首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured bone mineral density (BMD), four markers of bone formation [bone alkaline phosphatase (bAP), osteocalcin (Oc), N- and C-terminal propeptide of type I procollagen (PINP and PICP respectively)] and five markers of bone resorption [serum C-terminal telopeptide of type I collagen (CTx), urinary CTx, N-terminal cross-linked telopeptide (NTx), free and total deoxypyridinoline (fDpd and tDpd respectively)] in 28 healthy premenopausal women (45.7 ± 3.0 years), 15 early (<7 years) healthy menopausal women (53.8 ± 3.1 years) and 20 osteoporotic women (65.3 ± 8.2 years). Bone markers and BMD were also measured in the osteoporotic women 4.1 ± 0.2 and 12.6 ± 1.2 months after the beginning of alendronate therapy (Fosamax, 10 mg/day) respectively (BMD in 16/20). We calculated the intra-individual coefficient of variation (iCV) and the least significant change (LSC) for each bone marker from a subset of 9 healthy premenopausal women (32 ± 5 years) who had a first and a second morning void urine collection (FMV and SMV respectively) and a blood sample on 4 nonconsecutive days (mean interval 14 ± 3 days). None of the bone markers was correlated with BMD (except p= 0.043 between serum Oc and hip BMD). All markers, except fDpd, were increased significantly in early menopausal women when compared with the premenopausal group. Serum CTx presented the highest increase at menopause (+67.8%) and identified the highest rate (11/15) of early menopausal women with bone turnover above the premenopausal range. The iCVs for bone formation markers (7.2–14.4%) were lower than those for bone resorption markers (14.6–22.3%). The iCVs obtained on FMV and SMV were not different. The decrease after 4 months of alendronate was significant for each bone marker but variable from one marker to another. Serum CTx showed the largest decrease (70.8%) and identified the highest number of biologically responding patients (change >LSC; n= 17/20). A significant change in serum CTx after 4 months of alendronate was the best predictor of a significant gain in spine BMD (i.e., ≥27 mg/cm2) after 1 year of therapy, allowing 15 of 16 patients (94%) to be classified correctly (one false-positive). Urinary NTx/Cr was the second best predictor. Despite a moderately high iCV (20.6%), serum CTx appeared the most effective of the markers tested and could be of interest for the detection of high bone turnover and the longitudinal monitoring of alendronate therapy in the individual patient. It must be stressed that serum PINP and urinary NTx and tDpd compared very similarly with serum CTx for monitoring alendronate therapy. Received: 12 April 1999 / Accepted: 13 September 1999  相似文献   

2.
The purpose of this study was to test the ability of early changes in markers of bone turnover to predict subsequent changes in bone mineral density (BMD) induced by parathyroid hormone fragment, PTH (1–34), in postmenopausal osteoporotic women treated with estrogen and glucocorticoids. Forty-nine postmenopausal women with chronic, inflammatory diseases and BMD T-scores ≤–2.5 at the lumbar spine or femoral neck who were concurrently treated with estrogen ≥ 1 year and prednisone 5–20 mg/day for ≥ 1 year participated. Subjects were randomized to treatment with human PTH (1–34) 400 IU/day or to a control group for 1 year and followed for an additional year. Serum and urine were collected at baseline and 1, 3, 6, 9, 12, 18 and 24 months for measurement of bone alkaline phosphatase (BAP), osteocalcin (OC) and deoxypyridinoline (DPD). We constructed an Uncoupling Index (UI) from all three markers (UI = [Z BAP+Z OC]/2 –Z DPD, where the Z-score for each marker in each subject was calculated from the mean and standard deviation of the study population at baseline). BMD of the lumbar spine and hip was measured at baseline and every 6 months thereafter by dual-energy X-ray absorptiometry (DXA) and annually by quantitative computed tomography (QCT; spine only). BMD of the spine, but not hip (total, femoral neck or trochanter), and levels of all three markers increased significantly as a result of PTH treatment (p<0.01 compared with controls). The resorption response lagged behind that of formation as evidenced by a significant increase (p<0.05) in the UI for the first 9 months of treatment. The UI values and changes from baseline to 1, 3 and 6 months in BAP, OC and DPD were correlated with the 12- and 24-month changes in spine BMD measured both with QCT and with DXA (Spearman’s rank coefficients ≤0.76; p<0.05). Most PTH-treated subjects could be identified as biochemical responders by least significant change analysis. Following 1 month of therapy, BAP and OC identified 65% and 81% as responders, respectively. The responder rates were 79%, 79% and 75% for BAP, OC and DPD, respectively by 6 months. Responders exhibited a high level of diagnostic accuracy for predicting a gain in BMD (areas under the receiver operating characteristic curves exceeding 0.79 for QCT and 0.70 for DXA), but not the magnitude of the gain. These data suggest that serial bone marker measurements may be useful in identifying skeletal responders to an anabolic therapy, such as PTH, in estrogen-replete postmenopausal women with glucocorticoid-induced osteoporosis. Received: 27 July 1999 / Accepted: 2 November 1999  相似文献   

3.
Alendronate significantly increases bone mass and reduces hip and spine fractures in postmenopausal women. To determine whether forearm densitometry could be used to monitor the efficacy of alendronate, we examined changes in bone mineral density (BMD) at the forearm (one-third distal, mid-distal, ultradistal radius) versus changes at the hip (femoral neck, total hip) and spine (posteroanterior and lateral) in a double-masked, randomized, placebo-controlled clinical trial of 120 elderly women (mean age 70 ± 4 years) treated with alendronate for 2.5 years. We found that among women in the treatment group, BMD increased by 4.0–12.2% at the hip and spine sites (all p<0.001), whereas BMD increased only nominally at the one-third distal radius (1.3%, p<0.001) and mid-radius (0.8%, p<0.05), and remained stable at the ultradistal radius. At baseline, forearm BMD correlated with that of the hip (r= 0.55–0.64, p<0.001), femoral neck (r= 0.54–0.61, p<0.001) and posteroanterior spine (r= 0.56–0.63, p<0.001). Changes in radial BMD after 1 year of therapy were not correlated with changes in hip and spine BMD after 2.5 years of therapy. In contrast, short-term changes in total hip and spine BMD were generally positively associated with long-term changes in total hip, femoral neck and spine BMD (r= 0.30–0.71, p<0.05). Furthermore, long-term BMD changes at the forearm did not correlate with long-term hip and spine BMD changes, in contrast to the moderate correlations seen between spine and hip BMD at 2.5 years (r= 0.38–0.45, p<0.01). We conclude that neither short- nor long-term changes in forearm BMD predict long-term changes in overall BMD for elderly women on alendronate therapy, suggesting that measurements of clinically relevant central sites (hip and spine) are necessary to assess therapeutic efficacy. Received: 18 February 1999 / Accepted: 20 May 1999  相似文献   

4.
Alendronate has been reported to increase bone mineral density (BMD) and reduce fracture risk in women with osteoporosis. As there are no proven safe and effective treatments available for men with osteoporosis, we compared the effects of alendronate (10 mg/day) on BMD, measured using dual-energy X-ray absorptiometry, in a 12-month prospective, controlled, open label study involving (i) men with primary (n= 23) or secondary osteoporosis (n= 18), (ii) postmenopausal women with primary (n= 18) or secondary (n= 21) osteoporosis, and (iii) 29 male and 14 female untreated controls matched by age, height and weight. The patients had one or more vertebral fractures and ranged in age from 34.6 to 85.1 years. BMD was detectably increased relative to baseline by 6 months, and increased by comparable amounts in males and females with primary or secondary osteoporosis. At 12 months, lumbar spine BMD was 5.4%± 1.1% to 7.0%± 2.2% higher in the treated groups compared with baseline and controls (p<0.05 to 0.0001). Trochanteric BMD increased by 2.6%± 1.5% and 3.7%± 1.7% in treated men with primary and secondary osteoporosis, respectively (p = 0.06 to 0.08), and by 3.9%± 1.3% in treated women with primary osteoporosis (p<0.01) after 12 months. No significant changes were detected at the femoral neck or Ward’s triangle. BMD remained unchanged in controls. We infer that alendronate has comparable incremental effects on BMD in men and women with primary and secondary osteoporosis within 12 months of treatment. The changes are in the order of 0.5 SD – effects associated with a clinically worthwhile reduction in fracture risk. The data provide room for optimism regarding the role of alendronate in the treatment of osteoporosis in men. Randomized, double-masked and placebo-controlled trials are needed to confirm these preliminary findings and demonstrate antifracture efficacy using vertebral and nonvertebral fracture rates as the primary endpoint. Received: 23 February 1999 / Accepted: 2 June 1999  相似文献   

5.
The aim of this study was to assess the ability of serum bone-specific alkaline phosphatase (bone ALP), creatinine-corrected urinary collagen crosslinks (CTx) and calcaneus bone mineral density (BMD) to identify postmenopausal women who have an increased risk of osteoporotic fractures. Calcaneus BMD and biochemical markers of bone turnover (serum bone ALP and urinary CTx) were measured in 512 community-dwelling postmenopausal women (mean age at baseline 69 years) participating in the Hawaii Osteoporosis Study. New spine and nonspine fractures subsequent to the BMD and biochemical bone markers measurements were recorded over an average of 2.7 years. Lateral spinal radiographs were used to identify spine fractures. Nonspine fractures were identified by self-report at the time of each examination. During the 2.7-year follow-up, at least one osteoporotic fracture occurred in 55 (10.7%) of the 512 women. Mean baseline serum bone ALP and urinary CTx were significantly higher among women who experienced an osteoporotic fracture compared with those women who did not fracture. In separate age-adjusted logistic regression models, serum bone ALP, urinary CTx and calcaneus BMD were each significantly associated with new fractures (odds ratios of 1.53, 1.54 and 1.61 per SD, respectively). Multiple variable logistic regression analysis identified BMD and serum bone ALP as significant predictors of fracture (p = 0.002 and 0.017, respectively). The results from this investigation indicate that increased bone turnover is significantly associated with an increased risk of osteoporotic fracture in postmenopausal women. This association is similar in magnitude and independent of that observed for BMD. Received: 18 June 1999 / Accepted: 21 June 1999  相似文献   

6.
Generally, the incidence of osteoporotic fracture is lower in black populations and in men. These effects of ethnicity and gender may result from differences in peak bone mineral density (PBMD) and bone turnover (BT), which in turn are affected by bone size. Therefore, the aims of this study were to examine the effects of ethnicity and gender on bone mineral density (BMD) and BT in young African-Caribbean and Caucasian adults, and to adjust for the effect of bone size on BMD and BT. BMD was measured at the lumbar spine, L2–L4 (LS), total body (TB) and femoral neck (FN) by dual-energy X-ray absorptiometry in 44 blacks (16 men, 28 women) and 59 whites (28 men, 31 women) ages 20–37 years. We measured serum bone-specific alkaline phosphatase (BAP) and serum osteocalcin (OC) as markers of bone formation and urinary immunoreactive free deoxypyridinoline (ifDpd) and crosslinked N-telopeptide of type I collagen (NTx) as markers of bone resorption. To adjust the data for any differences in bone size, we calculated: (a) bone mineral apparent density (BMAD), an estimated volumetric bone density which attempts to normalize BMD measurements for bone size; and (b) bone resorption markers as a ratio to total body bone mineral content (TB BMC). Two-way analysis of variance was used to compare the effects of race and gender, and to test for any interaction between these two factors. Blacks had higher BMD compared with whites at the TB (p<0.001), LS (p= 0.0001) and FN (p= 0.0005). This increase remained significant at the LS only after calculating BMAD. Men had higher BMD at all sites (except at the LS). This increase was no longer significant at the FN after calculating BMAD, and LS BMAD was actually greater in women (p<0.0001). Blacks and whites had similar concentrations of turnover markers, but men had higher bone turnover markers than women (BAP, p<0.0001; OC, p= 0.002; ifDpd, p= 0.03; NTx, p<0.0001). This increase in bone resorption markers was no longer significant after adjusting for TB BMC (except for NTx in whites). We conclude that the skeletal advantage in blacks during young adulthood is not explained by bone size. However, it seems probable that bone size effects partially explain gender differences in BMD and bone turnover. Received: 2 February 1999 / Accepted: 2 December 1999  相似文献   

7.
In women with postmenopausal osteoporosis (PMO), response to therapy with bisphosphonates is conventionally monitored using central-site (hip and spine) bone mineral density (BMD), but more convenient alternatives are desirable. During a randomized parallel-group study of the efficacy of once-weekly (80 mg vs 160 mg) oral alendronate in the treatment of PMO, 81 women (mean age 70.2 years ± 4.6 SD) had BMD measurements of total hip (TH) and lumbar spine (LS) (L1–L4, Hologic); and of the middle phalanx of the middle digit of the non-dominant hand (accuDXA) at baseline and after 6 and 12 months of therapy with alendronate. At the same timepoints, subjects also had measurements of speed of sound (SOS) through bone at four sites (distal 1/3 radius, proximal phalanx of the third finger, midshaft of the tibia and fifth metatarsal) using the Sunlight Omnisense Ultrasound Bone Sonometer. Data from both patient groups were pooled for this analysis. Mean TH BMD at baseline was 0.705 g/cm2± 0.093 (SD) and increased by 1.7%± 2.3% and 2.5%± 2.3% at 6 and 12 months respectively (p= 0.09 and p<0.0001). Mean LS BMD at baseline was 0.718 ± 0.076 g/cm2 and increased by 3.9%± 3.6% and 6.1%± 3.5 % at 6 and 12 months respectively (both p<0.0001). There was no statistically significant change from baseline in mean BMD by accuDXA at either 6 or 12 months. The only statistically significant changes in SOS were at the radius (decrease in SOS at 12 months, p = 0.04) and tibia (increase at 6 months, p<0.01, but no change between baseline and 12 months). Baseline correlation coefficients between accuDXA and LS and TH DXA were 0.22 (p= 0.05) and 0.27 (p= 0.02) respectively. Correlation coefficients between SOS and LS DXA ranged from 0.05 to 0.22; and between SOS and TH DXA ranged from –0.08 to 0.10 (all p= NS). These data suggest that the response to alendronate therapy over this time period cannot be measured by accuDXA or Sunlight SOS at the sites studied. Received: 26 June 2001 / Accepted: 27 September 2001  相似文献   

8.
Osteoporosis is a major complication of organ transplantation. Little is known about the risk of developing osteoporosis in bone marrow transplant (BMT) recipients. We studied early and late changes in bone mineral density (BMD), as well as biochemical markers of bone remodeling, in patients at the time of allogeneic BMT (alloBMT) and up to 13 years thereafter. In a cross-sectional study, 102 patients (40 women, 62 men, mean age ± SEM, 38.9 ± 1.6 years) were segregated into a first group (A, n= 48) and evaluated before or during the first weeks (mean ± SD 0.3 ± 0.1 month, range –0.5 to 3 months) following alloBMT, and a second group (B, n= 54) studied 60.1 ± 5.6 months (range 6–156 months) following alloBMT. Lumbar spine (LS) BMD was similar in groups A and B and was within normal limits. In contrast, femoral neck (FN) Z- and T-scores were significantly decreased in group B compared with group A (–0.68 ± 0.14 vs –0.03 ± 0.14 SD and –0.84 ± 0.14 vs –0.22 ± 0.14 SD, respectively; p≤0.002). Osteopenia (T-score between –1 and –2.5 SD) was present in 35% of group A and 43% of group B patients (NS). Osteoporosis (T-score <–2.5 SD) was detected in 7% of group B patients, but in none of those in group A (p= 0.05). In a longitudinal study, 56 subjects were evaluated at the time of alloBMT, and 33 and 23 were studied 6 or 12 months later, respectively (13 women, 20 men, 37.5 ± 1.6 years). All were treated with supplements of calcium and vitamin D. Amenorrheic women received hormone replacement therapy (HRT). Three-monthly pamidronate infusions were given to 15 men and 10 non-amenorrheic women who were osteopenic/osteoporotic or had elevated baseline bone turnover markers. Mean baseline LS and FN Z- and T-scores were within normal range. Six months after BMT, FN BMD decreased by 4.2 ± 0.7% (p<0.001), and whole body BMD and bone mineral content by 1.5 ± 0.4% and 3.1 ± 0.6%, respectively (p≤0.0001). Twelve months after the graft, there was no further significant bone loss and only FN BMD decrease remained significantly different compared with baseline (–5.6 ± 1.1%, p≤0.0001). These results indicate that the risk of decreased BMD is higher for the femoral neck than the lumbar spine and whole body levels in patients with allogeneic bone marrow transplantation, and that bone loss occurs mainly during the first 6 months after the graft. Received: 9 February 2001 / Accepted: 23 May 2001  相似文献   

9.
A Prospective Study of Bone Loss in Menopausal Australian-Born Women   总被引:8,自引:4,他引:4  
Two hundred and twenty-four women (74 pre-, 90 peri-, 60 post-menopausal), aged 46–59 years, from a population-based cohort participated in a longitudinal study of bone mineral density (BMD). BMD was measured by dual-energy X-ray absorptiometry (DXA) at the lumbar spine and femoral neck and the time between bone scans was on average 25 (range 14–41) months. The aim of the study was to assess changes in BMD in relation to changes in normal menopausal status. During the study period women who were between 3 and 12 months past their last menstrual period (n= 22, late perimenopausal) at the time of the second bone scan had a mean (SE) annual change in BMD of 70.9% (0.4%) at the lumbar spine and 70.7% (0.6%) at the femoral neck (both p50.05 compared with women who remained premenopausal). In the women who became postmenopausal (n= 42) the mean annual changes in BMD were 72.5% (0.2%) at the lumbar spine and 71.7% (0.2%) at the femoral neck (both p50.0005), and in the women who remained postmenopausal (n= 60) they were 70.7% (0.2%) per year and 70.5% (0.3%) per year respectively (both p50.05), compared with women who remained premenopausal. In the 1–3 years after the final menstrual period (FMP) there was greater bone loss from the lumbar spine than the femoral neck (p50.05). In women who were menstruating at the time of the second bone scan and whose FMP could be dated prospectively (n= 35), higher baseline oestradiol levels were associated with less lumbar spine bone loss (p50.005). In the women who remained postmenopausal there was an association between baseline body mass index (BMI) and percentage change per year in femoral neck BMD (p50.05), such that women with higher BMI had less bone loss. In conclusion, during the time of transition from peri- to post-menopause, women had accelerated BMD loss at both the hip and spine. Received: 23 June 1997 / Accepted: 5 November 1997  相似文献   

10.
This study investigated whether bone turnover influences the response to alendronate in women with postmenopausal osteoporosis. One hundred postmenopausal osteoporotic women were randomized to receive either alendronate (10 mg/day) plus calcium (1000 mg/day) (n = 50) or calcium alone (n = 50). Vertebral and radial bone density, measured by DXA, and markers of bone turnover were assessed at baseline and after 1 and 2 years. At the end of treatment, alendronate users showed an increase of 5.0% and 2.3%, respectively, at the lumbar spine and ultradistal radius; in the group treated only with calcium, bone mineral density (BMD) decreased by 1.6% at the lumbar spine and 1.3% at the ultradistal radius. The difference between the two groups was significant (P < 0.001). The patients were divided into high (HT) or low (LT) bone turnover groups, as assessed by 24-hour whole body retention (WBR%) of 99mTc-methylene-diphosphonate. The response to alendronate treatment was greater in HT patients compared with LT patients. In fact, at the end of the study period, BMD at the lumbar spine had increased by 7.9% in HT patients and by 3.0% in LT patients; the difference between the two groups was significant (P < 0.001). No significant difference between the two groups was found for BMD at the ultradistal radius. In conclusion, the present study demonstrates that 2-year treatment with alendronate has highly positive effects on bone mass at both the lumbar spine and ultradistal radius. The increase in bone mass, especially at the axial level, is influenced by bone turnover. Therefore, the evaluation of bone turnover may be useful in predicting the response to alendronate treatment. Received: 23 April 1998 / Accepted: 10 June 1999  相似文献   

11.
12.
The purpose of this 2-year longitudinal clinical study was to investigate alveolar (oral) bone height and density changes in osteoporotic/osteopenic women compared with women with normal lumbar spine bone mineral density (BMD). Thirty-eight postmenopausal women completed this study; 21 women had normal BMD of the lumbar spine, while 17 women had osteoporosis or osteopenia of the lumbar spine at baseline. All subjects had a history of periodontitis and participated in 3- to 4-month periodontal maintenance programs. No subjects were current smokers. All patients were within 5 years of menopause at the start of the study. Four vertical bitewing radiographs of posterior sextants were taken at baseline and 2-year visits. Radiographs were examined using computer-assisted densitometric image analysis (CADIA) for changes in bone density at the crestal and subcrestal regions of interproximal bone. Changes in alveolar bone height were also measured. Radiographic data were analyzed by the t-test for two independent samples. Osteoporotic/osteopenic women exhibited a higher frequency of alveolar bone height loss (p<0.05) and crestal (p<0.025) and subcrestal (p<0.03) density loss relative to women with normal BMD. Estrogen deficiency was associated with increased frequency of alveolar bone crestal density loss in the osteoporotic/osteopenic women and in the overall study population (p<0.05). These data suggest that osteoporosis/osteopenia and estrogen deficiency are risk factors for alveolar bone density loss in postmenopausal women with a history of periodontitis. Received: 9 April 1998 / Accepted: 18 August 1998  相似文献   

13.
Alendronate has been shown to increase bone density among early postmenopausal women. Osteoporosis is common among both Asian and Caucasian women, but most clinical trials have consisted primarily of Caucasian women, and it does not appear that the effectiveness of antiresorptive agents such as alendronate has been compared between the two races. In this study we compared the response of bone density and biochemical markers to alendronate among 136 Asian and 126 Caucasian women who participated in the Early Postmenopausal Interventional Cohort (EPIC) at the Hawaii center. Approximately 40 women of each race were randomly assigned to placebo or to 2.5 mg/day or 5 mg/day alendronate. Bone mineral density (BMD) was measured at the spine, total hip and total body at baseline, 12 months and 24 months; biochemical markers of bone turnover were measured at 6-month intervals. Responses were greater for the 5 mg dose than 2.5 mg, and were similar in the two races. For example, mean (SE) changes in spine BMD at 24 months for Caucasians and Asians, respectively, were –1.9% (0.5%) and –1.9% (0.4%) for the placebo group, 2.0% (0.5%) and 3.4% (0.5%) at 2.5 mg/day and 4.2% (0.5%) for both races at 5 mg/day. Corresponding changes in urinary N-telopeptide collagen crosslinks were –33.6% (5.6%) and –27.8% (5.8%) for placebo, –51.4% (4.0%) and –62.1 (4.3%) at 2.5 mg/day and –70.8% (2.4%) and –73.5% (3.1%) at 5 mg/day. We conclude that (1) the rate of bone loss in untreated Asian and Caucasian postmenopausal women is similar, with the possible exception of the hip; (2) 5 mg alendronate daily provides greater skeletal benefits than 2.5 mg/day in both Asian and Caucasian early postmenopausal women; and (3) the response at 5 mg/day is similar in the two races. Received: 15 July 1998 / Accepted: 30 September 1998  相似文献   

14.
The Effects of Pregnancy and Lactation on Bone Mineral Density   总被引:8,自引:0,他引:8  
We performed a prospective study of bone mineral density (BMD) in 38 women during their first full-term pregnancy until 12 months postpartum. BMD measurements at lumbar spine [L2–L4 (LS)] and forearm [distal 33% (RD) and ultradistal (RUD) region of the radius] were made within 3 months before conception, after delivery, and at 6 and 12 months postpartum. In mid-pregnancy the DXA examination was carried out only at the forearm. Patients were grouped according to duration of lactation as group I, II or III (0–1, 1–6, 6–12 months respectively). During pregnancy there was a significant difference between baseline and delivery (p< 0.001) in the LS, RUD and RD BMD values. In group I there was no statistically significant difference in LS BMD between visits following pregnancy. The RUD BMD loss was recovered by 6 months postpartum (PP6). Group II showed continuous bone loss from delivery until PP6 at LS and RUD. In group III the LS BMD loss continued throughout the lactation period. The RUD BMD dropped (4.9%) until PP6 then increased by 3.0% as measured at 12 months postpartum (PP12). There was no significant change in RD BMD in any of three groups during lactation. At LS bone loss between delivery and PP12 correlated well with the duration of lactation (r=−0.727; p<0.001). We suggest that calcium needed for fetal skeletal growth during pregnancy was gained from maternal trabecular and cortical sites and that calcium needed for infant growth during lactation was drawn mainly from the maternal trabecular skeleton in our patients. The effect of pregnancy and lactation on the maternal bone mass was spontaneously compensated after weaning. Received: 13 July 2000 / Accepted: 19 April 2001  相似文献   

15.
We investigated whether an increase in lumbar spine bone mineral density (LS BMD) at 6 months or at 12 months could predict the response to intermittent cyclical therapy (ICT) with etidronate, defined in one of two ways: (i) an increase in LS BMD at 24 months (improvement) or (ii) an increase in LS BMD ≥0.028 g/cm2 (significant improvement). The latter is a precision term calculated from test–retest values for LS BMD in osteoporotic patients. Two hundred and forty-seven patients (32 men; 5 premenopausal and 210 postmenopausal women) were followed for 24 months by dual-energy X-ray absorptiometry (DXA) and were not taking estrogen, calcitonin or fluoride during treatment with ICT-etidronate. One hundred and fifty patients had a LS BMD measurement after 6 months of treatment with ICT-etidronate and 205 patients had one at 12 months. Baseline characteristics (mean;SD) were as follows: age, 66;11 years; years since menopause, 21;10; number of vertebral fractures at baseline, 0.87;1.26; LS BMD T-score, −2.8;1.2. After 24 months of treatment with ICT-etidronate, 81% of the patients had an improvement, and 55% had a significant improvement at the LS. Only 6% significantly lost bone (loss of 0.028 g/cm2 or more). The mean percent change from baseline in LS BMD was 5.1% (95% confidence interval 4.2% to 6.0%). The results for men and postmenopausal women were similar to those for the entire group. Accuracy and sensitivity were marginally, but not significantly, higher when response was predicted using 12 month versus 6 month LS BMD measurements. The positive predictive values of improvement at 6 or 12 months were 89% and 90% respectively for improvement at 24 months, and 66% and 68% for significant improvement at 24 months. Identification of nonresponders was less successful and similar at 6 months and 12 months. Forty percent and 39% of the patients, who had no improvement at 6 or 12 months respectively, also had no improvement at 24 months, i.e., were true negatives, while 77% and 71% had no significant improvement at 24 months. The results may reflect slow response in a small subgroup of patients rather than nonresponse; however, no response at 1 year might identify patients whose rate of response is sufficiently slow that alternative therapy is justified. These data demonstrate a good response rate to ICT-etidronate and may help reduce the need for follow-up BMD measurements in those who show an early improvement. Received: 12 November 1999 / Accepted: 3 January 2000  相似文献   

16.
Bisphosphonates such as etidronate and alendronate are widely accepted as effective agents for the treatment of osteoporosis. However, some physicians find the choice of which one to use in different patients, and the comparative magnitude of response, unclear. Fifty postmenopausal women with osteoporosis [group 1: 27 women who had received 3 years of previous cyclical etidronate treatment, mean age 70.5 years, bone mineral density (BMD) mean T-score lumbar spine (LS) −3.58 and femoral neck (FN) −2.51; group 2: 23 women who had not previously received cyclical etidronate treatment, mean age 73.7 years, BMD mean T-score LS −3.65 and FN −2.96] were treated with 10 mg alendronate daily, to determine whether pretreatment with etidronate affected the response to alendronate, and whether patients who did not respond to etidronate, responded to alendronate. There was a significant increase in LS BMD after 2 years of treatment with alendronate compared with baseline (group 1: 7.84%, p<0.001; group 2: 6.69%, p<0.001), but there was no statistical difference between the groups. In the group 1 patients there was a significant difference between the initial response (at the LS BMD) to 2 years of cyclical etidronate (1.86%) and later response to 2 years of alendronate (7.84%) (p<0.0001). The 10 patients who did not respond at the LS to etidronate alone, showed a significantly better response (mean BMD change +6.3%) when subsequently treated with alendronate (a net difference of 9.3%, p = 0.002). In 15 patients who did not respond at the FN to etidronate alone, the mean response to alendronate was +0.96% (a difference of 7%, p = 0.004). This study shows that pretreatment with 3 years of cyclical etidronate is not detrimental to the subsequent LS BMD response to alendronate. There is evidence that alendronate produced a greater bone density response than etidronate, and patients who did not respond to etidronate with an increase in LS bone density, subsequently did so following alendronate. Received: 22 June 1999 / Accepted: 18 January 2000  相似文献   

17.
Osteoporosis is a growing health problem in Asian women and it is expected that half of the world's hip fractures will occur in Asia in 50 years' time. As the use of hormonal replacement therapy (HRT) is extremely low in postmenopausal Asian women, nonhormonal agents will be more acceptable for the treatment and prevention of osteoporosis. The efficacy, tolerability, and acceptability of alendronate, an amino-bisphosphonate, for Asian women was evaluated in 70 osteoporotic southern Chinese women in a prospective, randomized, double-blind study. The subjects were randomized to receive either alendronate 10 mg daily or placebo, plus calcium supplementation 500 mg daily. The baseline L 1–4 and hip bone mineral density (BMD) were similar between both groups. At the end of 1 year, there was an increase of 5.8% in the lumbar spine BMD and 3.4% at the total hip with alendronate treatment when compared with baseline values (P < 0.001). Alendronate treatment for 1 year resulted in significant improvement in BMD at all sites measured when compared with placebo. There was also marked reduction in serum alkaline phosphatase (ALP) and urinary n-telopeptide (NTx) in the alendronate group when compared with the placebo group (ALP 25% versus 2%, NTx 75% versus 14%, both P < 0.005). The changes in ALP and NTx at 6 and 12 months correlated with the change in BMD at all sites measured at 1 year (P all <0.05). Alendronate was well tolerated and accepted, although two cases of gastric ulcer were reported. We conclude that alendronate is an effective and well-accepted agent for the treatment of osteoporosis in Asian women. Received: 30 September 1999 / Accepted 6 April 2000  相似文献   

18.
A number of drugs are now available for the treatment of established osteoporosis and have been shown to significantly increase bone mineral density (BMD). There are, however, few comparative treatment studies and, furthermore, adverse events remain a problem with some of the newer agents, particularly in the elderly, in everyday clinical practice. We report a 12 month, open labeled, randomized controlled, prospective treatment study in 140 postmenopausal women with established vertebral osteoporosis, comparing the effect of continuous alendronate, cyclical alendronate and cyclical etidronate with calcitriol in terms of gain in BMD, reduction in bone turnover markers and adverse event profile. The mean percentage increases in BMD at 12 months, at the spine and hip respectively, were: continuous alendronate 5.7%, 2.6%; cyclical alendronate 4.1%, 1.6%; cyclical etidronate 4.9%, 2.0% (p<0.01) and calcitriol 2.0%, 0.4% (NS). In comparison with calcitriol, the mean changes in BMD at the spine and hip respectively were greater in the other groups; continuous alendronate: 3.7% (95% CI 1.4 to 8.3), 2.2% (95% CI 0.7 to 4.0); cyclical alendronate: 2.1% (95% CI 1.2 to 6.4), 1.2% (95% CI −0.3 to 3.0); cyclical etidronate: 2.9% (95% CI 1.9 to 6.5), 1.6% (95% CI 0.9 to 3.1)). The reduction in bone turnover markers was between 26% and 32% in the alendronate and etidronate groups (p<0.01), with a trend toward greater reduction in the continuous alendronate group. Eight patients discontinued the study: 6 in the continuous alendronate group, 1 in the cyclical alendronate group and 1 in the calcitriol group. Two patients in the cyclical etidronate group were unable to tolerate the Cacit component, but continued on substituting Cacit with Calcichew. In summary, 12 months of treatment with continuous alendronate, cyclical alendronate and cyclical etidronate are effective in terms of the gain in BMD at the anteroposterior spine and total hip in a comparable treatment population. These treatments are more effective than calcitriol and were generally well tolerated. Continuous alendronate showed a trend toward a larger gain in BMD and greater suppression of bone turnover markers than the other treatment groups, but had a higher incidence of adverse events, particularly within the older subgroup. Cyclical alendronate offers a lower adverse event profile and appears to be effective in comparison with continuous treatment, and may possibly be an alternative in the elderly. However, further studies are necessary, but more importantly with fracture end-points. Received: 6 April 1999 / Accepted: 8 June 2000  相似文献   

19.
To determine the physiologic and habitual factors that may modulate changes in bone mineral density (BMD) postpartum, dual-energy X-ray absorptiometry was performed at the lumbar spine, right femoral neck and dominant distal radius immediately after delivery, after resumption of menses, and 1 year thereafter in a cohort of 41 healthy postpartum Finnish women aged 31.5 (SD 4.6) years. Mean durations of lactation and postpartum amenorrhea (PPA) were 7.7 (3.7) and 5.9 (2.9) months, respectively. After PPA, significant bone losses of 2%–4% were observed at the lumbar spine and femoral neck. Duration of PPA and different lactational variables explained (adjusted R 2) from 21% to 27% of the variability in changes in BMD during PPA. A recovery to postpregnancy BMD levels was observed at the lumbar spine; in contrast BMD at the femoral neck showed only a partial recovery. The duration of unsupplemented lactation was weakly (adjusted R 2= 0.13) associated with recovery at the lumbar spine, while a long duration of total lactation also showed a weak association (adjusted R 2= 0.02) with delayed recovery at the femoral neck. In conclusion, a systematic bone loss occurs during PPA, and after resumption of menstruation BMD recovers despite continued lactation. However, the time of bony recovery back to postpregnancy level seems to be modulated slightly by lactation habits. It is obvious that the control of postpartum BMD changes is a multifactorial process that may be specific to the skeletal site of interest. Received: 7 June 1999 / Accepted: 5 January 2000  相似文献   

20.
We studied the relationship between change in bone turnover and vertebral fracture risk during raloxifene therapy using 3-year data from the MORE trial, where 2622 of the 7705 randomized women had measurement of bone markers at baseline and after 6 and 12 months participation. Change in bone turnover was significantely related to future risk of vertebral fracture, also after adjusting for baseline vertebral fracture status and BMD. Thus, for a decrease of 9.3 mg/l in serum osteocalcin after 1 year’s raloxifene therapy, the odds ratio (OR) for a new vertebral fracture during 3 years was 0.69 (0.54–0.88), p= 0.003. Similarly, for a decrease of 5.91 mg/l in serum bone alkaline phosphatase, OR was 0.75 (0.62–0.92), p= 0.005. The change in BMD over 12 and 24 months was not related to fracture risk in any of the analyses. The strongest predictor for vertebral fracture was prevalent vertebral fracture – even during therapy. The predictive value of baseline BMD was in the same order of magnitude as bone turnover change during raloxifene treatment. In conclusion, the change in bone turnover is related to fracture risk during raloxifene therapy. In contrast the change in BMD is not related to fracture risk. The strongest predictor for vertebral fracture is prevalent vertebral fracture. Received: 2 January 2001 / Accepted: 30 May 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号