首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review summarizes reports of recurrent DNA sequence copy number amplifications in human neoplasms detected by comparative genomic hybridization. Some of the chromosomal areas with recurrent DNA copy number amplifications (amplicons) of 1p22-p31, 1p32-p36, 1q, 2p13-p16, 2p23-p25, 2q31-q33, 3q, 5p, 6p12-pter, 7p12-p13, 7q11.2, 7q21-q22, 8p11-p12, 8q, 11q13-q14, 12p, 12q13-q21, 13q14, 13q22-qter, 14q13-q21, 15q24-qter, 17p11.2-p12, 17q12-q21, 17q22-qter, 18q, 19p13.2-pter, 19cen-q13.3, 20p11.2-p12, 20q, Xp11.2-p21, and Xp11-q13 and genes therein are presented in more detail. The paper with more than 150 references and two tables can be accessed from our web site http://www.helsinki.fi/lglvwww/CMG.html. The data will be updated biannually until the year 2001.  相似文献   

2.
Gastric carcinoma (GC) is one of the most common malignancies worldwide and has a very poor prognosis. Genetic imbalances in 62 primary gastric adenocarcinomas of various histopathologic types and pathologic stages and six gastric cancer-derived cell lines were analyzed by comparative genomic hybridization, and the relationship of genomic abnormalities to clinical features in primary GC was evaluated at a genome-wide level. Eighty-four percent of the tumors and all six cell lines showed DNA copy number changes. The recurrent chromosomal abnormalities including gains at 15 regions and losses at 8 regions were identified. Statistical analyses revealed that gains at 17q24-qter (53%), 20q13-qter (48%), 1p32-p36 (42%), 22q12-qter (27%), 17p13-pter (24%), 16p13-pter (21%), 6p21-pter (19%), 20p12-pter (19%), 7p21-pter (18%), 3q28-qter (8%), and 13q13-q14 (8%), and losses at 18q12-qter (11%), 3p12 (8%), 3p25-pter (8%), 5q14-q23 (8%), and 9p21-p23 (5%), are associated with unique patient or tumor-related features. GCs of differing histopathologic features were shown to be associated with distinct patterns of genetic alterations, supporting the notion that they evolve through distinct genetic pathways. Metastatic tumors were also associated with specific genetic changes. These regions may harbor candidate genes involved in the pathogenesis of this malignancy.  相似文献   

3.
Comparative genomic hybridization was used to search for previously unknown gains and losses of DNA sequences along all chromosome arms in 29 chondrosarcoma specimens obtained from 23 patients. Extensive genetic aberrations, with a mean of 6 changes per tumor (range, 1 to 24), were detected in 21 of the 29 samples analyzed (72%). The majority of these changes were gains of whole chromosomes or whole chromosome arms. Gains of DNA sequence copy number were most frequent at 20q (38%), 17p (38%), 20p (31%), 1cen-q24 (28%), and 14q23-qter (28%). High-level amplifications of small chromosome regions were sporadic, detected in only 17% of the samples. The only recurrent high-level amplification, seen in two tumors (7%), affected the minimal common region 12cen-q15. Other amplifications, each encountered only once, involved 1p33-p35, 2p23-pter, 4p, 6p22-pter, 18q12-q22, 19p13.2, 19q13.2, and 20q13.1. Losses of DNA sequences were rare and were most commonly observed at 6cen-q22 (17%) and 9p (17%).  相似文献   

4.
We analyzed DNA sequence copy number aberrations (DSCNAs) in 17 primary oral squamous cell carcinomas (OSCCs) by comparative genomic hybridization. DSCNAs were detected frequently at 3q25-qter (7/17), Xp21 (5/17), and Xq12-q23 and 8q23-q24 (4/17), and losses were detected frequently at 13q21-q22 (5/17), 3p21-pter, 4p15-pter and 17p13 (4/17), and 8p22-pter and 9p21-pter (3/17). Four tumors showed amplifications of seven loci: 3q11-qter, 3q13, 3q26, 7q21-q22, 8q23-qter, 9p22-pter, and 12p11. The total number of DSCNAs was significantly greater in stage III and stage IV tumors than in stage I and stage II tumors (P=.008). Furthermore, 3q gain was detected preferentially in stage III and stage IV tumors (6/8) rather than in stage I and stage II tumors (1/9, P=.013). In our study, all tumors with gain of 3q also contained one or more loss(es) in common regions. On the other hand, all tumors with gain of 9p did not contain 3q gains. These observations indicate that gain of 3q and accumulation of DSCNAs are strongly associated with tumor progression in OSCC. Furthermore, 3q gain and loss of one or more additional loci in common aberration regions appears to be a group of DSCNs associated with dominant genetic pathways of leading to advanced OSCCs.  相似文献   

5.
Cancer is characterized by autonomous growth of cells, and it is widely accepted that cell proliferation is primarily influenced by individual cell genetics. To elucidate the mechanisms of cancer cell proliferation, we studied differences in genetic aberrations for different type of tumors with different proliferation characteristics. We employed comparative genomic hybridization (CGH) to detect genetic aberrations in six cell lines of esophageal squamous cell carcinoma (ESCC). Three cell lines (YES-1, -2, and -3) grow in culture without fetal calf serum (group A), while others require serum to be maintained in vitro (group B). Both groups showed very similar cytogenetic aberrations: over-representations of 11q13 (6/6), 8q23-qter (5/6), Xq25-qter (5/6), 3q26-qter (4/6), 5p (4/6), 7p15-pter (4/6), 8q21.3-q22 (4/6), 17p (4/6), and 20q13 (4/6), and under-representations of 18q21-qter (6/6), 4q28-q33 (4/6), and 9p21 (4/6). Six amplification loci were mapped to chromosomal regions of 6q23 (1 case), 7p12 (2 cases), 9p21 (1 case), 11p11.2-12 (3 cases), 11q13 (2 cases), and 17p12 (2 cases). However, some differences were detected. DNA copy number increases at 7p12-p13, 11q14-q22, and 11q22-qter and under-representations of 4p, 8p, and 11p14-pter. In contrast, gains at 12p and 20p, and losses at 3p and 5q were detected only in group-B cell lines. These observations suggest that cytogenetic differences between the two groups may be linked to differences in cell growth characteristics in vitro, and that the genes in these chromosomal regions may play important roles in cell proliferation.  相似文献   

6.
We investigated 31 malignant peripheral nerve sheath tumors (MPNSTs) from 23 patients by means of comparative genomic hybridization (CGH) in order to study quantitative genomic aberrations of these tumors. Twenty-one of the 23 patients revealed changes, with a mean value of 11 aberrations per sample (range 2-29). The minimal common regions of the most frequent gains were 8q23-q24.1 (12 cases), 5p14 (11 cases), and 6p22-pter, 7p15-p21, 7q32-q35, 8q21.1-q22, 8q24.2-qter, and 17q22-qter (10 cases each). Seventeen high-level amplifications were detected in eight of the 21 samples. In three cases, the high-level amplifications involved 8q24.1-qter, and in two cases each the high-level amplifications involved regions 5p14, 7p14-pter, 8q21.1-q23, and 13q32-q33. The minimal common region of frequent losses was 14q24.3-qter (five cases). The gain of 8q as a single common change in the primary tumor, the recurrence, and the metastasis from the same patient suggests that this aberration is an early change in the tumorigenesis of MPNSTs. Comparable aberrations were observed in separate tumors of the same patients affected by Recklinghausen's disease, indicating a limited number of accidental secondary changes. In sporadic MPNSTs, the most frequent gains were narrowed down predominantly to 5p, 6, 8q, and 20q, whereas in MPNSTs from patients with Recklinghausen's disease, there was most often a gain in 7q, 8q, 15q, and 17q. The occurrence of gain of both 7p15-p21 and 17q22-qter was associated with a statistically significant poor overall survival rate (P = 0.0096).  相似文献   

7.
DNA sequence copy number changes were studied by comparative genomic hybridization (CGH) along all chromosomes in 58 samples of malignant fibrous histiocytoma (MFH). The material consisted of 43 primary tumors (9 of myxoid and 34 of storiform-pleomorphic subtype), 13 local recurrences (2 myxoid and 11 storiform-pleomorphic), and 2 metastases (1 myxoid and 1 storiform-pleomorphic). Genetic aberrations, with a mean of 5.5 changes per sample (range, 0 to 22), were detected in 47 of 58 samples (81%). The minimal common regions of the most frequent gains were 1p31 (33%), 9q31 (29%), 5p14-pter (26%), 7q32 (24%), and 7p15-pter (22%). High-level amplifications were detected in 16 of the 58 samples (28%). High-level amplification of 13q31-qter was seen in four tumors (7%); other high-level amplifications were more sporadic. Losses of DNA sequences were less frequent than gains. The minimal common regions of the most common losses were 13q21 (21%) and 13q22 (21%). Statistically significant correlation was found between gain of 7q32 and the rates of worse metastasis-free survival (P = 0.01) and overall survival (P = 0.004). The gain of 7q32 retained its prognostic significance also in a multivariate analysis with tumor size and grade. Gain of 1p31 was associated with a trend to decreased overall survival. Gains of 5p14-pter and 9q31 and losses of 13q21 and/or 13q22 did not have any prognostic value; neither did the total number of aberrations, total number of gains, or total number of losses per sample.  相似文献   

8.
Distinction of adrenocortical carcinoma from benign adrenocortical lesions by standard criteria is often difficult. In order to search for additional diagnostic parameters, a series of 25 adrenocortical tumors, 8 adenomas, 14 primary carcinomas, 1 metastasis, and the 2 adrenocortical carcinoma cell lines SW13 and NCI-H295 were analyzed by the approach of comparative genomic hybridization (CGH). Except for the two smallest adenomas, all tumors showed chromosomal imbalances with a high incidence of chromosomal gains, most frequently involving chromosomes or chromosome arms 5, 7, 8, 9q, 11q, 12q, 14q, 16, 17q, 19, 20, and 22q. The only significant loss of material concerned the distal part of 9p. Furthermore, 21 high-level amplifications were identified in 15 different regions of the genome. The consensus regions of recurrent gains and the focal high-level amplifications allowed identification of a series of chromosomal subregions containing candidate proto-oncogenes of potential pathogenic function in adrenocortical tumors: 1p34.3-pter, 1q22-q25, 3p24-pter, 3q29, 7p11.2-p14, 9q34, 11q12-11q13, 12q13, 12q24.3, 13q34, 14q11.2-q12, 14q32, 16p, 17q24-q25, 19p13.3, 19q13.4, and 22q11.2-q12. A subset of the CGH data was independently confirmed by interphase cytogenetics. Interestingly, the adenomas larger than 4 cm contained gained material of regions also overrepresented in carcinomas. In addition, several chromosomal gains, in particular the high-level amplifications, were exclusive for the malignant status of the tumors. These data indicate that the larger adrenal lesions need to be carefully considered in the diagnosis of adrenocortical tumors, and that genetic aberrations might provide useful markers for a better diagnostic differentiation.  相似文献   

9.
Intrahepatic cholangiocarcinoma (ICC), a malignant neoplasm of the biliary epithelium,is usually fatal because of difficulty in early diagnosis and lack of availability of effective therapy. The genetic mechanisms involved in the development of ICC are not well understood and only a few cytogenetic studies of ICC have been published. Recently, technique of degenerate oligonucleotide primed (DOP)-PCR comparative genomic hybridization (CGH) permits genetic imbalances screening of the entire genome using only small amounts of tumor DNA. In this study chromosomal aberrations in 33 Korean ICC were investigated by DOP-PCR CGH. The common sites of copy number increases were 20q (67%), 17 (61%), 11q11-q13 (42%), 8p12- qter (39%), 18p (39%), 15q22-qter (36%), 16p (36%), 6p21 (30%), 3q25-qter (27%), 1q41-qter (24%), and 5p14-q11.2 (24%). DNA amplification was identified in 16 carcinomas (48%). The frequent sites of amplification were 20q, 17p, 17q23-qter, and 7p. The most frequent sites of copy number decreases were 1p32-pter (21%) and 4q (21%). The recurrent chromosomal aberrations identified in this study provide candidate regions involved in the tumorigenesis and progression of ICC.  相似文献   

10.
The aims of the present study were to compare genetic aberrations in primary sarcomas and their pulmonary metastases and to explore the pathways associated with disease spreading. The primary tumor and its subsequent pulmonary metastasis of 22 patients were analyzed by comparative genomic hybridization. All samples were obtained before the initiation of chemo- or radiotherapy. The mean total number of aberrations per tumor was 7.6 (range, 0-17) in primary tumors and 7. 5 (range, 0-19) in metastases. The mean numbers of high-level amplifications per tumor were similar (0.32 in primary tumors and 0. 36 in metastases). The frequencies of the most common aberrations were relatively similar in primary tumors and metastases: the most frequent gain affected 1q (minimal common regions 1q21-q23 in 36% of primary tumors and 1q21 in 45% of metastases). The most frequent losses were detected at 9p (9p22-pter in 32% of primary tumors and 9p21-pter in 32% of metastases), 10p (10p11.2-p12 in 41% of primary tumors and 10p11.2-pter in 32% of metastases), 11q (11q23-qter in 36% of primary tumors and 32% of metastases), and 13q (13q14-q21 in 45% of primary tumors and 50% of metastases). No aberrations specific to metastases were detected. An increase in the total number of changes during progression was a predominant feature in a majority of these paired samples. Also, the number of differences in the genetic profile outnumbered common changes in a majority of the samples. However, despite the heterogeneous and numerous changes, all pairs with aberrations in both specimens had some shared alterations in both samples. Genes Chromosomes Cancer 25:323-331, 1999.  相似文献   

11.
We analyzed eight samples of xenografted human pancreatic tumors and two metastases developed in mice by comparative genomic hybridization (CGH). The most recurrent changes were: gains on chromosomes 8 (8q24-qter; 7/8 cases), 15 (15q25-q26; 6/8 cases), 16 (16p in 6/8 cases; 16q in 5/8 cases), 20 (20q; 6/8 cases), and 19 (19q; 5/8 cases); and losses on chromosomes 18 (18q21; 6/8 cases), 6 (6q16-q21 and 6q24-qter; 5/8 cases each), and 9 (9p23-pter; 5/8 cases). The two metastases maintained the aberrations of the original pancreatic tumor plus gain of 11q12-q13 and 22q. Loss of heterozygosity analysis was carried out for 10p14-pter, a region that was lost in 3/8 samples. All of them presented allelic imbalance for all the informative loci. Fluorescence in situ hybridization and Southern analysis were performed to test some candidate oncogenes in 8q24 (MYC) and 15q25-qter (IGF1R and FES). Two of seven tumors showed high-level amplification of MYC relative to the centromere (> 3-fold), another two tumors had low-level amplification (1.5- to 3.0-fold), and one displayed 5.5 MYC signals/cell. In relation to the FES gene, low-level amplification was found in three tumors. Southern analysis showed five cases with a low-level amplification of IGF1R. Our data suggest that either few extra gene copies may be enough for cancer progression or other genes located in these regions are responsible for the amplifications found by CGH.  相似文献   

12.
Histopathological differentiation between dermatofibrosarcoma protuberans (DFSP) and dermatofibroma (DF) is often difficult, because both neoplasms share some clinical features and the presence of a storiform pattern. In the present study, we investigated the usefulness of comparative genomic hybridization (CGH) in the diagnosis of these entities by examining 12 DFSP and 12 DF cases. The most frequent DNA sequence copy number changes detected in 10 (83%) of 12 DFSP cases (mean, 1.9 aberrations/tumor; range, 0-3) consisted of gains of 17q22-qter (10 tumors), 22q13 (nine tumors), and 8q24.1-qter (three tumors). High-level amplification, which was detected in three tumors, was seen only in chromosome 17, with 17q23-q25 as the minimal common region. Loss of DNA sequences was not found in DFSP cases. In contrast, two (17%) of the 12 DF cases (mean, 0.5 aberrations/tumor; range, 0-4) showed DNA sequence copy number changes, although recurrent gains and losses and high-level amplifications were not observed. Gains were more common than losses in DF. Overrepresentation of 17q and 22q sequences was a common finding in DFSP but not in DF. Thus, CGH seems to be useful for distinguishing DFSP from DF in most cases.  相似文献   

13.
Comparative genomic hybridization (CGH) was used to identify recurrent regions of DNA sequence loss and gain in 21 multiple myeloma (MM) and plasma cell leukemia (PCL) primary tumor specimens and cell lines. Multiple regions of non-random sequence loss and gain were observed in 8/8 primary advanced stage tumors and 13/13 cell lines. Identification of sequence copy number changes was facilitated by statistical analyses that reduce subjectivity associated with identification of copy number changes and by requiring that sequence changes are visible using both red- and green-labeled tumor DNA. Loss of sequence on 13q and 14q and gain of sequence on 1q and chromosome 7 occurred in 50–60% of the population. In general, cell lines carry more and larger regions of sequence gain and loss than primary tumors. Regions of sequence copy number change that recur among MM cell lines and primary tumors include, in order of prevalence, enh(1q12qter), dim(13), enh(7), enh(3q22q29), enh(11q13.3qter), dim(14q11.2q31), enh(8q21qter), enh(3p25pter), dim(17p11.2p13), and dim(6q22.1q23). Population distributions of genome-wide changes in primary tumors reveal “hot-spots” of sequence loss from 13q12.1-q21, 13q32-q34, 14q11.2-q13, and 14q23-q31. Genomic changes detected using CGH are consistent with those identified using banding analyses, although recurrent involvement of additional regions of the genome are also evident. A higher prevalence of genomic changes is visible using CGH compared to banding. Identification of recurrent regions of sequence gain and loss provides opportunities to identify regions of the genome that may be involved in the malignant phenotype and/or disease progression. Genes Chromosom. Cancer 19:124–133, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
To find similarities that may possibly indicate novel mutations, we performed comparative genomic hybridization (CGH) analysis following degenerate oligonucleotide primed polymerase chain reaction (PCR) for DNA obtained from unique material of breast cancer that developed in monozygotic twin-pairs. Polymerase chain reaction amplification was successful in 12 samples for 11 patients, including 3 pairs. Six samples exhibited DNA copy number changes. Gains (76%) were more frequent than losses (24%). Gains or high-level amplifications in 8q were present in all but 1 of the abnormal cases. Frequent gains were detected with a minimal common overlapping region at 5p (4 cases), at 1q25-qter (3 cases), and at 20q12-qter (2 cases). The most frequent loss, detected in half of the abnormal cases, was at 1p32-pter. One twin-pair showed similar changes in 4 chromosomal locations involving loss of 1p32-pter and gains in 1q25-qter, 5, and 8q.  相似文献   

15.
The overall pattern of chromosomal changes detected by spectral karyotype (SKY) analysis of two cell lines of each major histological subtype of NSCLC, namely squamous cell carcinoma (SQCC) and adenocarcinoma (ADC), indicated a greater degree of chromosomal rearrangement, than was present or predicted by either comparative genomic hybridization (CGH) or G-banding analysis alone. To investigate these observations, CGH was used to screen DNA derived from 8 primary tumors and 15 cell lines. The results indicated that the most frequently gained chromosome arms were 5p (70%), 8q (65%), 15q (52%), 20q (48%), 1q (43%), 19q (39%), 3q (35%), and 11q (35%). Chromosomal losses were less frequently observed, and included 18q (39%), 9 (35%), 6q (30%), 13q (21%), 5q12-q32 (17%), and 19p (17%). Amplifications were found on 2p23-p24, 3q24-q27, 5p, 6cen-p21.1, 6q26, 7p21, 7q31, 8q, 11q13-qter, 20q12-q13.2. Comparison between CGH findings of the two major histological subtypes showed that gains at 1q22-q32.2, 15q, 20q, and losses at 6q, 13q, and 18q was common in ADCs, whereas SQCCs exhibited gains/amplifications at 3q. Distal 8q was gained by CGH in 65% of tumors of both subtypes. Low level MYCC amplification was confirmed by direct fluorescence in situ hybridization (FISH) analysis. The pattern of overall chromosomal changes detected using combinations of molecular cytogenetic analytical methods suggests that it will be easier to detect recurrent subtype-dependent aberrations in NSCLC.  相似文献   

16.
To define the patterns of genetic imbalances in nasopharyngeal carcinoma (NPC), we studied 30 primary NPC tumors with comparative genomic hybridization (CGH). The common sites of chromosomal gains were found in descending order of frequency in 12p11.2-p12 (36%), 12q14-q21 (33%), 2q24-q31 (23%), 1q31-qter (20%), 3q13 (20%), 1q13.3 (20%), 5q21 (17%), 6q14-q22 (13%), 7q21 (13%), 8q11.2-q23 (13%) and 18q12-qter (13%). The common sites of chromosomal loss were at 3p14-p21 (20%), 11q23-qter (20%), 16q21-qter (17%) and 14q24-qter (13%). Correlation with clinicopathologic features showed that 3p loss was associated with a significantly higher risk of death related to recurrence as compared with patients without 3p loss (50% vs. 9%, P=.029). The presence of 16q loss was associated with more advanced stage tumors (stages I & II: 6% vs. stages III & IV: 33%, P=.046). We conclude that consistent patterns of genetic imbalances can be observed in NPC. Deletion of 3p and 16q were associated with higher risk of tumor recurrence and advanced stage cancer.  相似文献   

17.
18.
We performed a comparative genomic hybridization study on 25 samples of adenocarcinoma and 19 samples of squamous cell carcinoma of the lung to detect recurrent changes in the genetic material. DNA copy number changes were found in 16 squamous cell carcinoma samples and 17 adenocarcinoma samples. The most common changes were gains of DNA sequences in 3q (43%), 1q (34%), 8q (32%), 5p, (30%), 7p (25%), and 12p (25%). Of the squamous cell carcinoma samples with DNA copy number changes, 94% (15/16) had a gain in 3q (minimal common region of overlap q24-qter), whereas only 24% (4/17) of the adenocarcinoma samples with DNA copy number changes showed a gain in 3q (q22-qter) (P< 0.001). Six high-level amplifications in 3q (q26.2-q26.3) were detected in the squamous cell carcinoma samples but none were observed in the adenocarcinoma samples. Our results suggest that amplification of genes in 3q may be important in the tumorigenesis of squamous cell carcinoma but not necessarily of adenocarcinoma. Genes Chromosomes Cancer 22:79–82, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
We used comparative genomic hybridization (CGH) to identify recurrent chromosomal imbalances in tumor DNA from 25 malignant ovarian carcinomas and two ovarian tumors of low malignant potential (LMP). Many of the carcinoma specimens displayed numerous imbalances. The most common sites of copy number increases, in order of frequency, were 8q24.1, 20q13.2-qter, 3q26.3-qter, 1q32, 20p, 9p21-pter, and 12p. DNA amplification was identified in 12 carcinomas (48%). The most frequent sites of amplification were 8q24.1-24.2, 3q26.3, and 20q13.2-qter. Other recurrent sites of amplification included 7q36, 17q25, and 19q13.1-13.2. The most frequent sites of copy number decreases were 5q21, 9q, 17p, 17q12-21, 4q26-31, 16q, and 22q. Underrepresentation of 17p was observed in six of 16 stage III/IV tumors, but in none of seven stage I/II tumors, suggesting that this change may be a late event associated with the transition of ovarian carcinomas to a more metastatic disease. Overrepresentation of 3q26.3-qter, 5p14-pter, 8q24.1, 9p21-pter, 20p, and 20q13.2-qter and underrepresentation of 4q26-31 and 17q12-21 also tended to be more common in advanced-stage tumors. All ten grade 3 tumors had copy number increases involving 8q24.1, compared to only three of nine grade 2 tumors. Overrepresentation of 3q26.3-qter and 20q13.2-qter was also observed at a higher frequency in high-grade tumors. One of the two LMP tumors displayed chromosomal alterations, which consisted of overrepresentation of 5p and 9p only. Taken collectively, these findings and data from other CGH studies of ovarian cancers define a set of small chromosome segments that are consistently over- or underrepresented and, thus, highlight sites of putative oncogenes and tumor suppressor genes that contribute to the pathogenesis of these highly malignant neoplasms. Genes Chromosomes Cancer 20:320–328, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
DNA copy number changes were studied by comparative genomic hybridization (CGH) in 50 chondrosarcoma samples from 45 patients. Mean number of genetic aberrations in primary tumors was 4.8 +/- 1.8. The most frequently gained regions were 20q12-qter (37%), 20q (32%), 8q24.1-qter (27%), 20p (24%), and 14q24-qter (24%). Losses were 5.5 times less frequent than gains and observed mainly at Xcen-q21, 6cen-q22, and 18cen-q11.2 (11% each). Recurrent and metastatic tumors showed a mean of 4.0 +/- 2.2 aberrations per sample. The most frequently gained regions were chromosome 7 (4 cases), 5q14-q32 (4 cases), 6p (3 cases), and 12q (3 cases). Losses of DNA sequences were 3.4 times less frequent than gains. Histological tumor grade was significantly associated with metastasis-free survival (P = .002) and overall survival (P = .003), being the strongest prognostic factor tested. A statistically significant correlation was found between gain at 8q24.1-qter and shorter overall survival (P = .01) but not with local recurrence or metastasis-free survival. Gain at 14q24-qter was associated with a trend to shorter overall survival (P = .05) but neither with an increased risk for local recurrence nor with metastasis-free survival. In a multivariate analysis, only the tumor grade associated with overall survival (P = .02). In a multivariate analysis together with the tumor grade, gain at 8q24.1-qter did not retain its significance (P = .44), indicating that this imbalance is not an independent prognostic factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号