首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous studies have shown that bee venom (BV) can induce apoptosis in human cervical cancer Ca Ski cells, but it can also affect human breast cancer cells, though its molecular mechanisms are not precisely known. In this study, the molecular mechanisms of apoptosis induced by BV in human breast cancer MCF7 cells were investigated. BV induced morphological changes (examined by phase-contrast microscopy) and inhibited the proliferation (examined by MTT assay) of MCF7 cells; both effects occurred in a dose- and time-dependent manner. Flow cytometric analysis demonstrated that BV induced the production of reactive oxygen species (ROS) and dysfunction of the mitochondrial membrane potential (Azm), and led to cytochrome c release, an increase in the levels of caspase-9 and Poly (ADP-ribose) polymerase (PARP) and then apoptosis. It also showed that BV induced S-phase arrest in MCF7 cells which may occur through the promotion of p53, p21, p27 and the exhibition of Cdk2. Western blotting demonstrated that BV reduced Bcl-2 and increased Bax protein levels which may have caused the changes of delta psi m. BV treatment led to ROS production up to but after treatment led to a decrease in the levels of ROS, which may be associated with the observations of BVaffecting glutathion S-transferase (GST), Zn-superoxide dismutase (Zn-SOD), Cu/Zn-superoxide dismutase (Cu/Zn-SOD) and catalase. The Comet assay also showed that BV induced DNA damage while DAPI staining also confirmed that BV induced apoptosis in examined MCF7 cells. Our results also showed that BV increased the levels of AIF and EndoG in MCF7 cells. In conclusion, our data demonstrated that BV induced apoptosis via a mitochondria-dependent pathway based on the changes of delta psi m, AIF and EndoG release in MCF7 cells.  相似文献   

2.
Methyl methanesulfonate (MMS) has been shown to induce apoptosis in various cell types through p53-dependent pathways. Nevertheless, pharmacological and genetic blockade of p53 functions results in similar or delayed sensitivity to MMS treatment, suggesting the presence of p53-independent apoptotic mechanisms. To understand the p53-independent mechanisms that are engaged during MMS-induced apoptosis, we established MMS-induced apoptotic cell models using p53-deficient H1299 and Hep3B cells. Our results demonstrated that MMS at concentrations of 50, 100, 200, 400 and 800 μM induced the formation of gammaH2AX foci, and that at higher concentrations, 400 and 800 μM, MMS treatment led to apoptosis in the two cell lines. This apoptotic cell death was concurrent with the loss of mitochondrial membrane potential, nuclear-cytosolic translocation of active caspase 2, release of cytochrome c from mitochondria, and the cleavage of caspase 9, caspase 3 and PARP. However, MMS-induced DNA damage failed to stabilize the p53 family members TAp73 and DNp73. These results demonstrated a p53- and p73-independent mechanism for MMS-induced apoptosis that involves the nuclear-cytosolic translocation of active caspase 2 as well as the mitochondria-mediated pathway.  相似文献   

3.
Capsaicin, a pungent compound found in hot chili peppers, induces apoptotic cell death in various cell lines, however, the precise apoptosis signaling pathway is unknown. Here, we investigated capsaicin-induced apoptotic signaling in the human breast cell line MCF10A and found that it involves both endoplasmic reticulum (ER) stress and calpain activation. Capsaicin inhibited growth in a dose-dependent manner and induced apoptotic nuclear changes in MCF10A cells. Capsaicin also induced degradation of tumor suppressor p53; this effect was enhanced by the ER stressor tunicamycin. The proteasome inhibitor MG132 completely blocked capsaicin-induced p53 degradation and enhanced apoptotic cell death. Capsaicin treatment triggered ER stress by increasing levels of IRE1, GADD153/Chop, GRP78/Bip, and activated caspase-4. It led to an increase in cytosolic Ca2+, calpain activation, loss of the mitochondrial transmembrane potential, release of mitochondrial cytochrome c, and caspase-9 and -7 activation. Furthermore, capsaicin-induced the mitochondrial apoptotic pathway through calpain-mediated Bid translocation to the mitochondria and nuclear translocation of apoptosis-inducing factor (AIF). Capsaicin-induced caspase-9, Bid cleavage, and AIF translocation were blocked by calpeptin, and BAPTA and calpeptin attenuated calpain activation and Bid cleavage. Thus, both ER stress- and mitochondria-mediated death pathways are involved in capsaicin-induced apoptosis.  相似文献   

4.
2,3,5-Tris(glutathion-S-yl)hydroquinone (TGHQ), a metabolite of benzene, catalyzes the generation of reactive oxygen species (ROS) and caspase-dependent apoptosis in human promyelocytic leukemia (HL-60) cells. We now report that TGHQ induces severe DNA damage, as evidenced by DNA ladder formation and H2AX phosphorylation. The subsequent activation of the DNA nick sensor enzyme, poly(ADP-ribose) polymerase-1 (PARP-1), leads to the rapid depletion of ATP and NAD and the concomitant formation of poly(ADP-ribosylated) proteins (PARs). PJ-34 (a PARP-1 inhibitor) completely prevented the formation of PARs, partially attenuated TGHQ-mediated ATP depletion, but had little effect on NAD depletion. Intriguingly, although z-vad-fmk (a pan-caspase inhibitor) attenuated TGHQ-induced apoptosis, cotreatment with PJ-34 led to a further decrease in apoptosis, suggesting that PARP-1 participates in caspase-dependent apoptosis. Indeed, PARP-1 inhibition reduced TGHQ-induced caspase-3, -7, and -9 activation, at least partially by attenuating cytochrome c translocation from mitochondria to the cytoplasm. In contrast, PJ-34 potentiated TGHQ-induced caspase-8 activation, suggesting that PARP-1 plays a dual role in regulating TGHQ-induced apoptosis via opposing effects on the intrinsic (mitochondrial) and extrinsic (death-receptor) pathways. PARP-1 knockdown in HL-60 cells confirmed that PARP-1 participates in effector caspase activation. Finally, PJ-34 also inhibited TGHQ-induced apoptosis-inducing factor (AIF) nuclear translocation, but neither c-jun NH(2)-terminal kinase nor p38 MAPK (p38 mitogen-activated protein kinase) activation was required for AIF translocation. In summary, TGHQ-induced apoptosis of HL-60 cells is accompanied by PARP-1, caspase activation, and AIF nuclear translocation. TGHQ-induced apoptosis appears to primarily occur via engagement of the mitochondrial-mediated pathway in a process amenable to PARP inhibition. Residual cell death in the presence of PJ-34 is likely mediated via the extrinsic apoptotic pathway.  相似文献   

5.
We have studied the mechanism of apoptosis elicited by the farnesyltransferase inhibitor (R)-7-cyano-2,3,4,5-tetrahydro-1-(1H-imidazol-4-ylmethyl)-3-(phenylmethyl)-4-(2-thienylsulfonyl)-1H-1,4-benzodiazepine (BMS-214662) in human myeloma cell lines. Low concentrations of BMS-214662 efficiently inhibited protein farnesylation but did not affect the activation of Akt. BMS-214662 treatment increased levels of the BH3-only protein PUMA; induced proapoptotic conformational changes of Bax and Bak; reduced Mcl-1 levels; caused mitochondrial transmembrane potential loss; induced cytochrome c release, caspase activation, apoptosis-inducing factor (AIF) nuclear translocation, and phosphatidylserine exposure; and allowed the development of apoptotic morphology. Western blot analysis of cell extracts revealed the activation of caspases 2, 3, 8, and 9 upon treatment with BMS-214662. The general caspase inhibitor Z-VAD-fmk significantly prevented BMS-214662-induced death in U266 and RPMI 8226 cells but not in NCI-H929 cells. A mixture of selective caspase inhibitors for caspases 9 [N-benzyloxycarbonyl-Leu-Glu-His-Asp-fluoromethyl ketone (Z-LEHD-fmk)], 3 (Z-DEVD-fmk), and 6 (Z-VEID-fmk) approached the protective effect of Z-VAD upon cell death. However, Z-VAD-fmk did not prevent BMS-214662-induced Bax and Bak activation and decrease of Mcl-1 levels. According to its effect on cell death, Z-VAD-fmk inhibited nuclear translocation of AIF in RPMI 8226 and U266 but not in NCI-H929 cells. These results suggest that apoptosis triggered by BMS-214662 is initiated by a PUMA/Bax/Bak/Mcl-1-dependent mechanism. In some cell lines, Bax/Bak activation is not sufficient per se to induce mitochondrial failure and release of apoptogenic proteins, and so caspases need to be activated to facilitate apoptosis. After DeltaPsi(m) loss, execution of apoptosis was performed in all cases by a cytochrome c-enabled, caspase-9-triggered, caspase cascade and the nuclear action of AIF.  相似文献   

6.
Crude extract of Corni Fructus (CECF) has been used in Traditional Chinese medicine for the treatment of different diseases for hundreds of years. The purpose of this study was to investigate the cytotoxic effects of CECF on U‐2 OS human osteosarcoma cells. Flow cytometry was used for measuring the percentage of viable cells, cell‐cycle distribution, apoptotic cells in sub‐G1 phase, reactive oxygen species (ROS), Ca2+ levels, and mitochondrial membrane potential (ΔΨm). Comet assay and 4′‐6‐diamidino‐2‐phenylindole staining were used for examining DNA damage and condensation. Western blotting was used to examine apoptosis‐associated protein levels in U‐2 OS cells after exposed to CECF. Immunostaining and confocal laser system microscope were used to examine protein translocation after CECF incubation. CECF decreased the percentage of viability, induced DNA damage and DNA condensation, G0/G1 arrest, and apoptosis in U‐2 OS cells. CECF‐stimulated activities of caspase‐8, caspase‐9, and caspase‐3, ROS, and Ca2+ production, decreased ΔΨm levels of in U‐2 OS cells. CECF increased protein levels of caspase‐3, caspase‐9, Bax, cytochrome c, GRP78, AIF, ATF‐6α, Fas, TRAIL, p21, p27, and p16 which were associated with cell‐cycle arrest and apoptosis. These findings suggest that CECF triggers apoptosis in U‐2 OS cells via ROS‐modulated caspase‐dependent and ‐independent pathways. © 2012 Wiley Periodicals, Inc. Environ Toxicol 29: 1020–1031, 2014.  相似文献   

7.
目的 分析百里醌对胶质瘤U87细胞生长抑制和凋亡诱导的功能.方法 体外胶质瘤细胞株U87以及人星形胶质细胞株NHA中添加不同浓度百里醌后,CCK-8法检测细胞活力;克隆形成实验观察U87细胞形成细胞克隆的能力;流式细胞术检测细胞周期和ROS含量;Hoechst染色法和流式细胞术测定细胞凋亡;流式细胞术(JC-1荧光染色...  相似文献   

8.
Zearalenone (ZEN) and its metabolites are commonly found in many food commodities and are known to cause reproductive disorders and genotoxic effects. The major ZEN metabolites are α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL). Although many studies have demonstrated the cytotoxic effects of these metabolites, the mechanisms by which α-ZOL or β-ZOL mediates their cytotoxic effects appear to differ according to cell type and the exposed toxins. We evaluated the toxicity of α-ZOL and β-ZOL on RAW264.7 macrophages and investigated the underlying mechanisms. β-ZOL not only more strongly reduced the viability of cells than did α-ZOL, but it also induced cell death mainly by apoptosis rather than necrosis. The ZEN metabolites induced loss of mitochondrial membrane potential (MMP), mitochondrial changes in Bcl-2 and Bax proteins, and cytoplasmic release of cytochrome c and apoptosis-inducing factor (AIF). Use of an inhibitor specific to c-Jun N-terminal kinase (JNK), p38 kinase or p53, but not pan-caspase or caspase-8, decreased the toxin-induced generation of reactive oxygen species (ROS) and also attenuated the α-ZOL- or β-ZOL-induced decrease of cell viability. Antioxidative enzyme or compounds such as catalase, acteoside, and (E)-1-(3,4-dihydroxyphenethyl)-3-(4-hydroxystyryl)urea suppressed the ZEN metabolite-mediated reduction of cell viability. Further, knockdown of AIF via siRNA transfection diminished the ZEN metabolite-induced cell death. Collectively, these results suggest that the activation of p53, JNK or p38 kinase by ZEN metabolites is the main upstream signal required for the mitochondrial alteration of Bcl-2/Bax signaling pathways and intracellular ROS generation, while MMP loss and nuclear translocation of AIF are the critical downstream events for ZEN metabolite-mediated apoptosis in macrophages.  相似文献   

9.
Kim BM  Choi JY  Kim YJ  Woo HD  Chung HW 《Toxicology》2007,229(3):226-235
Desferrioxamine (DFX), which is an iron chelator, mimics hypoxia by enhancing HIF1-alpha accumulation and upregulating inflammatory mediators. DFX is usually beneficial, with preventive effects related primarily to its ability to scavenge reactive oxygen species. However, toxic effects on skeletal and ocular organs have been reported. The cytokinesis block micronucleus test and alkaline single-cell gel (Comet) assay were used to evaluate the genotoxic effects of DFX on human blood lymphocytes. Cultured human lymphocytes treated with 130microM DFX for various periods of time showed significant differences in the incidence of micronucleated binucleate cells, as well as in the length and moment of the comet tail. Western blot analysis using antibodies to proteins involved in the p53-mediated response to DNA damage revealed that p53 was accumulated and DNA damage checkpoint kinases were activated in lymphocytes treated with DFX. On the other hand, the p53 downstream target proteins p21 and bax were not affected, which indicates that DFX does not promote the transactivational activity of p53. Apoptosis assays demonstrated DFX-induced apoptosis of lymphocytes via the caspase cascade. The observed increase in the sub-G1 fraction and enhanced caspase-3 activity indicate that DFX can promote apoptosis in human lymphocytes, and these results were confirmed by protein immunoblot analysis. As apoptotic cell death is preceded by the collapse of the mitochondrial membrane potential, we also measured the mitochondrial membrane potential (Deltapsi(m)) using DiOC6, which is a fluorescent membrane potential probe. The fluorescence intensity of DiOC6 in lymphocytes was significantly reduced in a time-dependent manner after DFX treatment. Taken together, these results indicate that DFX activates p53-mediated checkpoint signals and induces apoptosis via mitochondrial damage in human peripheral blood lymphocytes.  相似文献   

10.
AIM: To characterize the molecular mechanisms of nitrofen-induced pulmonary hypoplasia. Methods: After administration of nitrofen to cultured type II A549 pneumocytes, cell proliferation and DNA synthesis were investigated by 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide colorimetry, colony formation assay, flow cytometry and [3H]-thymidine incorporation assay. Apoptosis was measured by terminal transferase-mediated dUTP nick-end-labeling, acridine orange-ethidium bromide staining and flow cytometry. Expression of proliferating cell nuclear antigen (PCNA) and apoptosis-related genes was assayed by immunofluorescence, RT-PCR and Western blot. RESULTS: Nitrofen inhibited the cell proliferation of A549 cells in a dose- and time-dependent manner, accompanied by downregulation of PCNA. As a result, the DNA synthesis of nitrofentreated A549 cells decreased, while cell cycle was arrested at G0/G1 phase. Moreover, nitrofen induced apoptosis of A549 cells, which was not abolished by Z-Val-Ala- Asp(OCH3)- fluoromethylketone. In addition, nitrofen decreased the expression of Bcl-x( L), but not of Bcl-2, Bax, and Bak, resulting in a loss of mitochondrial membrane potential and the nuclear translocation of apoptosis-inducing factor (AIF). Meanwhile, nitrofen strongly activated the p38 mitogen-activated protein kinase (p38-MAPK). Pretreatment of cells with SB203580 (5 micromol/L) blocked nitrofen-induced phosphorylation of p38-MAPK and abolished nitrofen-induced AIF translocation and apoptosis in A549 cells. CONCLUSION: Nitrofen suppresses the proliferation of cultured type II pneumocytes accompanied by the downregulation of PCNA, and induces mitochondria-mediated apoptosis involving the activation of p38-MAPK.  相似文献   

11.
《Environmental toxicology》2018,33(10):1005-1018
Inflammation generated by environmental toxicants including pesticides could be one of the factors underlying neuronal cell damage in neurodegenerative diseases. In this study, we investigated the mechanisms by which inflammatory responses contribute to apoptosis in PC12 cells treated with diquat. We found that diquat induced apoptosis, as demonstrated by the activation of caspases and nuclear condensation, inhibition of mitochondrial complex I activity, and decreased ATP level in PC12 cells. Diquat also reduced the dopamine level, indicating that cell death induced by diquat is due to cytotoxicity of dopaminergic neuronal components in these cells. Exposure of PC12 cells to diquat led to the production of reactive oxygen species (ROS), and the antioxidant N‐acetyl‐cystein attenuated the cytotoxicity of caspase‐3 pathways. These results demonstrate that diquat‐induced apoptosis is involved in mitochondrial dysfunction through production of ROS. Furthermore, diquat increased expression of cyclooxygenase‐2 (COX‐2) and tumor necrosis factor‐α (TNF‐α) via inflammatory stimulation. Diquat induced nuclear accumulation of NF‐κB and p53 proteins. Importantly, an inhibitor of NF‐κB nuclear translocation blocked the increase of p53. Both NF‐κB and p53 inhibitors also blocked the diquat‐induced inflammatory response. Pretreatment of cells with meloxicam, a COX‐2 inhibitor, also blocked apoptosis and mitochondrial dysfunction. These results represent a unique molecular characterization of diquat‐induced cytotoxicity in PC12 cells. Our results demonstrate that diquat induces cell damage in part through inflammatory responses via NF‐κB‐mediated p53 signaling. This suggests the potential to generate mitochondrial damage via inflammatory responses and inflammatory stimulation‐related neurodegenerative disease.  相似文献   

12.
Matrine is a major component of Sophora Flavescens and has been reported to stimulate differentiation of erythroleukemia cells. Here we show that matrine inhibits cell proliferation or induces apoptosis in a cell type-specific manner. The latter effect was investigated in more detail in the p53 deficient erythroleukemia cell line, K562. Matrine exposure induced apoptosis in a time- and dose-dependent manner in these cells. Interestingly, co-treatment with etoposide potentiated apoptosis. Further analysis of matrine-induced apoptotic changes revealed that E2F-1 and Apaf-1 were upregulated, whereas Rb was downregulated after 24 h of exposure. This was followed by Bax translocation, cytochrome c release, and caspase-9 and -3 activation. These results demonstrate that matrine triggers apoptosis of K562 cells primarily through the mitochondrial pathway and that matrine is a potential anti-tumor drug.  相似文献   

13.
The herbicide paraquat is a suspected etiologic factor in the development of Parkinson's disease (PD). Paraquat was therefore used to reproduce Parkinsonian syndromes in lab animals, in which it produces dopaminergic pathogenesis. However, the factors or mechanisms by which paraquat kills dopaminergic neurons are not fully understood. Based on reported evidence that paraquat increases p53 protein levels and inhibits mitochondrial function, it was hypothesized that paraquat induces cell death in dopaminergic neurons through a mechanism in which p53 and mitochondrial apoptotic pathway are linked. To explore this possibility, dopaminergic SY5Y cells were treated with paraquat for 48 h and p53 responses were investigated, as well as biomarkers of the mitochondrial intrinsic pathway of apoptosis. Paraquat significantly increased protein levels of p53 and one of its target genes, Bax. By 24 h, paraquat decreased mitochondrial complex I activity and mitochondrial transmembrane potential and induced the release of cytochrome c from mitochondria. In addition, paraquat increased the activities of caspases 9 and 3. Finally, nuclear condensation and DNA fragmentation occurred 48 h after treatment. The decrease of mitochondrial functions, the release of cytochrome c, the increase of caspase 9 and 3 activities, and DNA damage that were produced by paraquat were inhibited by a specific p53 inhibitor, pifithrin-alpha. These findings support the conclusion that paraquat produced apoptosis in SY5Y cells through the mitochondrial intrinsic pathway associated with p53.  相似文献   

14.
To investigate the effects of ellagic acid on the growth inhibition of TSGH8301 human bladder cancer cells in vitro, cells were incubated with various doses of ellagic acid for different time periods. The phase‐contrast microscope was used for examining and photographing the morphological changes in TSGH8301 cells. Flow cytometric assay was used to measure the percentage of viable cells, cell cycle distribution, apoptotic cells, ROS, mitochondrial membrane potential (ΔΨm), Ca2+, caspase‐9 and ‐3 activities in TSGH8301 cells after exposure to ellagic acid. Western blotting was used to examine the changes of cell cycle and apoptosis associated proteins levels. Results indicated that ellagic acid induced morphological changes, decreased the percentage of viable cells through the induction of G0/G1 phase arrest and apoptosis, and also showed that ellagic acid promoted ROS and Ca2+ productions and decreased the level of ΔΨm and promoted activities of caspase‐9 and ‐3. The induction of apoptosis also confirmed by annexin V staining, comet assay, DAPI staining and DNA gel electrophoresis showed that ellagic acid induced apoptosis and DNA damage in TSGH8301 cells. Western blotting assay showed that ellagic acid promoted p21, p53 and decreased CDC2 and WEE1 for leading to G0/G1 phase arrest and promoting BAD expression, AIF and Endo G, cytochrome c, caspase‐9 and ‐3 for leading to apoptosis in TSGH8301 cells. On the basis of these observations, we suggest that ellagic acid induced cytotoxic effects for causing a decrease in the percentage of viable cells via G0/G1 phase arrest and induction of apoptosis in TSGH8301 cells. © 2013 Wiley Periodicals, Inc. Environ Toxicol 29: 1262–1274, 2014.  相似文献   

15.
We investigated the cytotoxicity of recently synthesized (S,S)-ethylendiamine-N,N'-di-2-(3-cyclohexyl)propanoic acid esters toward human leukemic cell lines and healthy blood mononuclear cells. Cell viability was assessed by acid phosphatase assay, apoptosis, and differentiation were analyzed by flow cytometry and electron microscopy, while intracellular localization of apoptosis-inducing factor (AIF) was determined by immunoblotting. It was demonstrated that methyl, ethyl, and n-propyl esters were toxic to HL-60, REH, MOLT-4, KG-1, JVM-2, and K-562 leukemic cell lines, while the nonesterified parental compound and n-butyl ester were devoid of cytotoxic action. The ethyl ester exhibited the highest cytotoxic activity (IC?? 10.7 μM-45.4 μM), which was comparable to that of the prototypical anticancer drug cisplatin. The observed cytotoxic effect in HL-60 cells was associated with an increase in superoxide production and mitochondrial membrane depolarization, leading to apoptotic cell death characterized by phosphatidylserine externalization and DNA fragmentation in the absence of autophagic response. DNA fragmentation preceded caspase activation and followed AIF translocation from mitochondria to nucleus, which was indicative of caspase-independent apoptotic cell death. HL-60 cells treated with subtoxic concentration of the compound displayed morphological signs of granulocytic differentiation (nuclear indentations and presence of cytoplasmic primary granules), as well as an increased expression of differentiation markers CD11b and CD15. The cyclohexyl analogues of ethylenediamine dipropanoic acid were also toxic to peripheral blood mononuclear cells of both healthy controls and leukemic patients, the latter being more sensitive. Our data demonstrate that the toxicity of the investigated cyclohexyl compounds against leukemic cell lines is mediated by caspase-independent apoptosis associated with oxidative stress, mitochondrial dysfunction, and AIF translocation.  相似文献   

16.
BACKGROUND: The effects of baicalein on SCC-4 human tongue cancer cells were examined to better understand its effect on apoptosis and associated possible signal pathways in vitro. MATERIALS AND METHODS: Apoptosis induction, reactive oxygen species (ROS), cytoplasmic Ca2+, mitochondrial membrane potential (MMP) and caspase-3 activity were analyzed using the flow cytometric assay. Apoptosis-associated proteins, such as p53, BAX, BCL-2, cytochrome c, caspase-3 and -9, EndoG and AIF were determined by Western blotting. RESULTS: Our results showed that baicalein promoted the levels of p53, BAX, cytochrome c, capase-3 and -9 and reduced the level of BCL-2, which were associated with the induction of apoptotic cell death of SCC-4 cells. A release of cytochrome c from mitochondria into cytosol was demonstrated and an activation of caspase-3, which led to the occurrence of apoptosis in SCC-4 cells treated with baicalein as determined by Western blot. In order to understand the role of Ca2+ in the induction of apoptosis, cells were pre-treated with BAPTA (intracellular calcium chelator) and baicalein. It was shown that the MMP was restored, and the level of cytoplasmic Ca2+ suppressed, the proportion of cells undergoing apoptosis was also markedly diminished. Our data suggest that cellular Ca2+ modulates baicalein-induced cell death via a Ca2+-dependent mitochondrial death pathway in SCC-4 cells.  相似文献   

17.
Cadmium (Cd) is a highly toxic metal that affects a variety of cellular events, such as cell proliferation, differentiation and survival. Cd generates reactive oxygen species (ROS) that induce apoptosis. We previously demonstrated that Cd induces apoptosis in testicular germ cells and that apoptosis was prevented by the administration of ascorbic acid (AA), an ROS scavenger. However, little is known about the signaling pathways underlying Cd-induced apoptosis in rat testes. Here, we report that Cd-induced apoptosis in rat testes was associated with the translocation of apoptosis inducing factor (AIF) from mitochondria to the nucleus, and that this was prevented by treatment with AA. Cd-induced cleavage of poly ADP-ribose polymerase-1 (PARP-1), and this was also inhibited by treatment with AA. Taken together, these results suggest that Cd-induced ROS was responsible for the upregulation of PARP-1, the translocation of AIF to the nucleus, and apoptosis of testicular cells in rat testes.  相似文献   

18.
N-BP, rapamycin and its derivatives have been originally developed respectively as anti-resorptive and anti-fungal agents. In fact, in vitro and in vivo experiments demonstrated that these compounds are multi-functional molecules exerting their effects on tumour cell growth and bone remodelling. The major challenge in treating cancer relates to mutations in key genes such as p53, Rb or proteins affecting caspase signalling carried by many tumour cells. Whether nitrogen containing bisphosphonates (N-BP) are potent bone inhibitors, they also inhibit tumour cell proliferation and increase atypical apoptosis of bone tumour cells regardless of the p53 and Rb status. N-BP may be then considered as effective therapeutic agents in clinical trials of bone tumours. Rapamycin and its derivatives inhibit mTOR dependent mRNA translation both in osteoclasts and tumour cells. Cellular physiological mechanisms regulated by mTOR integrate many environmental parameters including growth factors, hormones, cytokines, amino acids, energy availability and cellular stresses that are coupled with cell cycle progression and cell growth. Rapamycin and its derivatives as well as N-BP must be considered as bi-(multi) functional molecules affecting simultaneously bone and tumour metabolisms. The present survey describes these two molecular families and discusses their therapeutic interests for primary bone tumours and bone metastases.  相似文献   

19.

BACKGROUND AND PURPOSE

2,5-diaziridinyl-3-(hydroxymethyl)-6-methyl-1,4-benzoquinone (RH1) is a bioreductive agent that is activated by the two-electron reductase NAD(P)H quinone oxidoreductase 1 (NQO1). Although the cytotoxic efficacy of RH1 against tumours has been studied extensively, the molecular mechanisms underlying this anti-cancer activity have not yet been fully elucidated.

EXPERIMENTAL APPROACH

2,5-diaziridinyl-3-(hydroxymethyl)-6-methyl-1,4-benzoquinone-induced apoptosis and related signalling pathways in NQO1-negative and NQO1-overexpressing cells were evaluated. The role of p53 in RH1-induced cell death was investigated using parental and p53-deficient RKO human colorectal cancer cells by assaying clonogenic cell survival. Specific inhibitors and siRNAs targeting factors involved in RH1-induced apoptosis were used to clarify the roles played by such factors in RH1-activated apoptotic signalling pathways.

KEY RESULTS

2,5-diaziridinyl-3-(hydroxymethyl)-6-methyl-1,4-benzoquinone induced apoptosis and clonogenic death, dependent on NQO1 and p53. Treatment of NQO1-overexpressing cells with RH1 caused rapid disruption of mitochondrial membrane potential, nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G (Endo G) from mitochondria, and subsequent caspase-independent apoptotic cell death. siRNA targeting AIF and Endo G effectively attenuated RH1-induced apoptotic cell death. Moreover, RH1 induced cleavage of Bax, which targets mitochondria. RH1 significantly activated the c-Jun N-terminal kinase (JNK) pathway, and inhibition of this pathway suppressed RH1-induced mitochondria-mediated apoptosis. RH1-induced generation and mitochondrial translocation of cleaved Bax were blocked by the JNK inhibitor, SP600125. Inhibition of JNK with SP600125 attenuated the mitochondrial translocation of JNK.

CONCLUSIONS AND IMPLICATIONS

2,5-diaziridinyl-3-(hydroxymethyl)-6-methyl-1,4-benzoquinone activated JNK, resulting in mitochondria-mediated apoptotic cell death that was NQO1-dependent.  相似文献   

20.
Ouabain, a cardiotonic steroid and specific Na+/K+‐ATPase inhibitor, has a potential to induce cancer cell apoptosis but the mechanisms of apoptosis induced by ouabain are not fully understand. The aim of this study was to investigate the cytotoxic effects of ouabain on human prostate cancer DU 145 cells in vitro. Cell morphological changes were examined by phase contrast microscopy. Cell viability, cell cycle distribution, cell apoptosis, DNA damage, the production of ROS and Ca2+, and mitochondrial membrane potential (ΔΨm) were measured by flow cytometry assay. Results indicated that ouabain induced cell morphological changes, decreased total cell viability, induced G0/G1 phase arrest, DNA damage, and cell apoptosis, increased ROS and Ca2+ production, but decreased the levels of ΔΨm in DU 145 cells. Ouabain also increased the activities of caspase‐3, ‐8, and ‐9. Western blotting was used for measuring the alterations of apoptosis‐associated protein expressions in DU 145 cells and results indicated that ouabain increased the expression of DNA damage associated proteins (pATMSer1981, p‐H2A.XSer139, and p‐p53Ser15) and ER‐stress‐associated proteins (Grp78, ATF6β, p‐PERKThr981, PERK, eIF2A, GADD153, CaMKIIβ, and caspase‐4) in time‐dependently. Furthermore, ouabain increased apoptosis‐associated proteins (DR4, DR5, Fas, Fas Ligand, and FADD), TRAIL pathway, which related to extrinsic pathway, promoted the pro‐apoptotic protein Bax, increased apoptotic‐associated proteins, such as cytochrome c, AIF, Endo G, caspase‐3, ‐8, and ‐9, but reduced anti‐apoptotic protein Bcl‐2 and Bcl‐x in DU 145 cells. In conclusion, we may suggest that ouabain decreased cell viability and induced apoptotic cell death may via caspase‐dependent and mitochondria‐dependent pathways in human prostate cancer DU 145 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号