首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholinergic neurons located in the lateral dorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei have been shown to principally innervate the thalamus. In order to determine whether some of these neurons might simultaneously project to two thalamic targets we made microinjections of rhodamine-conjugated microbeads into the central-lateral nucleus of the thalamus and fluorescein isothiocyanate (FITC)-conjugated microbeads into the dorso-lateral geniculate nucleus. We then determined whether both tracers were found in immunohistochemically identified cholinergic somata in the LDT and PPT nuclei. Results showed that some cholinergic and non-cholinergic neurons in the LDT and PPT nuclei projected to both thalamic sites. This finding extends our understanding of the projections of the LDT-PPT cholinergic neurons and further supports the role of these neurons in complex behaviors.  相似文献   

2.
This study demonstrates that the laterodorsal tegmental nucleus (LDT) and pedunculopontine tegmental nucleus (PPT) are sources of cholinergic projections to the cat pontine reticular formation gigantocellular tegmental field (PFTG). Neurons of the LDT and PPT were double-labeled utilizing choline acetyltransferase immunohistochemistry combined with retrograde transport of horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP). In the LDT the percentage of cholinergic neurons retrogradely labeled from PFTG was 10.2% ipsilaterally and 3.7% contralaterally, while in the PPT the percentages were 5.2% ipsilaterally and 1.3% contralaterally. These projections from the LDT and PPT to the PFTG were confirmed and their course delineated with anterograde labeling utilizing Phaseolus vulgaris leucoagglutinin (PHA-L) anterograde transport.  相似文献   

3.
It has been postulated that the ascending cholinergic tegmental system is responsible for the initiation of the aversive emotional state with a concomitant alarm vocalization in the rat. It is assumed that the activity of cholinergic neurons of the laterodorsal tegmental nucleus (LDT) will cause release of acetylcholine in the target areas and will initiate the emission of 22 kHz vocalizations. The goal of the present study was to test the hypothesis that the cholinergic neurons of the LDT increase their activity during emission of 22 kHz alarm calls. Vocalizations were induced by an air puff or by intrahypothalamic-preoptic injection of carbachol. The activity of the LDT cholinergic neurons was studied by a double histochemical labelling for choline acetyltransferase, as a marker of cholinergic somata, and for c-Fos protein, as a marker of cells with heighten metabolic activity. Both air puff stimulation and intracerebral carbachol induced comparable 22 kHz alarm vocalizations. The activity of neurons in the LDT was significantly higher during prolonged emission of 22 kHz alarm calls induced by air puff or injection of carbachol than in the non-vocalizing or low-vocalizing controls. There were approximately two times more of all c-Fos-labelled cells in the LDT of vocalizing animals and 2.5 times more active cholinergic neurons during prolonged 22 kHz vocalization than in the control conditions without vocalization. However, the active cholinergic neurons constituted only a small proportion of all active LDT cells (2.3%). At the same time, there were no significant increases in the number of c-Fos-labelled cells in the neighbouring pedunculopontine nucleus (PPT). These findings lead to the conclusion that the neurons of the LDT, including cholinergic neurons, but not those of the PPT, significantly increased their activity during prolonged emission of alarm vocalizations, as evidenced by the c-Fos immunoreactivity.  相似文献   

4.
In aged cats, light microscopic studies revealed significant decrease in the soma size of choline acetyltransferase (ChAT)-positive neurons in the laterodorsal and pedunculo-pontine tegmental nuclei (LDT and PPT), compared with adult control animals. In addition, a significant reduction of the total dendritic length and total dendritic segment number of ChAT-positive neurons was detected in both the LDT and PPT of aged cats. However, in contrast to the changes of soma and dendrites, no significant changes in the number of ChAT-positive neurons in aged were found comparing to that in the control cats in both the LDT and PPT; nor were there differences in the staining intensity of the somata of neurons in the adult and aged cats. Electron microscopic analysis highlighted degenerative changes in cholinergic neurons in the LDT and PPT of aged cats which included somata with intracytoplasmic vacuoles, darkened mitochondria, depletion of dendritic microtubules and severe demyelination of axons. These data indicate that profound atrophic changes occur in cholinergic systems of the LDT and PPT as a consequence of the aging process. These alterations likely reflect the cellular bases for the age-related changes in REM sleep that occur in old animals.  相似文献   

5.
Ascending projections from the pedunculopontine tegmental nucleus (PPT) and the surrounding mesopontine tegmentum to the forebrain in the rat are here examined by using both retrograde and anterograde tracing techniques combined with choline acetyltransferase (ChAT) immunohistochemistry. The anterogradely transported lectin Phaseolus vulgaris-leukoagglutinin (PHA-L) was iontophoretically injected into the PPT in 12 rats. Anterogradely labelled fibers and varicosities were observed in the thalamic nuclei, confirming the findings of our previous retrograde studies (Hallanger et al: J. Comp. Neurol. 262:105-124, '87). In addition, PHA-L-labelled fibers and varicosities suggestive of terminal fields were observed in the anterior, tuberal, and posterior lateral hypothalamic regions, the ventral pallidum in the region of the nucleus basalis of Meynert, the dorsal and intermediate lateral septal nuclei, and in the central and medial nuclei of the amygdala. To determine whether these were cholinergic projections, the retrograde tracer WGA-HRP was injected into terminal fields in the hypothalamus, septum, ventral pallidum, and amygdala. Numerous ChAT-immunoreactive neurons in the PPT and laterodorsal tegmental nucleus (LDT) were retrogradely labelled from the lateral hypothalamus. These cholinergic neurons constituted over 20% of those retrogradely labelled in the dorsolateral mesopontine tegmentum; the balance consisted of noncholinergic neurons of the central tegmental field, retrorubral field, and cuneiform nucleus. Following placement of WGA-HRP into dorsal and intermediate lateral septal regions, the vast majority (greater than 90%) of retrogradely labelled neurons were cholinergic neurons of the PPT and LDT, with few noncholinergic retrogradely labelled neurons in the adjacent tegmentum. In contrast, fewer cholinergic neurons were retrogradely labelled following placement of tracer into the nucleus basalis of Meynert or into the central, medial, and basolateral nuclei of the amygdala, while numerous noncholinergic neurons of the central tegmental field rostral to the PPT and of the retrorubral field adjacent to the PPT were retrogradely labelled in these cases. These anterograde and retrograde studies demonstrate that cholinergic PPT and LDT neurons provide a substantial proportion of mesopontine tegmental afferents to the hypothalamus and lateral septum, while projections to the nucleus basalis and the amygdala are minimal.  相似文献   

6.
Wave A in the cat appears to be analogous to P1 in the human. Both are positive middle-latency auditory-evoked potentials, present at slow click rates during wakefulness and REM sleep but absent during slow-wave sleep. Wave A has been recorded in the parabrachial and medial tegmental areas of the midbrain and in thalamic target projections of the reticular activating system. Two nuclei in this system, the pedunculopontine tegmental (PPT) and laterodorsal tegmental (LDT) nuclei, contain cholinergic cells; the cholinergic antagonist scopolamine eliminates Wave A. To test whether PPT and LDT were important in Wave A generation, we attempted to lesion these nuclei bilaterally in 11 cats. Wave A was markedly diminished or absent in all but 2 cats, in which the lesions did not include PPT. Loss of choline acetyltransferase-positive cells in PPT, but not LDT, was correlated with effects on Wave A, i.e. greatest cell loss occurred in cats in which Wave A disappeared, and least cell loss in cats with no change in Wave A. We conclude that the PPT nucleus, and particularly its cholinergic cell component, is essential for Wave A generation and suggests that a similar substrate may be significant for generation of the human P1.  相似文献   

7.
The brain cholinergic system comprises two main recognized subdivisions, the basal forebrain and the brainstem cholinergic systems. The effects of chronic alcohol consumption on the basal forebrain cholinergic nuclei have been investigated extensively, but there is only one study that has examined those effects on the brainstem cholinergic nuclei. The last one comprises the pedunculopontine tegmental (PPT) and the laterodorsal tegmental (LDT) nuclei, which are known to give origin to the main cholinergic projection to the ventral tegmental area, a key brain region of the neural circuit, the mesocorticolimbic system, that mediates several behavioral and physiological processes, including reward. In the present study, we have examined, using stereological methods, the effects of chronic alcohol consumption (6 months) and subsequent withdrawal (2 months) on the total number and size of PPT and LDT choline acetyltransferase (ChAT)-immunoreactive neurons. The total number of PPT and LDT ChAT-immunoreactive neurons was unchanged in ethanol-treated and withdrawn rats. However, ChAT-immunoreactive neurons were significantly hypertrophied in ethanol-treated rats, an alteration that did not revert 2 months after ethanol withdrawal. These results show that prolonged exposure to ethanol leads to long-lasting, and potentially irreversible, cytoarchitectonic and neurochemical alterations in the brainstem cholinergic nuclei. These alterations suggest that the alcohol-induced changes in the brainstem cholinergic nuclei might play a role in the mechanisms underlying the development of addictive behavior to alcohol.  相似文献   

8.
The laterodorsal tegmental nucleus (LDT) is a brainstem nucleus implicated in reward processing and is one of the main sources of cholinergic afferents to the ventral tegmental area (VTA). Neuroplasticity in this structure may affect the excitability of VTA dopamine neurons and mesocorticolimbic circuitry. Here, we provide evidence that cocaine‐induced intrinsic membrane plasticity in LDT cholinergic neurons is involved in addictive behaviors. After repeated experimenter‐delivered cocaine exposure, ex vivo whole‐cell recordings obtained from LDT cholinergic neurons revealed an induction of intrinsic membrane plasticity in regular‐ but not burst‐type neurons, resulting in increased firing activity. Pharmacological examinations showed that increased riluzole‐sensitive persistent sodium currents, but not changes in Ca2+‐activated BK, SK or voltage‐dependent A‐type potassium conductance, mediated this plasticity. In addition, bilateral microinjection of riluzole into the LDT immediately before the test session in a cocaine‐induced conditioned place preference (CPP) paradigm inhibited the expression of cocaine‐induced CPP. These findings suggest that intrinsic membrane plasticity in LDT cholinergic neurons is causally involved in the development of cocaine‐induced addictive behaviors.  相似文献   

9.
Canine narcolepsy is a unique experimental model of a human sleep disorder characterized by excessive daytime sleepiness and cataplexy. There is a consensus recognition of an imbalance between cholinergic and catecholaminergic systems in narcolepsy although the underlying mechanisms remain poorly understood. Possible substrates could be an abnormal organization, numbers and/or ratio of cholinergic to catecholaminergic cells in the brain of narcoleptic dogs. Therefore, we sought to characterize the corresponding neuronal populations in normal and narcoleptic dogs (Doberman Pinscher) by using choline acetyltransferase (ChAT), nicotinamide adenosine dinucleotide phosphate (NADPH)-diaphorase, tyrosine hydroxylase (TH), and dopamine β-hydroxylase (DBH). Cholinergic cell groups were found in an area extending from the central to the gigantocellular tegmental field and the periventricular gray corresponding to the pedunculopontine tegmental nucleus (PPT), the laterodorsal tegmental nucleus (LDT), and the parabrachial nucleus. An almost perfect co-localization of ChAT and NADPH-diaphorase was also observed. Catecholaminergic cell groups detected included the ventral tegmental area, the substantia nigra, and the locus coeruleus nucleus (LC). The anatomical distribution of catecholaminergic neurons was unusual in the dog in two important aspects: i) TH- and/or DBH-immunoreactive neurons of the LC were found almost exclusively in the reticular formation and not within the periventricular gray, ii) very few, if any TH-positive neurons were found in the central gray and dorsal raphe. Quantitative analysis did not reveal any significant differences in the organization and the number of cells identified in the LDT, PPT, and LC of normal and narcoleptic dogs. Moreover, the cholinergic to catecholaminergic ratio was found identical in the two groups. In conclusion, the present results do not support the hypothesis that the neurochemical imbalance in narcolepsy could result from abnormal organization, numbers, or ratio of the corresponding neuronal populations. J. Comp. Neurol. 379:185–197, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
The laterodorsal tegmental nucleus (LDT), which sends cholinergic efferent connections to dopaminergic (DA) neurons in the ventral tegmental area (VTA), plays a critical role in the development of addictive behavior and the reinstatement of cocaine‐seeking behavior. Although repeated cocaine exposure elicits plastic changes in excitatory synaptic transmission and intrinsic membrane excitability in LDT cholinergic neurons, it remains unclear whether inhibitory synaptic transmission is modulated by cocaine exposure. The LDT receives fibers containing noradrenaline (NA), a neurotransmitter whose extracellular levels increase with cocaine exposure. Therefore, it is hypothesized that repeated cocaine exposure induces plastic changes in LDT cholinergic neurons via NA. Ex vivo electrophysiological recordings in LDT cholinergic neurons were obtained from rats repeatedly exposed to cocaine. Bath‐application of NA induced similar levels of hyperpolarization in both saline‐ and cocaine‐treated neurons. However, NA attenuated the amplitude of inhibitory postsynaptic currents (IPSCs) in cocaine‐ but not saline‐treated neurons through α2 adrenoceptors. This NA‐induced IPSC attenuation was observed in the presence of strychnine, but not gabazine, indicating that NA modulated GABAergic but not glycinergic neurotransmission. NA increased the paired‐pulse ratios of evoked IPSCs and decreased the frequencies of miniature IPSCs (mIPSCs) without affecting their amplitudes, suggesting a presynaptic mechanism. These findings suggest that repeated cocaine exposure induces neuroplasticity in GABAergic synaptic transmission onto LDT cholinergic neurons by probably modulating presynaptic α2 adrenoceptors. This potentially increases the activity of LDT cholinergic neurons, which might contribute to the development of addictive behavior by enhancing VTA DA neuronal activity.  相似文献   

11.
Increasingly strong evidence suggests that cholinergic neurons in the mesopontine tegmentum play important roles in the control of wakefulness and sleep. To understand better how the activity of these neurons is regulated, the potential afferent connections of the laterodorsal (LDT) and pedunculopontine tegmental nuclei (PPT) were investigated in the rat. This was accomplished by using retrograde and anterograde axonal transport methods and NADPH-diaphorase histochemistry. Immunohistochemistry was also used to identify the transmitter content of some of the retrogradely identified afferents. Following injections of the retrograde tracer wheatgerm agglutinin-conjugated horseradish peroxidase (WGA-HRP) into either the LDT or the PPT, labelled neurons were seen in a number of limbic forebrain structures. The medial prefrontal cortex and lateral habenula contained more retrogradely labelled neurons from the LDT, whereas in the bed nucleus of the stria terminalis and central nucleus of the amygdala, more cells were labelled from the PPT. Moderate numbers of neurons were seen in the magnocellular regions of the basal forebrain, and many labelled neurons were observed in the lateral hypothalamus, the zona incerta, and the midbrain central gray from both the LDT and the PPT. Accessory oculomotor nuclei in the midbrain as well as eye movement-related structures in the lower brainstem contained some neurons labelled from the LDT, and fewer neurons from the PPT. A few labelled neurons were seen in somatosensory and other sensory relay nuclei in the brainstem and the spinal cord. Retrograde labelling was seen in a number of extrapyramidal structures, including the globus pallidus, entopenduncular and subthalamic nuclei, and substantia nigra following PPT injections; with LDT injections, labelling was similar in density in the substantia nigra but virtually absent in the entopeduncular and subthalamic nuclei. Data with the fluorescent retrograde tracer fluorogold combined with immunofluorescence indicated that many neurons in the zona incerta-lateral hypothalamic region that were retrogradely labelled from the LDT contained alpha-melanocyte-stimulating hormone. Numerous neurons were labelled throughout the reticular formation of the brainstem following either LDT or PPT injections. Many neurons retrogradely labelled in the LDT and PPT, the dorsal and median raphe nuclei, and the locus ceruleus contained choline acetyltransferase, serotonin, and tyrosine hydroxylase, respectively. The anterograde tracers WGA-HRP and phaseolus vulgaris leucoagglutinin were used to confirm some of the projections indicated by the retrograde labelling data; anterograde labelling was seen in the LDT and PPT following injections of one of these tracers into the medial prefrontal cortex, lateral hypothalamus, and the contralateral LDT.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Methamphetamine (MA) increases dopamine (DA) levels within the mesolimbic pathway and acetylcholine (ACh), a neurotransmitter known to increase DA cell firing and release and mediate reinforcement, within the ventral tegmental area (VTA). The laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei provide cholinergic input to the VTA; however, the contribution of LDT- and PPT-derived ACh to MA-induced DA and ACh levels and locomotor activation remains unknown. The first experiment examined the role of LDT-derived ACh in MA locomotor activation by reversibly inhibiting these neurons with bilateral intra-LDT microinjections of the M2 receptor agonist oxotremorine (OXO). Male C57BL/6 J mice were given a bilateral 0.1 μl OXO (0, 1, or 10 nM/side) microinjection immediately prior to IP saline or MA (2 mg/kg). The highest OXO concentration significantly inhibited both saline- and MA-primed locomotor activity. In a second set of experiments we characterized the individual contributions of ACh originating in the LDT or pedunculopontine tegmental nucleus (PPT) to MA-induced levels of ACh and DA by administering intra-LDT or PPT OXO and performing in vivo microdialysis in the VTA and NAc. Intra-LDT OXO dose-dependently attenuated the MA-induced increase in ACh within the VTA but had no effect on DA in NAc. Intra-PPT OXO had no effect on ACh or DA levels within the VTA or NAc, respectively. We conclude that LDT, but not PPT, ACh is important in locomotor behavior and the cholinergic, but not dopaminergic, response to systemic MA.  相似文献   

13.
The lateral dorsal tegmental nucleus (LDT) provides ascending cholinergic projections to forebrain structures such as prefrontal cortex, septum, habenula, and thalamus, but relatively little is known of the physiology of LDT neurons. Intracellular recordings from LDT neurons in guinea pig brain slices found that most neurons fired action potentials either tonically or in bursts. The voltage dependent characteristics of the neurons suggest that a prolonged afterhyperpolarization due to an outward potassium current and a low-threshold calcium conductance contributed to these two modes of firing. Intracellular injections of Lucifer Yellow and subsequent staining for NADPH-diaphorase activity permitted positive identification of cholinergic neurons.  相似文献   

14.
The laterodorsal tegmental nucleus (LDT) is a brainstem nucleus that sends cholinergic, glutamatergic, and gamma‐aminobutyric acid (GABA)‐ergic projections to the ventral tegmental area (VTA), a key brain region associated with reward information processing and reinforcement learning, and thus, with addiction induced by drugs of abuse, including cocaine. Recent studies have revealed that the LDT, in addition to the VTA, plays important roles in the development and expression of cocaine‐induced addiction and stress‐induced enhancement of addictive behaviors. Additionally, neuroplasticity induced in LDT cholinergic neurons by repeated cocaine administration critically contributes to these behaviors. Elucidation of the underlying mechanisms of cocaine‐induced neuroplasticity in the LDT that influences reward circuit activity may lead to the development of therapeutic strategies to treat cocaine addiction and stress‐induced reinstatement of cocaine use. This review summarizes recent progress in the study of the LDT, specifically neuroplasticity in LDT cholinergic neurons induced by cocaine and its functional roles in the development and modulation of addictive behaviors associated with cocaine.  相似文献   

15.
The influence of thyroid hormone on the development of cholinergic neurons in nucleus basalis was assessed in hyperthyroid, hypothyroid, and euthyroid rats by use of CAT immunohistochemistry and single-section Golgi-impregnation histology. Animals were made either hyperthyroid by daily injections of 1.0 micrograms/gm body weight triiodothyronine starting at postnatal day (P) 3 or hypothyroid by providing 0.4% propylthiouracil in the diet of dams from P2. Compared to developing control rats, increased exposure to thyroid hormone resulted in accelerated expression of CAT in nucleus basalis neurons. Overshoot in cell body size, a normal developmental phenomenon of cholinergic neurons in the basal nuclear complex, occurred earlier in hyperthyroid brains and was of a greater magnitude than in controls. Furthermore, increased numbers of primary dendrites and dendritic branchpoints accompanied by dendritic and perisomal filopodia-like structures were observed for nucleus basalis neurons in hyperthyroid rats. These dendritic changes persisted throughout the second postnatal month. After the fifth postnatal week, cell body sizes of these hyperthyroid CAT-positive neurons began to decrease and by P50 were significantly less than controls or similarly treated animals at earlier ages. By P64, the number of cholinergic neurons in nucleus basalis was appreciably less than in age-matched controls. Hypothyroidism resulted in a delay of normal CAT expression that persisted throughout the third postnatal week. After this time, CAT staining increased until normal immunoreactivity was attained in cell bodies, fibers, and terminal regions by P35. A deficit in thyroid hormone during development prevented overshoot in perikaryal size and resulted in diminished cross-sectional areas throughout the cholinergic nucleus basalis at all ages examined. Hypothyroidism also prevented the normal overproduction of dendrites in those cells and produced stunted dendritic trees at all ages examined. These morphological abnormalities persisted throughout the second postnatal month. The effects of thyroid hormone on cholinergic projection neurons in the rat brain appeared relatively selective for cells in the basal nuclear complex because neither hypothyroid nor hyperthyroid treatment produced changes in the cell body areas of the phenotypically similar CAT-positive neurons of the pontomesencephalotegmental complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Cholinergic and gamma-aminobutyric acid (GABA) mechanisms in the dorsolateral pontomesencephalic tegmentum have been implicated in the control of active (REM) sleep and wakefulness. To determine the relationships between neurons that contain these neurotransmitters in this region of the brainstem in adult cats, combined light and electron microscopic immunocytochemical procedures were employed. Light microscopic analyses revealed that choline acetyltransferase (ChAT) and GABA immunoreactive neurons were distributed throughout the laterodorsal and pedunculopontine tegmental nuclei (LDT and PPT). Surprisingly, approximately 50% of the ChAT immunoreactive neurons in these nuclei also contained GABA. Using electron microscopic pre-embedding immunocytochemistry, GABA immunoreactivity was observed in somas, dendrites and axon terminals in both the LDT and PPT. Most of the GABA immunoreactive terminals formed symmetrical synapses with non-immunolabeled dendrites. Electron microscopic double-immunolabeling techniques revealed that ChAT and GABA were colocalized in axon terminals in the LDT/PPT. Approximately 30% of the ChAT immunoreactive terminals were also GABA immunoreactive, whereas only 6-8% of the GABA immunoreactive terminals were ChAT immunoreactive. Most of the ChAT/GABA immunoreactive terminals formed symmetrical synapses with non-immunolabeled dendrites; however, ChAT/GABA immunoreactive terminals were also observed that contacted ChAT immunoreactive dendrites. With respect to ChAT immunoreactive postsynaptic profiles, approximately 40% of the somas and 50% of the dendrites received synaptic contact from GABA immunoreactive terminals in both the LDT and PPT. These findings (a) indicate that there are fundamental interactions between cholinergic and GABAergic neurons within the LDT/PPT that play an important role in the control of active sleep and wakefulness and (b) provide an anatomical basis for the intriguing possibility that a mechanism of acetylcholine and GABA co-release from the terminals of LDT/PPT neurons is involved in the regulation of behavioral states.  相似文献   

17.
The extracellular electrophysiological properties of neurons in the laterodorsal tegmental nucleus (LDT), a major source of cholinergic afferents to the thalamus, were studied in chloral hydrate-anesthetized rats. A combination of antidromic activation from the thalamus and histological verification of recording sites was used to correlate the identity of extracellular recordings in the rat LDT with cholinergic neurons in that region. All neurons antidromically activated by stimulation of the anteroventral thalamus were histologically verified to be within clusters of cholinergic (NADPH-d-positive) cells in the LDT or in the adjacent nucleus locus coeruleus (LC). The thalamically projecting LDT neurons had a homogeneous neurophysiological profile consisting of long duration action potentials (mean = 2.5 ms), slow conduction velocities (mean = 0.78 m/s), and lengthy chronaxie values (mean = 0.725 ms). The appearance and axonal characteristics of these neurons resembled those of noradrenergic LC neurons, but the two populations exhibited substantially different spontaneous activity patterns and sensory responsiveness. These characteristics may be useful in the preliminary identification of putative cholinergic neurons in vivo, and thereby provide a foundation for exploring the neuropharmacology, afferent modulation, sensory responsiveness and behavioral correlates of the brainstem cholinergic system.  相似文献   

18.
Serotonin [5-hydroxytryptamine (5-HT)] plays an inhibitory role in rapid-eye-movement (REM) sleep although the exact mechanism(s) and site(s) of action are not known. It is commonly assumed that 5-HT exerts its influence on REM sleep via input from the dorsal raphe nucleus (DRN) directly onto cholinergic neurons involved in the generation of REM sleep. 5-HT(2) receptor sites have been found on cholinergic neurons in the laterodorsal tegmental nucleus (LDT) and pedunculopontine tegmental nucleus (PPT). We locally microinjected the 5-HT(2) agonist DOI ((+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl) and the 5-HT(2) antagonist, ketanserin, in LDT in rats to determine whether these receptor sites are involved in the regulation of behavioral states. DOI and ketanserin primarily affected REM sleep, by significantly decreasing or increasing, respectively, the number, but not the duration, of REM sleep episodes. DOI specifically decreased the occurrence of clusters of REM sleep episodes appearing at intervals less than or equal to 3 min (sequential episodes) without affecting single episodes separated by more than 3 min. An opposite effect of ketanserin on REM sleep clusters, although not statistically significant, was observed.  相似文献   

19.
Transection, lesion and unit recording studies have localized rapid eye movement (REM) sleep mechanisms to the pons. Recent work has emphasized the role of pontine cholinergic cells, especially those of the pedunculopontine tegmentum (PPT). The present study differentiated REM sleep deficits associated with lesions of the PPT from other pontine regions implicated in REM sleep generation, including those with predominantly cholinergic vs non-cholinergic cells. Twelve hour polygraphic recordings were obtained in 18 cats before and 1-2 weeks after bilateral electrolytic or radio frequency lesions of either: (1) PPT, which contains the dorsolateral pontine cholinergic cell column; (2) laterodorsal tegmental nucleus (LDT), which contains the dorsomedial pontine cholinergic cell column; (3) locus ceruleus (LC), which contains mostly noradrenergic cells; or (4) subceruleus (LC alpha, peri-LC alpha and the lateral tegmental field), which also contains predominantly noncholinergic cells. There were three main findings: (i) Only lesions of PPT and subceruleus significantly affected REM sleep time. These lesions produced comparable reductions in REM sleep time but influenced REM sleep components quite differently: (ii) PPT lesions, estimated to damage 90 +/- 4% of cholinergic cells, reduced the number of REM sleep entrances and phasic events, including ponto-geniculooccipital (PGO) spikes and rapid eye movements (REMs), but did not prevent complete atonia during REM sleep: (iii) Subceruleus lesions eliminated atonia during REM sleep. Mobility appeared to arouse the cat prematurely from REM sleep and may explain the brief duration of REM sleep epochs seen exclusively in this group. Despite the reduced amount of REM sleep, the total number of PGO spikes and REM sleep entrances increased over baseline values. Collectively, the results distinguish pontine loci regulating phasic events vs atonia. PPT lesions reduced phasic events, whereas subceruleus lesions created REM sleep without atonia. Severe REM sleep deficits after large pontine lesions, including PPT and subceruleus, might be explained by simultaneous production of both REM sleep syndromes. However, extensive loss of ACh neurons in the PPT does not disrupt REM sleep atonia.  相似文献   

20.
Accumulating evidence indicates that the laterodorsal tegmental nucleus (LDT) is associated with reward processing and addiction. The cholinergic projection from the LDT to the ventral tegmental area is essential for a large dopamine release in the nucleus accumbens, which is critically involved in the reinforcing effects of addictive drugs, including cocaine. In contrast to the large number of studies on plasticity induced after cocaine exposure in the mesocorticolimbic dopaminergic system, it remains unknown whether LDT cholinergic neurons exhibit plastic changes following cocaine administration. To address this issue, we performed ex vivo whole‐cell recordings in LDT cholinergic neurons obtained from rats following cocaine administration. Neurons obtained from 1 day after 5‐day cocaine‐treated rats showed significantly smaller paired‐pulse ratios of evoked EPSCs and higher miniature EPSC frequencies than those from saline‐treated rats, indicating an induction of presynaptic plasticity of increased glutamate release. This plasticity seemed to recover after a 5‐day withdrawal from repeated cocaine exposure, and required NMDA receptor stimulation and nitric oxide production. Additionally, pharmacological suppression of activity of the medial prefrontal cortex inhibited the presynaptic plasticity in the LDT. On the other hand, AMPA/NMDA ratios were not different between saline‐ and cocaine‐treated groups, revealing an absence of postsynaptic plasticity. These findings provide the first direct evidence of cocaine‐induced synaptic plasticity in LDT cholinergic neurons and suggest that the presynaptic plasticity enhances the activity of LDT cholinergic neurons, contributing to the expression of cocaine‐induced addictive behaviors through the dysregulation of the mesocorticolimbic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号