首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Magowan  C; Coppel  RL; Lau  AO; Moronne  MM; Tchernia  G; Mohandas  N 《Blood》1995,86(8):3196-3204
During intraerythrocytic growth of Plasmodium falciparum, several parasite proteins are transported from the parasite to the erythrocyte membrane, where they bind to membrane skeletal proteins. Mature- parasite-infected erythrocyte surface antigen (MESA) has previously been shown to associate with host erythrocyte membrane skeletal protein 4.1. Using a spontaneous mutant of P falciparum that has lost the ability to synthesize MESA and 4.1-deficient erythrocytes, we examined growth of MESA(+) and MESA(-) parasites in normal and 4.1-deficient erythrocytes. Viability of MESA(+) parasites was reduced in 4.1- deficient erythrocytes as compared with that for normal erythrocytes, but MESA(-) parasites grew equally well in 4.1-deficient and normal erythrocytes. Cytoadherence of MESA(+)- and MESA (-)-parasitized normal and 4.1-deficient erythrocytes to C32 melanoma cells was similar, indicating that neither protein 4.1 nor MESA plays a major role in cytoadherence of infected erythrocytes. Localization of MESA in normal and 4.1-deficient erythrocytes was examined by confocal microscopy. MESA was diffusely distributed in the cytosol of 4.1-deficient erythrocytes but was membrane-associated in normal erythrocytes. These findings suggest that MESA binding to protein 4.1 plays a major role in intraerythrocytic parasite viability.  相似文献   

2.
Soft x-ray microscopy is a novel approach for investigation of intracellular organisms and subcellular structures with high spatial resolution. We used x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes and in infected erythrocytes treated with cysteine protease inhibitors. Investigations in normal red blood cells enabled us to recognize anomalies in parasite structures resulting from growth under unfavorable conditions. X-ray microscopy facilitated detection of newly elaborated structures in the cytosol of fixed, unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. In cysteine protease inhibitor-treated, infected erythrocytes, high concentrations of material were detected in abnormal digestive vacuoles and aggregated at the parasite plasma membrane. We have demonstrated that an abnormal host erythrocyte skeleton affects structural development of parasites and that this aberrant development can be detected in the following generation when parasites from protein 4.1-deficient red blood cells infect normal erythrocytes. This work extends our current understanding of the relationship between the host erythrocyte membrane and the intraerythrocytic malaria parasite by demonstrating for the first time that constituents of the erythrocyte membrane play a role in normal parasite structural development.  相似文献   

3.
Waller KL  Nunomura W  An X  Cooke BM  Mohandas N  Coppel RL 《Blood》2003,102(5):1911-1914
The Plasmodium falciparum mature parasite-infected erythrocyte surface antigen (MESA) is exported from the parasite to the infected red blood cell (IRBC) membrane skeleton, where it binds to protein 4.1 (4.1R) via a 19-residue MESA sequence. Using purified RBC 4.1R and recombinant 4.1R fragments, we show MESA binds the 30-kDa region of RBC 4.1R, specifically to a 51-residue region encoded by exon 10 of the 4.1R gene. The 3D structure of this region reveals that the MESA binding site overlaps the region of 4.1R involved in the p55, glycophorin C, and 4.1R ternary complex. Further binding studies using p55, 4.1R, and MESA showed competition between p55 and MESA for 4.1R, implying that MESA bound at the IRBC membrane skeleton may modulate normal 4.1R and p55 interactions in vivo. Definition of minimal binding domains involved in critical protein interactions in IRBCs may aid the development of novel therapies for falciparum malaria.  相似文献   

4.
Parker PD  Tilley L  Klonis N 《Blood》2004,103(6):2404-2406
The virulence of the malaria parasite, Plasmodium falciparum, is due in large part to the way in which it modifies the membrane of its erythrocyte host. In this work we have used confocal microscopy and fluorescence recovery after photo-bleaching to examine the lateral mobility of host membrane proteins in erythrocytes infected with P falciparum at different stages of parasite growth. The erythrocyte membrane proteins band 3 and glycophorin show a marked decrease in mobility during the trophozoite stage of growth. Erythrocytes infected with a parasite strain that does not express the knob-associated histidine-rich protein show similar effects, indicating that this parasite protein does not contribute to the immobilization of the host proteins. Erythrocytes infected with ring-stage parasites exhibit intermediate mobility indicating that the parasite is able to modify its host prior to its active feeding stage.  相似文献   

5.
Plasmodium falciparum, the causative agent of malaria, completely remodels the infected human erythrocyte to acquire nutrients and to evade the immune system. For this process, the parasite exports more than 10% of all its proteins into the host cell cytosol, including the major virulence factor PfEMP1 (P. falciparum erythrocyte surface protein 1). This unusual protein trafficking system involves long-known parasite-derived membranous structures in the host cell cytosol, called Maurer’s clefts. However, the genesis, role, and function of Maurer’s clefts remain elusive. Similarly unclear is how proteins are sorted and how they are transported to and from these structures. Recent years have seen a large increase of knowledge but, as yet, no functional model has been established. In this perspective we review the most important findings and conclude with potential possibilities to shed light into the enigma of Maurer’s clefts. Understanding the mechanism and function of these structures, as well as their involvement in protein export in P. falciparum, might lead to innovative control strategies and might give us a handle with which to help to eliminate this deadly parasite.Since Charles Louis Alphonse Laveran discovered the malaria parasite in 1881 (1) in Algeria, while examining the blood of a patient who had died from marsh fever, research has been conducted on these deadly parasites. Laveran received the Nobel Prize in medicine for his discovery in 1907, which causally explained that malaria symptoms are caused by protozoan parasites, eventually described as Plasmodium species of the phylum Apicomplexa. Among the five species infecting humans, Plasmodium falciparum causes the most lethal forms of the disease, but zoonotic Plasmodium knowlesi infections can also be lethal.  相似文献   

6.
Residence in the human erythrocyte is essential for the lifecycle of all Plasmodium that infect man. It is also the phase of the life cycle that causes disease. Although the red blood cell (RBC) is a highly specialized cell for its function of carrying oxygen to and carbon dioxide away from tissues, it is devoid of organelles and lacks any cellular machinery to synthesize new protein. Therefore in order to be able to survive and multiply within the RBC membrane the parasite needs to make many modifications to the infected RBC (iRBC). Plasmodium falciparum (P. falciparum) also expresses parasite‐derived proteins on the surface of the iRBC that enable the parasite to cytoadhere to endothelial and other intravascular cells. These RBC modifications are at the root of malaria pathogenesis and, in this ancient disease of man, have formed the epicentre of a genetic ‘battle’ between parasite and host. This review discusses some of the critical modifications of the RBC by the parasite and some of the consequences of these adaptations on disease in the human host, with an emphasis on advances in understanding of the pathogenesis of severe and cerebral malaria (CM) from recent research.  相似文献   

7.
Plasmodium falciparum is responsible for the most severe form of malaria disease in humans, causing more than 1 million deaths each year. As an obligate intracellular parasite, P. falciparum’s ability to invade erythrocytes is essential for its survival within the human host. P. falciparum invades erythrocytes using multiple host receptor–parasite ligand interactions known as invasion pathways. Here we show that CR1 is the host erythrocyte receptor for PfRh4, a major P. falciparum ligand essential for sialic acid–independent invasion. PfRh4 and CR1 interact directly, with a Kd of 2.9 μM. PfRh4 binding is strongly correlated with the CR1 level on the erythrocyte surface. Parasite invasion via sialic acid–independent pathways is reduced in low-CR1 erythrocytes due to limited availability of this receptor on the surface. Furthermore, soluble CR1 can competitively block binding of PfRh4 to the erythrocyte surface and specifically inhibit sialic acid–independent parasite invasion. These results demonstrate that CR1 is an erythrocyte receptor used by the parasite ligand PfRh4 for P. falciparum invasion.  相似文献   

8.
Adhesion of parasitized red blood cells (PRBCs) to endothelial cells and subsequent accumulation in the microvasculature are pivotal events in the pathogenesis of falciparum malaria. During intraerythrocytic development, numerous proteins exported from the parasite associate with the RBC membrane skeleton but the precise function of many of these proteins remain unknown. Their cellular location, however, suggests that some may play a role in adhesion. The adhesive properties of PRBCs are best studied under flow conditions in vitro; however, experimental variation in levels of cytoadherence in currently available assays make subtle alterations in adhesion difficult to quantify. Here, we describe a flow-based assay that can quantify small differences in adhesion and document the extent to which a number of parasite proteins influence adhesion using parasite lines that no longer express specific proteins. Loss of parasite proteins ring-infected erythrocyte surface antigen (RESA), knob-associated histidine-rich protein (KAHRP) or Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) had a significant effect on the ability of PRBCs to adhere, whereas loss of mature parasite-infected erythrocyte surface antigen (MESA) had no effect. Our studies indicate that a number of membrane skeleton-associated parasite proteins, although not exposed on the RBC surface, can collectively affect the adhesive properties of PRBCs and further our understanding of pathophysiologically relevant structure/function relationships in malaria-infected RBCs.  相似文献   

9.
Hanspal M  Dua M  Takakuwa Y  Chishti AH  Mizuno A 《Blood》2002,100(3):1048-1054
Plasmodium falciparum-derived cysteine protease falcipain-2 cleaves host erythrocyte hemoglobin at acidic pH and specific components of the membrane skeleton at neutral pH. Analysis of stage-specific expression of these 2 proteolytic activities of falcipain-2 shows that hemoglobin-hydrolyzing activity is maximum in early trophozoites and declines rapidly at late stages, whereas the membrane skeletal protein hydrolyzing activity is markedly increased at the late trophozoite and schizont stages. Among the erythrocyte membrane skeletal proteins, ankyrin and protein 4.1 are cleaved by native and recombinant falcipain-2 near their C-termini. To identify the precise peptide sequence at the hydrolysis site of protein 4.1, we used a recombinant construct of protein 4.1 as substrate followed by MALDI-MS analysis of the cleaved product. We show that falcipain-2-mediated cleavage of protein 4.1 occurs immediately after lysine 437, which lies within a region of the spectrin-actin-binding domain critical for erythrocyte membrane stability. A 16-mer peptide containing the cleavage site completely inhibited the enzyme activity and blocked falcipain-2-induced fragmentation of erythrocyte ghosts. Based on these results, we propose that falcipain-2 cleaves hemoglobin in the acidic food vacuole at the early trophozoite stage, whereas it cleaves specific components of the red cell skeleton at the late trophozoite and schizont stages. It is the proteolysis of skeletal proteins that causes membrane instability, which, in turn, facilitates parasite release in vivo.  相似文献   

10.
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a potentially important family of immune targets, which play a central role in the host–parasite interaction by binding to various host molecules. They are encoded by a diverse family of genes called var, of which there are ≈60 copies in each parasite genome. In sub-Saharan Africa, although P. falciparum infection occurs throughout life, severe malarial disease tends to occur only in childhood. This could potentially be explained if (i) PfEMP1 variants differ in their capacity to support pathogenesis of severe malaria and (ii) this capacity is linked to the likelihood of each molecule being recognized and cleared by naturally acquired antibodies. Here, in a study of 217 Kenyan children with malaria, we show that expression of a group of var genes “cys2,” containing a distinct pattern of cysteine residues, is associated with low host immunity. Expression of cys2 genes was associated with parasites from young children, those with severe malaria, and those with a poorly developed antibody response to parasite-infected erythrocyte surface antigens. Cys-2 var genes form a minor component of all genomic var repertoires analyzed to date. Therefore, the results are compatible with the hypothesis that the genomic var gene repertoire is organized such that PfEMP1 molecules that confer the most virulence to the parasite tend also to be those that are most susceptible to the development of host immunity. This may help the parasite to adapt effectively to the development of host antibodies through modification of the host–parasite relationship.  相似文献   

11.
Human erythrocytes infected with the malarial parasite Plasmodium falciparum were labeled metabolically with a mixture of 15 radioactive amino acids. When synchronously growing parasites were at the schizont stage of development infected cells were concentrated and purified by using a Percoll-Hypaque gradient. The plasma membrane of the infected erythrocyte, isolated by binding cells to a solid support (Affi-Gel 731, Bio-Rad), was less than 1% contaminated with parasite membranes. Erythrocyte membrane proteins were analyzed by polyacrylamide gel electrophoresis and autoradiography. Despite the high sensitivity of the procedure, there was no evidence for the insertion of parasite proteins into the infected host cell membrane. One possible exception is a Mr 230,000 parasite protein present maximally as 9,000 copies per infected erythrocyte membrane. Moreover, no differences in the membrane proteins were observed between a highly knobby clone and a knobless clone of the same strain of P. falciparum. These findings appear to rule out the presence of parasite protein(s) playing a structural role in the formation of knobs on the erythrocyte surface and question whether the antigenic determinants on the P. falciparum-infected erythrocyte are of parasite origin or whether such antigens represent newly exposed or chemically modified erythrocyte determinants.  相似文献   

12.
Chishti  AH; Maalouf  GJ; Marfatia  S; Palek  J; Wang  W; Fisher  D; Liu  SC 《Blood》1994,83(11):3339-3345
The composition of the erythrocyte plasma membrane is extensively modified during the intracellular growth of the malaria parasite Plasmodium falciparum. It has been previously shown that an 80-kD phosphoprotein is associated with the plasma membrane of human red blood cells (RBCs) infected with trophozoite/schizont stage malaria parasites. However, the identity of this 80-kD phosphoprotein is controversial. One line of evidence suggests that this protein is a phosphorylated form of RBC protein 4.1 and that it forms a tight complex with the mature parasite-infected erythrocyte surface antigen. In contrast, evidence from another group indicates that the 80-kD protein is derived from the intracellular malaria parasite. To resolve whether the 80-kD protein is indeed RBC protein 4.1, we made use of RBCs obtained from a patient with homozygous 4.1(-) negative hereditary elliptocytosis. RBCs from this patient are completely devoid of protein 4.1. We report here that this lack of protein 4.1 is correlated with the absence of phosphorylation of the 80-kD protein in parasite- infected RBCs, a finding that provides conclusive evidence that the 80- kD phosphoprotein is indeed protein 4.1. In addition, we also identify and partially characterize a casein kinase that phosphorylates protein 4.1 in P falciparum-infected human RBCs. Based on these results, we suggest that the maturation of malaria parasites in human RBCs is accompanied by the phosphorylation of protein 4.1. This phosphorylation of RBC protein 4.1 may provide a mechanism by which the intracellular malaria parasite alters the mechanical properties of the host plasma membrane and modulates parasite growth and survival in vivo.  相似文献   

13.
Bhattacharjee S  van Ooij C  Balu B  Adams JH  Haldar K 《Blood》2008,111(4):2418-2426
In blood-stage infection by the human malaria parasite Plasmodium falciparum, export of proteins from the intracellular parasite to the erythrocyte is key to virulence. This export is mediated by a host-targeting (HT) signal present on a "secretome" of hundreds of parasite proteins engaged in remodeling the erythrocyte. However, the route of HT-mediated export is poorly understood. Here we show that minimal soluble and membrane protein reporters that contain the HT motif and mimic export of endogenous P falciparum proteins are detected in the lumen of "cleft" structures synthesized by the pathogen. Clefts are efficiently targeted by the HT signal. Furthermore, the HT signal does not directly translocate across the parasitophorous vacuolar membrane (PVM) surrounding the parasite to deliver protein to the erythrocyte cytoplasm, as suggested by current models of parasite protein trafficking to the erythrocyte. Rather, it is a lumenal signal that sorts protein into clefts, which then are exported beyond the PVM. These data suggest that Maurer's clefts, which are unique to the virulent P falciparum species, are pathogen-induced secretory organelles that concentrate HT-containing soluble and membrane parasite proteins in their lumen for delivery to the host erythrocyte.  相似文献   

14.
Summary The extent of reduced glutathione, activity of glutathione peroxidase, amount of membrane lipid peroxidation products, and the extent of hemoglobin release from host erythrocytes during in vitroPlasmodium falciparum growth was studied. Highly synchronized parasite cultures were studied to examine the alterations caused by different growth stages of the parasite. There was a moderate increase in the reduced glutathione content as the parasite matured, which was significant only in schizontrich erythrocyte lysates (p<0.05) whereas the activity of glutathione peroxidase was significantly low in all the parasitized red blood cells (ring-infected RBC,p<0.005; trophozoite- and schizont-infected RBC,p<0.001). The lipid peroxidation product, malonyldialdehyde, of the host red cells increased gradually to more than fourfold in schizont-rich cells as compared with normal erythrocytes (p<0.001). The hemoglobin release from cultured cells was significantly higher in all parasitized red cell cultures as well as in uninfected cells kept in in vitro, as compared with normal erythrocytes. The consequence of such changes induced by the malarial parasites in the host red cells in the pathogenesis of erythrocyte destruction and anemia ofP. falciparum malaria is discussed.  相似文献   

15.
The intra-erythrocyte growth and survival of the malarial parasite Plasmodium falciparum is responsible for both uncomplicated and severe malaria cases and depends on the parasite's ability to remodel its host cell. Host cell remodelling has several functions for the parasite, such as acquiring nutrients from the extracellular milieu because of the loss of membrane transporters upon erythrocyte differentiation, avoiding splenic clearance by conferring cytoadhesive properties to the infected erythrocyte, escaping the host immune response by exporting antigenically variant proteins at the red blood cell surface. In addition, parasite-induced changes at the red blood cell membrane and sub-membrane skeleton are also necessary for the efficient release of the parasite progeny from the host cell. Here we review these cellular and molecular changes, which might not only sustain parasite growth but also prepare, at a very early stage, the last step of egress from the host cell.  相似文献   

16.
Parasitization by malaria-inducing Plasmodium falciparum leads to structural, biochemical, and mechanical modifications to the host red blood cells (RBCs). To study these modifications, we investigate two intrinsic indicators: the refractive index and membrane fluctuations in P. falciparum-invaded human RBCs (Pf-RBCs). We report experimental connections between these intrinsic indicators and pathological states. By employing two noninvasive optical techniques, tomographic phase microscopy and diffraction phase microscopy, we extract three-dimensional maps of refractive index and nanoscale cell membrane fluctuations in isolated RBCs. Our systematic experiments cover all intraerythrocytic stages of parasite development under physiological and febrile temperatures. These findings offer potential, and sufficiently general, avenues for identifying, through cell membrane dynamics, pathological states that cause or accompany human diseases.  相似文献   

17.
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family members mediate the adherence of parasite-infected red blood cells (IRBCs) to various host receptors. A previous study has shown that the parasite protein, cytoadherence-linked asexual gene 9 (CLAG9), is also essential for IRBC adherence. However, how CLAG9 influences this process remains unknown. In this study, we show that CLAG9 interacts with VAR2CSA, a PfEMP1 that mediates IRBC adherence to chondroitin 4-sulfate in the placenta. Importantly, our results show that the adherent parasites synthesize CLAG9 at two stages—the early ring and late trophozoite stages. Localization studies revealed that a substantial level of CLAG9 is located mainly at or in close proximity of the IRBC membrane in association with VAR2CSA. Upon treatment of IRBCs with trypsin, a significant amount of CLAG9 (≈150 kDa) was converted into ≈142-kDa polypeptide. Together these data demonstrate that a considerable amount of CLAG9 is embedded in the IRBC membrane such that at least a portion of the polypeptide at either N or C terminus is exposed on the cell surface. In parasites lacking CLAG9, VAR2CSA failed to express on the IRBC surface and was located within the parasite. Based on these findings, we propose that CLAG9 plays a critical role in the trafficking of PfEMP1s onto the IRBC surface. These results have important implications for the development of therapeutics for cerebral, placental, and other cytoadherence-associated malaria illnesses.  相似文献   

18.
Infection of erythrocytes with the human malaria parasite, Plasmodium falciparum, results in dramatic changes to the host cell structure and morphology. The predicted functional localization of the STEVOR proteins at the erythrocyte surface suggests that they may be involved in parasite-induced modifications of the erythrocyte membrane during parasite development. To address the biologic function of STEVOR proteins, we subjected a panel of stevor transgenic parasites and wild-type clonal lines exhibiting different expression levels for stevor genes to functional assays exploring parasite-induced modifications of the erythrocyte membrane. Using this approach, we show that stevor expression impacts deformability of the erythrocyte membrane. This process may facilitate parasite sequestration in deep tissue vasculature.  相似文献   

19.
Knuepfer E  Rug M  Klonis N  Tilley L  Cowman AF 《Blood》2005,105(10):4078-4087
After invading human red blood cells (RBCs) the malaria parasite Plasmodium falciparum remodels the host cell by trafficking proteins to the RBC compartment. The virulence protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) is responsible for cytoadherence of infected cells to host endothelial receptors. This protein is exported across the parasite plasma membrane and parasitophorous vacuole membrane and inserted into the RBC membrane. We have used green fluorescent protein chimeras and fluorescence photobleaching experiments to follow PfEMP1 export through the infected RBC. Our data show that a knob-associated histidine-rich protein (KAHRP) N-terminal protein export element appended to the PfEMP1 transmembrane and C-terminal domains was sufficient for efficient trafficking of protein domains to the outside of the P. falciparum-infected RBC. The physical state of the exported proteins suggests trafficking as a complex rather than in vesicles and supports the hypothesis that endogenous PfEMP1 is trafficked in a similar manner. This study identifies the sequences required for expression of proteins to the outside of the P. falciparum-infected RBC membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号