首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HVEM既可作为受体与LIGHT作用传递正性共刺激信号,又能作为配体作用于BTLA介导负性共抑制信号。为深入探讨HVEM对T细胞复杂而又独特的调控作用,本文研究了HVEM在免疫细胞上的表达特性,初步探讨了T细胞表达的HVEM分子所介导的生物学作用。采用LPS刺激人新鲜PBMC,以及PHA或PMA/IM刺激活化T细胞;间接免疫荧光标记和流式细胞术检测HVEM表达;MTT法分析T细胞增殖作用。结果显示,HVEM在不同条件刺激活化的T细胞表面均呈现先上调后下调表达;T细胞增殖试验表明,基因转染细胞L929/LIGHT能够明显促进T细胞的增殖及IL-2和IFN-γ的分泌,而以抗人BTLA单抗在一定程度上模拟HVEM所介导的BTLA/HVEM信号能够明显抑制T细胞增殖作用及细胞因子IL-2、IFN-γ和IL-10的产生。  相似文献   

2.
The intracellular sensor Nod2 is activated in response to bacteria, and the impairment of this response is linked to Crohn's disease. However, the function of Nod2 in host defense remains poorly understood. We found that Nod2-/- mice exhibited impaired intestinal clearance of Citrobacter rodentium, an enteric bacterium that models human infection by pathogenic Escherichia coli. The increased bacterial burden was preceded by reduced CCL2 chemokine production, inflammatory monocyte recruitment, and Th1 cell responses in the intestine. Colonic stromal cells, but not epithelial cells or resident CD11b+ phagocytic cells, produced CCL2 in response to C. rodentium in a Nod2-dependent manner. Unlike resident phagocytic cells, inflammatory monocytes produced IL-12, a cytokine that induces adaptive immunity required for pathogen clearance. Adoptive transfer of Ly6C(hi) monocytes restored the clearance of the pathogen in infected Ccr2-/- mice. Thus, Nod2 mediates CCL2-CCR2-dependent recruitment of inflammatory monocytes, which is important in promoting bacterial eradication in the intestine.  相似文献   

3.
The enteric pathogen Toxoplasma gondii is controlled by a vigorous innate T helper 1 (Th1) cell response in the murine model. We demonstrated that after oral infection, the parasite rapidly recruited inflammatory monocytes [Gr1(+) (Ly6C(+), Ly6G(-)) F4/80(+)CD11b(+)CD11c(-)], which established a vital defensive perimeter within the villi of the ileum in the small intestine. Mice deficient of the chemokine receptor CCR2 or the ligand CCL2 failed to recruit Gr1(+) inflammatory monocytes, whereas dendritic cells and resident tissue macrophages remained unaltered. The selective lack of Gr1(+) inflammatory monocytes resulted in an inability of mice to control replication of the parasite, high influx of neutrophils, extensive intestinal necrosis, and rapid death. Adoptive transfer of sorted Gr1(+) inflammatory monocytes demonstrated their ability to home to the ileum in infected animals and protect Ccr2(-/-) mice, which were otherwise highly susceptible to oral toxoplasmosis. Collectively, these findings illustrate the critical importance of inflammatory monocytes as a first line of defense in controlling intestinal pathogens.  相似文献   

4.
Cysteine-cysteinyl chemokine receptor 4 (CCR4) is expressed by a variety of T-cell subsets and leukocytes. This study examined the participation of CCR4 in response to pulmonary infection with Mycobacterium bovis Bacille-Calmette-Guerin (BCG). Constitutive and induced CCR4 agonist expression was detected among large mononuclear cells. The course of infection and mobilization of effector cell populations were then analyzed in CCR4 knockout (CCR4(-/-)) mice. Compared with controls, CCR4(-/-) mice displayed delayed innate stage (<2 weeks) bacterial clearance and reduced late stage inflammation. Innate impairment was associated with reduced natural killer cell activation. In the adaptive phase, CCR4(-/-) mice generated effector T cells in draining lymph nodes and accumulated effector T cells in lungs, which resulted in normal adaptive stage bacterial elimination at 2 to 4 weeks. However, during the late stage, CCR4(-/-) mice had reduced interferonγ+CD4(+)α/β+ (Th1) and interleukin (IL)-17+CD4(+)α/β+ (Th17) T helper cells in lungs. In contrast, IL-17+ γ/δ T cells in lungs were unaffected. When challenged with mycobacterial antigen- (Ag-) Ag-coated beads to elicit a recall granulomatous response, CCR4(-/-) mice displayed abrogated recall granuloma formation and reduced interferon γ+ Th1 cells. These findings indicate that CCR4 supports innate natural killer cell activation and sustains later CD4(+) Th effector/memory antimycobacterial responses in the lung but is redundant in the early adaptive elimination phase.  相似文献   

5.
CD160, a glycosylphosphatidylinositol-anchored member of the immunoglobulin superfamily, is expressed on both cytolytic lymphocytes and some unstimulated CD4+ T cells. Here we show that CD160 expression was increased after activation of human CD4+ T cells and that crosslinking CD160 with monoclonal antibody strongly inhibited CD3- and CD28-mediated activation. We found that herpesvirus entry mediator (HVEM) was a ligand of CD160 that acted as a 'bidirectional switch' for T cell activation, producing a positive or negative outcome depending on the engagement of HVEM by CD160 and known HVEM ligands such as B and T lymphocyte attenuator (BTLA) and the T lymphocyte receptor LIGHT. Inhibition of CD4+ T cell activation by HVEM-transfected cells was dependent on CD160 and BTLA; when the cysteine-rich domain 1 of HVEM was deleted, this inhibition was lost, resulting in strong T cell activation. CD160 thus serves as a negative regulator of CD4+ T cell activation through its interaction with HVEM.  相似文献   

6.
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous Gr1(+) CD11b(+) population of immature cells containing granulocytic and monocytic progenitors, which expand under nearly all inflammatory conditions and are potent repressors of T-cell responses. Studies of MDSCs during inflammatory responses, including sepsis, suggest they can protect or injure. Here, we investigated MDSCs during early and late sepsis. To do this, we used our published murine model of cecal ligation and puncture (CLP)-induced polymicrobial sepsis, which transitions from an early proinflammatory phase to a late anti-inflammatory and immunosuppressive phase. We confirmed that Gr1(+) CD11b(+) MDSCs gradually increase after CLP, reaching ~88% of the bone marrow myeloid series in late sepsis. Adoptive transfer of early (day 3) MDSCs from septic mice into naive mice after CLP increased proinflammatory cytokine production, decreased peritoneal bacterial growth, and increased early mortality. Conversely, transfer of late (day 12) MDSCs from septic mice had the opposite effects. Early and late MDSCs studied ex vivo also differed in their inflammatory phenotypes. Early MDSCs expressed nitric oxide and proinflammatory cytokines, whereas late MDSCs expressed arginase activity and anti-inflammatory interleukin 10 (IL-10) and transforming growth factor β (TGF-β). Late MDSCs had more immature CD31(+) myeloid progenitors and, when treated ex vivo with granulocyte-macrophage colony-stimulating factor (GM-CSF), generated fewer macrophages and dendritic cells than early MDSCs. We conclude that as the sepsis inflammatory process progresses, the heterogeneous MDSCs shift to a more immature state and from being proinflammatory to anti-inflammatory.  相似文献   

7.
Rapid overproduction of proinflammatory cytokines are characteristic of sepsis. CD14(dim)CD16(+) monocytes are thought to be major producers of cytokine and have been shown to be elevated in septic patients. Toll-like receptors (TLR) are pattern recognition receptors important in mediating the innate immune response and their activation can lead to production of cytokines. Using whole blood culture and flow cytometry we have investigated TLR2 and TLR4 regulation after stimulation with sepsis-relevant antigens [lipopolysaccharide (LPS), Staphylococcal enterotoxin B (SEB) and peptidoglycan (PGN)]. The percentage of CD14(dim)CD16(+) monocyte population expanded at 20 h post-stimulation, after a rise in tumour necrosis factor (TNF)-alpha and interleukin (IL)-6 at 2 h. A strong positive correlation between the percentage of CD14(dim)CD16(+) monocytes and secreted TNF-alpha was demonstrated (r = 0.72). Furthermore, we were able to induce expansion of the CD14(dim)CD16(+) population to approximately 35% of all monocytes with the addition of recombinant TNF-alpha to the whole blood culture. TLR4 was found to be expressed 2.5 times higher on CD14(dim)CD16(+) compared to CD14(+) CD16(-) monocytes, while TLR2 expression was similar in both subpopulations. The CD14(dim)CD16(+) and CD14(+) CD16(-) monocyte populations were different in their response to various antigens. LPS down-regulated TLR4 by 4.9 times in CD16(+) monocytes compared to only 2.3 times in CD16(-) monocytes at 2 h. LPS was able to up-regulate TLR2 by 6.2 times after 2 h, with no difference between the subpopulations. LPS further up-regulated TLR2 by 18.4 times after 20 h only in the CD14(+) CD16(-) population. PGN and SEB induced no significant changes in TLR2 or TLR4 expression. We hypothesize that following exposure to bacterial antigens, subsequent TNF-alpha drives a differentiation of monocytes into a CD14(dim)CD16(+) subpopulation.  相似文献   

8.
The TNF receptor superfamily member death receptor 3 (DR3) exacerbates Th2- and Th17-cell-mediated inflammatory and autoimmune conditions, yet no role in host defence has been reported. Here, we examined the role of DR3 during infection with Salmonella enterica serovar Typhimurium. Infection resulted in protracted expression of the DR3 ligand TL1A but not the related TNF superfamily proteins OX40L or CD30L. TL1A expression was localized to splenic F4/80(+) macrophages where S. enterica Typhimurium replicates, and temporally coincided with the onset of CD4(+) -cell expansion. To address the relevance of the TL1A-DR3 interaction, we examined immune responses to S. enterica Typhimurium in mice lacking DR3. Infected DR3(-/-) mice harboured reduced numbers of antigen-experienced and proliferating CD4(+) T cells compared with WT mice. Furthermore, the frequency of IFN-γ(+) CD4(+) T cells in DR3(-/-) mice was lower throughout the time of bacterial clearance. Importantly, bacterial clearance, which is dependent on Th1 cells, was also impaired in DR3(-/-) mice. This defect was intrinsic to CD4(+) T cells as evidenced by an increase in bacterial burden in RAG2-deficient mice receiving DR3(-/-) CD4(+) T cells compared with WT CD4(+) -cell recipients. These data establish for the first time a role for DR3 in a host defence response.  相似文献   

9.
Although studies blocking the Fas pathway indicate it can decrease organ damage while improving septic (cecal ligation and puncture, CLP) mouse survival, little is known about how Fas-Fas ligand (FasL) interactions mediate this protection at the tissue level. Here, we report that although Fas expression on splenocytes and hepatocytes is up-regulated by CLP and is inhibited by in vivo short interfering RNA, FasL as well as the frequency of CD8(+) T cells are differentially altered by sepsis in the spleen (no change in FasL, decreased percentage of CD8(+) and CD4(+) T cells) versus the liver (increased FasL expression on CD8(+) T cells and increase in percentage/number). Adoptive transfer of CLP FasL(+/+) versus FasL(-/-) mouse liver CD8(+) T cells to severe combined immunodeficient or RAG1(-/-) recipient mice indicated that these cells could induce inflammation. The FasL-mediated cytotoxic capacity of these septic mouse liver CD8(+) T cells was shown by their ability to damage directly cultured hepatocytes. Finally, although CD8(-/-) mice exhibited a reduction in both CLP-induced liver active caspase-3 staining and blood interleukin-6 levels, only FasL(-/-) (but not CD8(-/-)) protected the septic mouse spleen from increasing apoptosis. Thus, although truncating Fas-FasL signaling ameliorates many untoward effects of sepsis, the pathological mode of action is distinct at the tissue level.  相似文献   

10.
Wang XF  Chen YJ  Wang Q  Ge Y  Dai Q  Yang KF  Fang-Xie  Zhou YH  Hu YM  Mao YX  Zhang XG 《Tissue antigens》2007,69(2):145-153
B and T lymphocyte attenuator (BTLA) has been recently identified as a new inhibitory receptor of the CD28 superfamily, with similarities to cytotoxic T lymphocyte activation antigen (CTLA)-4 and programmed death (PD)-1. Engagement of BTLA on T lymphocytes can profoundly reduce the T cell receptor (TCR)-mediated activation. In this study, we generated four monoclonal antibodies (mAbs) against human BTLA. Using the produced mAb 8H9, the BTLA molecule was found to distinctly express on many subgroups of immunocytes and show a regulatory expression, which was in accordance with its unique ligand herpes virus entry mediator (HVEM) in the process of T cell activation. In addition, the expression of BTLA was increased in the CD4(+) and CD8(+) T cells of pleural fluid in lung cancer patients. Furthermore, we showed that the BTLA-induced negative signals could be triggered by mAb 7D7. Cross-linking of BTLA with mAb 7D7 suppressed T lymphocyte proliferation, downregulated the expression of T cell activation marker CD25, and inhibited the production of interferon (IFN)-gamma, interleukin (IL)-2, IL-4, and IL-10.  相似文献   

11.
Trials of immune-modulating drugs in septic patients have mostly failed to demonstrate clinical efficacy. Thus, we sought to generate a surrogate model of myelomonocytic lineage differentiation that would potentially allow sepsis induction and preclinical testing of anti-inflammatory drugs. Comparing transplantation of cord blood-derived stem cells in neonatal NOD/SCID/IL2Rγ(null) (neonatal huNSG) mice with transplantation of adult peripheral mobilized stem cells into adult NSG (adult huNSG) recipients, we demonstrate that myelomonocytic lineage differentiation in neonatal huNSG mice is retarded and monocytes are phenotypically immature with respect to HLA-DR expression and the emergence of CD80(+)CD86(+) monocytes. Functionally, neonatal huNSG mice were less sensitive toward interferon-γ-induced upregulation of CD86 and exhibited a reduced T-cell stimulating capacity when compared with adult huNSG mice, whereas the phagocytic activity and the ability for cytokine secretion were mature. However, comparison of these data with data obtained from human neonates indicate that absence of the CD80(+)CD86(+) population and the reduced T-cell stimulating capacity of neonatal huNSG monocytes resemble functional immaturities observed in human neonatal monocytes. Thus, these two mouse models might well serve as 2 independent surrogate models for studying the neonatal myelomonocytic lineage differentiation or for testing the efficacy of immunomodulatory drugs on functionally mature monocytes.  相似文献   

12.
Summary:  CD160 is a newly identified ligand for HVEM (herpes virus entry mediator). Previously identified HVEM ligands include BTLA (B- and T-lymphocyte attenuator), LIGHT (lymphotoxin-like, exhibits inducible expression, and competes with herpes simplex virus glycoprotein D for HVEM, a receptor expressed by T lymphocytes) and LTα (lymphotoxin-α). The binding of LIGHT or LTα to HVEM delivers a costimulatory signal, whereas the binding of BTLA or CD160 to HVEM delivers a coinhibitory signal. Thus, HVEM is a bidirectional switch regulating T-cell activation in a costimulatory or coinhibitory fashion whose outcome depends on the ligand engaged. The cysteine-rich domain 1 (CRD1) of HVEM is essential for the binding of coinhibitory ligands CD160 and BTLA but not costimulatory ligand LIGHT. Deletion or blockade of HVEM CRD1 abolishes the binding of CD160 and BTLA, but not LIGHT, and converts HVEM to a dominant costimulatory molecule, possibly through the loss of negative signaling by CD160/BTLA. Therapies targeting the CRD1 of HVEM to block BTLA and CD160 binding are being developed to enhance immune responses and vaccination.  相似文献   

13.
Septic peritonitis remains a major cause of death. Neutrophils and inflammatory monocytes are principal components of the innate immune system and are essential for defense against a range of microbial pathogens. Their role and interaction in polymicrobial sepsis have not been defined clearly. Using a murine model of CLP to induce moderate sepsis, we found that neutrophil depletion did not alter survival, whereas depletion of neutrophils and inflammatory monocytes markedly reduced survival. After neutrophil depletion, inflammatory monocytes had greater phagocytic capacity and oxidative burst, and increased expression of costimulatory molecules, TNF, and iNOS. Notably, peritoneal neutrophils produced IL-10 following CLP. Adoptive i.p. transfer of WT but not IL-10(-/-) neutrophils into septic mice reduced monocyte expression of TNF. In vitro experiments confirmed that monocyte suppression was mediated by neutrophil-derived IL-10. Thus, during septic peritonitis, neutrophils suppress peritoneal inflammatory monocytes through IL-10 and are dispensable for survival.  相似文献   

14.
目的:探讨CD28家族共抑制分子B和T淋巴细胞衰减因子在类风湿关节炎(RA)患者滑膜组织内的表达。方法:免疫组化法检测RA患者滑膜组织BTLA的表达;并使用免疫荧光法检测BTLA的细胞定位及分布。结果:免疫组化结果证实,RA患者滑膜组织中有大量的BTLA阳性细胞,形态观察提示这些阳性的细胞主要是淋巴结处的淋巴细胞及巨噬细胞;免疫荧光分析进一步表明这些BTLA+细胞主要为CD3+T细胞及CD68+巨噬细胞,少数CD31+内皮细胞也表达BTLA。此外,对比其他B7家族共刺激分子在滑膜组织中的分布,免疫荧光发现BTLA共表达于B7-H1+,B7-H4+及HVEM+细胞,但不表达于B7-DC+及B7-H3+细胞。结论:关节炎滑膜组织内有大量BTLA阳性细胞,提示BTLA有可能参与并调节了关节炎的病理进程。  相似文献   

15.
Ulcerative colitis (UC) is an inflammatory bowel disease, and its pathogenesis involves a variety of genetic, environmental, and immunological factors such as T helper cells and their secreted cytokines. B and T lymphocyte attenuator (BTLA) is an immunoregulatory receptor that has a strong suppressive effect on T-cell function. However the role of BTLA in UC remains poorly understood. Here we demonstrated that the frequency of BTLA-expressing CD3+ T cells, especially CD4+ T cells, increased in blood and mucosa in mice with DSS-induced colitis. The frequency of Foxp3-expressing cells in BTLA+ CD4+ T cell from lamina propria mononuclear cells (LPMCs) was much higher in DSS-treated mice than that in controls. Similarly, the proportion of IL-17+ cells in BTLA+ CD4+ T cells from LPMCs in DSS-treated mice is much higher than that in controls, while no perceptible difference for the proportion of IFN-γ+ cells in BTLA+ CD4+ T cells was noted between DSS-treated mice and controls. Treatment of mesalazine, an anti-ulcerative colitis drug, down-regulated Foxp3 and IL-17 expression in BTLA positive T cells along with attenuated severity for colitis. Our findings indicate that BTLA may be involved in the control of inflammatory responses through increasing Foxp3 expression, rather than attenuating IL-17 production, in DSS-induced colitis.  相似文献   

16.
B cells have multiple functions in adaptive immunity, including antibody production, antigen presentation and regulation of T-cell responses. Recent evidences indicate that B cells have more subsets than previously thought and may have non-classical functions, such as involvement in innate immunity and immune regulation; however, how B cells respond to microbial infection and elicit innate defense remain unclear. In this study, we identified a new subset of PDCA-1(+) Siglec-H(-) CD19(+) B cells in mice during the early period of bacterial infection with Listeria monocytogenes. PDCA-1(+) Siglec-H(-) CD19(+) B cells secreted large amounts of IFN-α and thus facilitated IFN-γ production and cytotoxicity function of natural killer (NK) cells via IFN-α. B-cell-deficient Btk(-/-) mice were incapable of producing PDCA-1(+) CD19(+) B cells, and were more sensitive to L. monocytogenes infection. Adoptive transfer of PDCA-1(+) CD19(+) B cells to Btk(-/-) mice normalized their resistance to L. monocytogenes infection. Furthermore, we found that macrophages were essential for the inducible generation of PDCA-1(+) Siglec-H(-) CD19(+) B cells via CD40-CD40L ligation. Therefore, we have identified a new subset of PDCA-1(+) Siglec-H(-) CD19(+) B cells, which enhances innate immune responses against bacterial infection by activating NK cells via secretion of IFN-α.  相似文献   

17.
CD4+CD25+ regulatory T (T(R)) cells are a naturally occurring population of T cells that suppress the development of a variety of pathological immune responses. However, as human inflammatory diseases are usually not diagnosed until after the onset of clinical symptoms, it is of great interest to determine whether CD4+CD25+ T(R) cells can reverse established pathology. To examine this question we have utilized a murine model of human inflammatory bowel disease (IBD), where pathology is triggered by infection of immune deficient RAG-/- mice with the pathogenic bacterium Helicobacter hepaticus. Here we demonstrate that adoptively transferred CD4+CD25+ T(R) cells can cure established intestinal inflammation that is mediated by innate immune activation in H. hepaticus-infected RAG-/- mice. CD4+CD25+ T(R) cell-mediated amelioration of innate intestinal pathology was accompanied by a reversal in systemic innate immune activation, but did not involve any detectable anti-bacterial effects, as bacterial colonization levels were unchanged. Cure of established pathology was not achieved using subpopulations of CD4+CD25- T cells, further emphasizing the enhanced regulatory activity of CD4+CD25+ T(R) cells.  相似文献   

18.
Migratory fate and differentiation of blood monocyte subsets   总被引:10,自引:0,他引:10  
Tacke F  Randolph GJ 《Immunobiology》2006,211(6-8):609-618
Monocytes are established circulating precursors for tissue macrophages and dendritic cells (DCs). Monocyte-derived macrophages and DCs fulfill critical roles in innate and adaptive immunity during inflammation, and it is believed that monocytes also maintain these populations in peripheral tissues during homeostasis. However, the continuous replenishment of any DC pool by blood monocytes in the steady state remains to be established, and some macrophage populations may be self-renewing in the steady state. Recent identification of mouse monocyte subsets that closely resemble human monocyte subsets has inspired a variety of techniques wherein monocytes can be readily traced in vivo to address these critical questions. There are two major monocyte subsets that vary in chemokine receptor (CCR) and adhesion molecule expression, and in migratory and differentiation properties. In humans, 'classical' CD14+ CD16- monocytes express CCR2, CD64, CD62L, whereas 'non-classical' CD14low CD16+ monocytes lack CCR2. Their counterparts in mice are CCR2+ Gr-1hi and CCR2- Gr-1low monocytes, respectively. Gr-1hi (Ly6Chi) monocytes are recruited to inflammatory sites, e.g. inflamed skin or acutely inflamed peritoneum and give rise to macrophages and DCs in inflammatory or infectious disease models and to epidermal Langerhans cells after skin inflammation. Gr-1low monocytes have been proposed as precursors for steady state DCs, but experimental evidence is as of yet limited. Fortunately, the rate of progress in the study of monocyte fate is rapidly picking up pace, giving rise to the expectation that we will soon know much more about the biology of monocytes in the steady state and inflammation.  相似文献   

19.
Shang Y  Guo G  Cui Q  Li J  Ruan Z  Chen Y 《Inflammation》2012,35(3):1102-1112
Co-inhibitory signaling from B and T lymphocyte attenuator (BTLA) can suppress lymphocyte activation and maintain peripheral tolerance. However, the expression and anatomical distribution of BTLA and its ligand, herpesvirus entry mediator (HVEM), in rheumatoid arthritis (RA) synovium have not been reported. In this study, we analyzed the expression of HVEM and BTLA in RA synovium by immunohistochemistry, and our results showed that both factors were observed in all four cases of RA samples. At the cellular level, both HVEM and BTLA were found on the cell membrane and in the cytoplasm. Fluorescence dual staining demonstrated that HVEM was chiefly on CD3+ T cells, CD68+ macrophages, and to a lesser extent was found on CD31+ endothelial cells. Similarly, the expression of BTLA was observed on infiltrated CD3+ T cells and CD68+ macrophages. The co-expression of HVEM and BTLA with some members of the B7 family in these sections was also analyzed, and the results showed that HVEM antigen was also found on B7-H3+ capillaries, while it was absent on B7-H1+, B7-DC+, B7-H4+, and Z39Ig+ cells. Interestingly, BTLA was observed on B7-H1+, B7-H4+, and HVEM+ cells in the synovium. The characteristic expression and distribution of BTLA/HVEM in the synovium indicated that their signaling probably affects the pathogenesis of RA, and a clear understanding of their functional roles may further elucidate the pathogenesis of this disease.  相似文献   

20.
With the legendary saying of Leonardo da Vinci in the title, we suggest that Glucocorticoid Induced Leucine Zipper (GILZ) may have more promising effects against polymicrobial sepsis, than glucocorticoids (GC). Indeed, the use of GCs in sepsis remains a matter of debate. The rationale for their use in sepsis is to modulate the exaggerated inflammatory response while maintaining innate immunity. However, GC resistance and side-effects limit their therapeutic value in sepsis. Hence, there is a growing interest in understanding the mechanisms by which GCs modulate immune responses upon infection. In this issue of the European Journal of Immunology, Ellouze et al. provide data demonstrating that deregulated expression of GILZ, a GC-induced protein, in monocytes/macrophages (M/M) recovered from septic shock patients may contribute to the pathogenesis. Furthermore, the authors demonstrate that GILZ overexpression in M/M improves outcome in septic animals by limiting systemic inflammation while increasing bacterial clearance. Overall, these data provide evidence that GCs may modulate immune responses via GILZ and that GILZ is a valuable alternative for GC therapy in sepsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号