlighting the putative aging-associated abnormalities involved in some human ILDs.  相似文献   

20.
It is now widely accepted that oxidant stress and the ensuing endothelial dysfunction play a key role in the pathogenesis of atherosclerosis and cardiovascular diseases. The mitochondrial respiratory chain is the major source of reactive oxygen species as byproducts of normal cell respiration. Mitochondria may also be important targets for reactive oxygen species, which may damage mitochondrial lipids, enzymes and DNA with following mitochondrial dysfunction. Free cholesterol, oxidized low-density lipoprotein and glycated high-density lipoprotein are further possible causes of mitochondrial dysfunction and/or apoptosis. Moreover, in patients with mitochondrial diseases, vascular complications are commonly observed at an early age, often in the absence of traditional risk factors for atherosclerosis. We propose that mitochondrial dysfunction, besides endothelial dysfunction, represents an important early step in the chain of events leading to atherosclerotic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号